pH-Responsive Metal–Organic Framework for Targeted Delivery of Fungicide, Release Behavior, and Sustainable Plant Protection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Observation
2.2. X-Ray Powder and FT-IR Spectra Analysis
2.3. XPS Analysis
2.4. Zeta Potentials and TGA Analysis
2.5. The Loading Efficiency of Thi onto ZIF-8
2.6. Thi@ZIF-8 Release Analysis
2.7. Leaching Transport of Thi@ZIF-8 in Soil
2.8. Plant Safety Evaluation
2.9. Fungicidal Activity
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Thi@ZIF-8
3.3. Structural Characterization
3.4. Thi Release Study
3.5. Release Kinetics Mechanism
3.6. Column Leaching Performance
3.7. Bioactivity Study
- 1.
- Fungicidal activity in vitro
- 2.
- Fungicidal activity in vivo
3.8. Tomato Plant Safety Evaluation
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, L.; Lin, G.Q.; Wang, H.G.; Wei, C.G.; Chen, L.; Zhou, H.J.; Chen, H.Y.; Xu, H.; Zhou, X.H. Preparation and Characterization of Zein-Based Nanoparticles via Ring-Opening Reaction and Self-Assembly as Aqueous Nanocarriers for Pesticides. J. Agric. Food Chem. 2020, 68, 9624–9635. [Google Scholar] [CrossRef]
- Singh, A.; Dhiman, N.; Kar, A.K.; Singh, D.; Purohit, M.P.; Ghosh, D.; Patnaik, S. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. J. Hazard. Mater. 2020, 385, 121525. [Google Scholar] [CrossRef]
- Wang, C.Y.; Yang, J.; Qin, J.C.; Yang, Y.W. Eco-friendly nanoplatforms for crop quality control, protection, and nutrition. Adv. Sci. 2021, 8, 2004525. [Google Scholar] [CrossRef]
- Wang, D.J.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burgess, R.M.; Flury, M.; White, J.C.; et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef]
- Wang, M.; Kong, X.P.; Li, H.C.; Ge, J.C.; Han, X.Z.; Liu, J.H.; Yu, S.L.; Li, W.N.; Li, D.L.; Wang, J. Coprecipitation-based synchronous chlorantraniliprole encapsulation with chitosan: Carrier–pesticide interactions and release behavior. Pest Manag. Sci. 2024, 10, 3757–3766. [Google Scholar] [CrossRef]
- Ma, C.G.; Li, G.; Xu, W.W.; Qu, H.N.; Zhang, H.F.; Noruzi, E.B.; Li, H.B. Recent Advances in Stimulus-Responsive Nanocarriers for Pesticide Delivery. J. Agric. Food Chem. 2024, 72, 8906–8927. [Google Scholar] [CrossRef]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Pinto, T.V.; Silva, C.A.; Siquenique, S.; Learmonth, D.A. Micro- and Nanocarriers for Encapsulation of Biological Plant Protection Agents: A Systematic Literature Review. ACS Agric. Sci. Technol. 2022, 2, 838–857. [Google Scholar] [CrossRef]
- Li, L.H.; Cen, J.; Huang, L.L.; Luo, L.; Jiang, G.Q. Fabrication of a dual pH-responsive and photothermal microcapsule pesticide delivery system for controlled release of pesticides. Pest Manag. Sci. 2023, 79, 969–979. [Google Scholar] [CrossRef]
- Teng, G.; Chen, P.C.W.; Jing, N.N.; Chen, C.; Duan, Y.J.; Zhang, L.H.; Wu, Z.Y.; Zhang, J. Halloysite nanotubes-based composite material with acid/alkali dual Ph response and foliar adhesion for smart delivery of hydrophobic pesticide. Chem. Eng. J. 2023, 451, 139052. [Google Scholar] [CrossRef]
- Ye, Z.; Guo, J.; Wu, D.; Tan, M.; Xiong, X.; Yin, Y.; He, G. Photo-responsive shell cross-linked micelles based on carboxymethyl chitosan and their application in controlled release of pesticide. Carbohydr. Polym. 2015, 132, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, G.; Dai, Z.; Xiang, Y.; Liu, B.; Bian, P.; Zheng, K.; Wu, Z.; Cai, D. Fabrication of light-responsively controlled-release herbicide using a nanocomposite. Chem. Eng. J. 2018, 349, 101–110. [Google Scholar] [CrossRef]
- Liang, W.L.; Xie, Z.G.; Cheng, J.L.; Xiao, D.X.; Xiong, Q.Y.; Wang, Q.W.; Zhao, J.H.; Gui, W.J. A Light-Triggered pH-Responsive Metal–Organic Framework for Smart Delivery of Fungicide to Control Sclerotinia Diseases of Oilseed Rape. ACS Nano 2021, 15, 6987–6997. [Google Scholar] [CrossRef]
- Zheng, D.; Bai, B.; Zhao, H.; Xu, X.; Hu, N.; Wang, H. Stimuli-responsive Ca-alginate-based photothermal system with enhanced foliar adhesion for controlled pesticide release. Colloids Surf. B Biointerfaces 2021, 207, 1120046. [Google Scholar] [CrossRef]
- Liu, B.; Chen, C.; Teng, G.; Tian, G.; Zhang, G.; Gao, Y.; Zhang, L.; Wu, Z.; Zhang, J. Chitosan-based organic/inorganic composite engineered for UV light-controlled smart pH-responsive pesticide through in situ photo-induced generation of acid. Pest Manag. Sci. 2022, 78, 2299–2308. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, G.; Xiang, Y.; Cai, D.; Wu, Z. Fabrication of a Temperature-Controlled-Release Herbicide Using a Nanocomposite. ACS Sustain. Chem. Eng. 2017, 5, 4969–4975. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, Y.; Mao, K.; Qin, X.; Zhang, Y.; Li, D.; Zhang, Y.; Li, J.; Wan, H.; He, S. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chem. Eng. J. 2020, 383, 123169. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Avellan, A.; Gao, X.; Matyjaszewski, K.; Tilton, R.D.; Lowry, G.V. Temperature- and Ph-Responsive Star Polymers as Nanocarriers with Potential for in Vivo Agrochemical Delivery. ACS Nano 2020, 14, 10954–10965. [Google Scholar] [CrossRef]
- Xiao, D.; Liang, W.; Xie, Z.; Cheng, J.; Du, Y.; Zhao, J. A temperature-responsive release cellulose-based microcapsule loaded with chlorpyrifos for sustainable pest control. J. Hazard. Mater. 2021, 403, 123654. [Google Scholar] [CrossRef]
- Ma, X.; Xiang, S.; Xie, H.; He, L.; Sun, X.; Zhang, Y.; Huang, J. Fabrication of pH-Sensitive Tetramycin Releasing Gel and Its Antibacterial Bioactivity against Ralstonia solanacearum. Molecules 2019, 24, 3606. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Q.; Zhang, F.; Shang, H.; Bai, S.; Sun, J. pH-sensitive thiamethoxam nanoparticles based on bimodal mesoporous silica for improving insecticidal efficiency. R. Soc. Open Sci. 2021, 8, 201967. [Google Scholar] [CrossRef]
- Xiao, D.; Cheng, J.; Liang, W.; Sun, L.; Zhao, J. Metal-Phenolic Coated and Prochloraz-Loaded Calcium Carbonate Carriers with Ph Responsiveness for Environmentally-Safe Fungicide Delivery. Chem. Eng. J. 2021, 418, 129274. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, X.; Zhao, C.; Yuan, Z.; Zhang, D.; Zhao, H.; Yang, N.; Guo, K.; He, Y.; He, Y.; et al. A pH-responsive MOF for site-specific delivery of fungicide to control citrus disease of Botrytis cinerea. Chem. Eng. J. 2021, 431, 13351. [Google Scholar] [CrossRef]
- Kaziem, A.E.; Gao, Y.; Zhang, Y.; Qin, X.; Xiao, Y.; Zhang, Y.; You, H.; Li, J.; He, S. alpha-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella. J. Hazard. Mater. 2018, 359, 213–221. [Google Scholar] [CrossRef]
- Fischer, J.; Beckers, S.J.; Yiamsawas, D.; Thines, E.; Landfester, K.; Wurm, F.R. Targeted Drug Delivery in Plants: Enzyme-Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca. Adv. Sci. 2019, 6, 1802315. [Google Scholar] [CrossRef]
- Abdelrahman, T.M.; Qin, X.; Li, D.; Senosy, I.A.; Mmby, M.; Wan, H.; Li, J.; He, S. Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants. Chem. Eng. J. 2021, 404, 126440. [Google Scholar] [CrossRef]
- Zuo, J.H.; Yan, H.Z.; Lan, R.P.; Cai, J.T.; Lin, Y.T.; Wu, W.; Chen, H.Y.; Hao, L.; Zhou, X.H.; Zhou, H.J. An enzyme-responsive core-double shell structured nano pesticide delivery system for improving the UV stability of emamectin benzoate (EB). Ind. Crops Prod. 2024, 213, 118464. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.H. Nano-Based Smart Pesticide Formulations: Emerging Opportunities for Agriculture. J. Control. Release 2019, 294, 131–153. [Google Scholar] [CrossRef]
- Liu, J.C.; Xu, D.J.; Xu, G.C.; Li, X.N.; Dong, J.T.; Luan, X.K.; Du, X.Z. Smart controlled-release avermectin nanopesticides based on metal–organic frameworks with large pores for enhanced insecticidal efficacy. Chem. Eng. J. 2023, 474, 14631. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Sun, J.; Lu, G.; Cai, C. Enhanced catalytic activity of cobalt nanoparticles encapsulated with an N-doped porous carbon shell derived from hollow ZIF-8 for efficient synthesis of nitriles from primary alcohols in water. Green Chem. 2019, 21, 4334–4340. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Fan, Y.; Cao, R.; Xu, Y.; Weng, Z.; Ye, J.; He, C.; Zhu, Y.; Wang, X. Metal-Organic-Framework-Based Hydrogen-Release Platform for Multieffective Helicobacter Pylori Targeting Therapy and Intestinal Flora Protective Capabilities. Adv. Mater. 2022, 34, 2105738. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020, 12, 103. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nystrom, A.M.; Zou, X. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–996. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, R.; Shang, H.; Zhen, S.; Li, L.; Guo, X.; Yu, M.; Xu, Y.; Feng, J.; Wu, X. pH-responsive ZIF-8-based metal–organic-framework nanoparticles for termite control. ACS Appl. Nano Mater. 2022, 5, 11864–11875. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Yang, T.; Zhou, G.; Wang, J.; Mao, C.; Yang, M. Biomimetic Nucleation of Metal-Organic Frameworks on Silk Fibroin Nanoparticles for Designing Core-Shell-Structured pH-Responsive Anticancer Drug Carriers. ACS Appl. Mater. Interfaces 2021, 13, 47371–47381. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, Y.; Dong, H.; Niu, J.; Tang, J.; Yang, J.; Tang, G.; Zhou, Z.; Tang, R.; Shi, X.; et al. A bioresponsive system based on mesoporous organosilica nanoparticles for smart delivery of fungicide in response to pathogen presence. ACS Sustain. Chem. Eng. 2020, 8, 5716–5723. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Qin, X.; Guo, Z.; Li, D.; Li, C.; Wan, H.; Zhu, F.; Li, J.; Zhang, Z.; et al. Dual stimuli-responsive fungicide carrier based on hollow mesoporous silica/hydroxypropyl cellulose hybrid nanoparticles. J. Hazard. Mater. 2021, 414, 125513. [Google Scholar] [CrossRef]
- Zhang, P.; Guan, B.; Yu, L.; Lou, X. Facile Synthesis of Multi shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. Chem 2018, 4, 162–173. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Qiu, J.; Liu, C.; Yu, Z.; Zhang, J.; Qiu, Z. In-situ uniform growth of ZIF-8 on 3D flower-like NiCoLDH microspheres to enhance tetracycline and doxycycline removal from wastewater: Anti-interference and stability tests. Sep. Purif. Technol. 2022, 302, 122078. [Google Scholar] [CrossRef]
- Li, K.; Chen, M.M.; Chen, L.; Zhao, S.Y.; Pan, W.B.; Li, P.; Han, Y.C. Adsorption of tetracycline from aqueous solution by ZIF-8: Isotherms, kinetics and thermodynamics. Environ. Res. 2024, 241, 117588. [Google Scholar] [CrossRef] [PubMed]
- Awadallah-F, A.; Hillman, F.; Al-Muhtaseb, S.A.; Jeong, H.-K. On the nanogate-opening pressures of copper-doped zeolitic imidazolate framework ZIF-8 for the adsorption of propane, propylene, isobutane, and n-butane. J. Mater. Sci. 2019, 54, 5513–5527. [Google Scholar] [CrossRef]
- Ran, J.; Chen, H.; Bi, S.; Guo, Q.; Deng, Z.; Cai, G.; Cheng, D.; Tang, X.; Wang, X. One-step in-situ growth of zeolitic imidazole frameworks-8 on cotton fabrics for photocatalysis and antimicrobial activity. Cellulose 2020, 27, 10447–10459. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, X.; Wei, C.; Sun, Z.; Zeng, K.; Shen, L.; Sun, J.; Rümmeli, M.H.; Yang, R. Nitrogen-Doped Hollow Carbon Polyhedron Derived from Salt-Encapsulated ZIF-8 for Efficient Oxygen Reduction Reaction. Carbon 2021, 171, 320–328. [Google Scholar] [CrossRef]
- Yang, J.; Sargent, E.H.; Kelley, S.O.; Ying, J.Y. A General Phase-Transfer Protocol for Metal Ions and Its Application in Nanocrystal Synthesis. Nat. Mater. 2009, 8, 683–689. [Google Scholar] [CrossRef]
- Peng, S.; Liu, J.; Qin, Y.; Wang, H.; Cao, B.; Lu, L.; Yu, X. Metal-organic framework encapsulating hemoglobin as a high-stable and long-circulating oxygen carriers to treat hemorrhagic shock. ACS Appl. Mater. Interfaces 2019, 11, 35604–35612. [Google Scholar] [CrossRef]
- Chen, J.L.; Xiao, D.X.; Liang, W.L.; Fang, X.; Zhang, J.D.; Zhao, J.H. Synthesis and fungicidal activity of pH-responsive pyraclostrobin/zeolite imidazole ester framework material nanoparticles. Chin. J. Pestic. Sci. 2022, 24, 105–113. [Google Scholar]
- Ma, S.; Ji, Y.; Dong, Y.; Chen, S.; Wang, Y.; Lü, S. An environmental-friendly pesticide-fertilizer combination fabricated by in-situ synthesis of ZIF-8. Sci. Total Environ. 2021, 789, 147845. [Google Scholar] [CrossRef]
- Yan, L.; Chen, X.; Wang, Z.; Zhang, X.; Zhu, X.; Zhou, M.; Chen, W.; Huang, L.; Roy, V.A.; Yu, P.K.; et al. Size Controllable and Surface Tunable Zeolitic Imidazolate Framework-8-Poly (acrylic Acid Sodium Salt) Nanocomposites for pH Responsive Drug Release and Enhanced in Vivo Cancer Treatment. ACS Appl. Mater. Interfaces 2017, 9, 32990–33000. [Google Scholar] [CrossRef]
- Liang, Y.; Song, J.; Dong, H.; Huo, Z.; Gao, Y.; Zhou, Z.; Tian, Y.; Li, Y.; Cao, Y. Fabrication of pH-responsive nanoparticles for high efficiency pyraclostrobin delivery and reducing environmental impact. Sci. Total Environ. 2021, 787, 147422. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Guan, J.; Lai, S.; Fang, L.; Su, J. pH-responsive curcumin-based nanoscale ZIF-8 combining chemophotodynamic therapy for excellent antibacterial activity. RSC Adv. 2022, 12, 10005–10013. [Google Scholar] [CrossRef] [PubMed]
- Avci, C.; Arinez-Soriano, J.; Carne-Sanchez, A.; Guillerm, V.; Carbonell, C.; Imaz, I.; Maspoch, D. Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew. Chem. Int. Ed. 2015, 54, 14417–14421. [Google Scholar] [CrossRef]
- Pang, S.H.; Han, C.; Sholl, D.S.; Jones, C.W.; Lively, R.P. Facet-specific stability of ZIF-8 in the presence of acid gases dissolved in aqueous solutions. Chem. Mater. 2016, 28, 6960–6967. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, M.; Lin, Y.S. Stability of ZIF-8 in water under ambient conditions. Microporous Mesoporous Mater. 2019, 279, 201–210. [Google Scholar] [CrossRef]
- Lei, Z.; Deng, Y.; Wang, C. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. J. Mater. Chem. A 2018, 6, 3258–3263. [Google Scholar] [CrossRef]
- Mohamedali, M.; Ibrahim, H.; Henni, A. Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture. Chem. Eng. J. 2018, 334, 817–828. [Google Scholar] [CrossRef]
- Dhiman, A.; Sharma, A.K.; Bhardwaj, D.; Agrawal, G. Biodegradable dual stimuli responsive alginate based microgels for controlled agrochemicals release and soil remediation. Int. J. Biol. Macromol. 2023, 228, 323–332. [Google Scholar] [CrossRef]
- Wu, X.C.; Hao, H.J.; Song, X.Y.; Zhang, Y.Z.; Liu, Y.X.; Zhang, H.Q. Preparation of hydrogel matrix sustained-release tablets of resveratrol-solid lipid nanoparticles. Chin. Tradit. Herbal Drugs 2016, 47, 1303–1308. [Google Scholar]
- Xiang, Y.; Li, J.; Wang, K.; Zhang, Y.; Li, Z.; Li, Z.; Lu, X.; Guo, Y. Tannic acid-iron(III) complex functionalized porous calcium carbonate as pesticide carrier for pH-controlled release. J. Environ. Chem. Eng. 2023, 11, 110124. [Google Scholar] [CrossRef]
- Yanga, C.; Fang, M.; Zhang, F.; Lua, Z.; Zhang, L. A versatile polyphenol-coordinated eco-friendly hollow ZIF-based nanohybrid for precise fungicide delivery and highly efficient suppression of Botrytis cinerea. J. Clean. Prod. 2024, 434, 139922. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Zhao, R.; Wang, Z.; Li, S.; Yua, M.; Pang, S.; Guo, X.; Xu, Y.; Wu, X. pH-responsive ZIF-8 film-coated mesoporous silica nanoparticles for clean, targeted delivery of fungicide and environmental hazard reduction. J. Environ. Chem. Eng. 2023, 11, 111513. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Yuan, Z.; Shen, G.; Zhang, Z.; Niu, J.; He, L.; Wang, J.; Qian, K. A pH- and enzymatic-responsive nanopesticide to control pea aphids and reduce toxicity for earthworms. Sci. Total Environ. 2023, 861, 160610. [Google Scholar] [CrossRef]
- Yu, B.; Cheng, J.; Fang, Y.; Xie, Z.; Xiong, Q.; Zhang, H.; Shang, W.; Wurm, F.R.; Liang, W.; Wei, F.; et al. Multi-Stimuli-Responsive, Topology-Regulated, and Lignin-Based Nano/Microcapsules from Pickering Emulsion Templates for Bidirectional Delivery of Pesticides. ACS Nano 2024, 18, 10031–10044. [Google Scholar] [CrossRef]
- Serra, L.; Doménech, J.; Peppas, N.A. Drug transport mechanisms and release kinetics from molecularly designed poly (acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 2006, 27, 5440–5451. [Google Scholar] [CrossRef]
- Nie, G.; Wu, C.X.; Wang, G.C.; Gao, L.M.; Cheng, B.K.; Xu, Y.Q.; Zhang, Z.M. Leaching of Monosulfuron-ester in Soil Columns and Its Affecting Factors. Chin. Pestic. Sci. Admin. 2013, 34, 38–44. [Google Scholar]
Model | pH Value | k | n | R2 |
---|---|---|---|---|
Zero-order | 5.0 | 0.31 | 0.99212 | |
7.0 | 0.20 | 0.99752 | ||
9.0 | 0.10 | 0.9654 | ||
First-order | 5.0 | 0.0031 | 0.9972 | |
7.0 | 0.0021 | 0.99467 | ||
9.0 | 0.0007 | 0.95011 | ||
Higuchi | 5.0 | 5.52 | 0.97555 | |
7.0 | 3.50 | 0.96103 | ||
9.0 | 1.73 | 0.90229 | ||
Ritger-Peppas | 5.0 | 1.02 | 0.79 | 0.99874 |
7.0 | 5.53 | 0.83 | 0.99728 | |
9.0 | 0.21 | 0.88 | 0.95458 |
Inhibition Rate on PDA/% | Inhibition Rate on Tomato/% | |
---|---|---|
Thi | 28.9 ± 1.83 b | 22.76 ± 5.9 a |
Thi@ZIF-8 | 59.07 ± 0.55 a | 32.58 ± 5.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Lü, F.; Wang, L.; Liu, S.; Wu, Z.; Cheng, Y.; Liu, F. pH-Responsive Metal–Organic Framework for Targeted Delivery of Fungicide, Release Behavior, and Sustainable Plant Protection. Molecules 2024, 29, 5330. https://doi.org/10.3390/molecules29225330
Yang S, Lü F, Wang L, Liu S, Wu Z, Cheng Y, Liu F. pH-Responsive Metal–Organic Framework for Targeted Delivery of Fungicide, Release Behavior, and Sustainable Plant Protection. Molecules. 2024; 29(22):5330. https://doi.org/10.3390/molecules29225330
Chicago/Turabian StyleYang, Shuzhen, Fulin Lü, Li Wang, Sinan Liu, Zhisai Wu, Yanqin Cheng, and Fan Liu. 2024. "pH-Responsive Metal–Organic Framework for Targeted Delivery of Fungicide, Release Behavior, and Sustainable Plant Protection" Molecules 29, no. 22: 5330. https://doi.org/10.3390/molecules29225330
APA StyleYang, S., Lü, F., Wang, L., Liu, S., Wu, Z., Cheng, Y., & Liu, F. (2024). pH-Responsive Metal–Organic Framework for Targeted Delivery of Fungicide, Release Behavior, and Sustainable Plant Protection. Molecules, 29(22), 5330. https://doi.org/10.3390/molecules29225330