Co Cluster-Modified Ni Nanoparticles with Superior Light-Driven Thermocatalytic CO2 Reduction by CH4
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Light-Driven Thermocatalytic CRM Activity
2.3. Light-Driven Thermocatalytic Durability
2.4. Origin of the Superior Light-Driven Thermocatalytic Durability
2.5. The Function of Light
2.5.1. Heating Role
2.5.2. Photoactivation
3. Materials and Methods
3.1. Catalyst Synthesis
3.2. Characterization
3.3. Light-Driven Thermocatalytic and Photocatalytic CRM Tests
3.4. Catalytic CRM Activity in the Dark and Under UV-Vis-IR Irradiation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12747. [Google Scholar] [CrossRef]
- Li, D.D.; Kassymove, M.; Cai, X.C.; Zang, S.Q.; Jiang, H.L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord. Chem. Rev. 2020, 412, 213262–213278. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Qu, Y.; Qu, B.H.; Bai, L.L.; Liu, Y.; Yang, Z.D.; Zhang, W.; Jing, L.Q.; Fu, H.G. Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 2021, 33, 2105482. [Google Scholar] [CrossRef]
- Gong, E.; Ali, S.; Hiragond, C.B.; Kim, H.S.; Powar, N.S.; Kim, D.Y.; Kim, H.; Ln, S.I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937. [Google Scholar] [CrossRef]
- Cheng, L.; Yue, X.Y.; Fan, J.J.; Xiang, Q.J. Site-specific Electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions. Adv. Mater. 2022, 34, 2200929. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, Z.Q.; Feng, J.N.; Thangamuthu, M.; Yang, F.; Sun, L.; Li, Z.J.; Qu, Y.; Tang, D.Y.; Lin, Z.W.; et al. Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO2 photoreduction without a cocatalyst. Angew. Chem. Int. Ed. 2021, 133, 21074–21082. [Google Scholar] [CrossRef]
- Zhao, L.N.; Bian, J.; Zhang, X.F.; Bai, L.L.; Xu, L.Y.; Qu, Y.; Li, Z.J.; Li, Y.X.; Jing, L.Q. Construction of ultrathin S-scheme heterojunctions of single Ni atom immobilized Ti-MOF and BiVO4 for CO2 photoconversion of nearly 100% to CO by pure water. Adv. Mater. 2022, 34, 2205303. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Wang, S.; Liu, Q.; Deng, Z.; Wang, F. Narrowing band gap energy of CeO2 in (Ni/CeO2)@SiO2 catalyst for photothermal methane dry reforming. Chem. Eng. J. 2021, 421, 129989. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, X.; Shi, R.; Waterhouse, G.I.N.; Zhang, X.; Dai, Q.; Zhang, T. NiFe nanoalloys derived from layered double hydroxides for photothermal synergistic reforming of CH4 with CO2. Adv. Funct. Mater. 2022, 32, 2204056. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhang, T.; Liang, W.P.; Bai, P.W.; Zheng, H.Y.; Lei, Y.; Hu, Z.; Xie, T. Promoted solar-driven dry reforming of methane with Pt/mesoporous-TiO2 photo-thermal synergistic catalyst: Performance and mechanism study. Energy Convers. Manag. 2022, 58, 115496. [Google Scholar] [CrossRef]
- Pan, F.P.; Xiang, X.M.; Du, Z.C.; Sarnello, E.; Li, T.; Li, Y. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Appl. Catal. B 2020, 260, 118189. [Google Scholar] [CrossRef]
- Feng, X.H.; Du, Z.C.; Sarnello, E.; Deng, W.; Petru, C.R.; Fang, L.Z.; Li, T.; Li, Y. Syngas production at a near-unity H2/CO ratio from photo-thermo-chemical dry reforming of methane on a Pt decorated Al2O3–CeO2 catalyst. J. Mater. Chem. A 2022, 10, 7896–7910. [Google Scholar] [CrossRef]
- Liu, H.; Meng, X.; Dao, T.D.; Zhang, H.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. Conversion of carbon dioxide by methane reforming under visible-light irradiation: Surface-plasmon-mediated nonpolar molecule activation. Angew. Chem. Int. Ed. 2015, 127, 11707–11711. [Google Scholar] [CrossRef]
- Liu, H.M.; Li, M.; Dao, T.D.; Liu, Y.Y.; Zhou, W.; Liu, L.Q.; Meng, X.G.; Nagao, T.; Ye, J.H. Design of PdAu alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation. Nano Energy 2016, 26, 398–404. [Google Scholar] [CrossRef]
- Han, B.; Wei, W.; Chang, L.; Cheng, P.F.; Hu, Y.H. Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catal. 2016, 6, 494–497. [Google Scholar] [CrossRef]
- Yang, Y.; Chai, Z.; Qin, X.; Zhang, Z.; Muhetaer, A.; Wang, C.; Huang, H.; Yang, C.; Ma, D.; Li, Q.; et al. Light-induced redox looping of a rhodium/CexWO3 photocatalyst for highly active and robust dry reforming of methane. Angew. Chem. Int. Ed. 2021, 61, e202200567. [Google Scholar] [CrossRef]
- Mao, M.Y.; Zhang, Q.; Yang, Y.; Li, Y.Z.; Huang, H.; Jiang, Z.K.; Hu, Q.Q.; Zhao, X.J. Solar-light-driven CO2 reduction by methane on Pt nanocrystals partially embedded in mesoporous CeO2 nanorods with high light-to-fuel efficiency. Green. Chem. 2018, 20, 2857–2869. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, M.Y.; Li, Y.Z.; Yang, Y.; Huang, H.; Jiang, Z.K.; Hu, Q.Q.; Wu, S.W.; Zhao, X.J. Novel photoactivation promoted light-driven CO2 reduction by CH4 on Ni/CeO2 nanocomposite with high light-to-fuel efficiency and enhanced stability. Appl. Catal. B 2018, 239, 555–564. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Wu, S.W.; Li, Y.Z.; Zhang, Q. Significant improvement in activity; durability; and light-to-fuel efficiency of Ni nanoparticles by La2O3 cluster modification for photothermocatalytic CO2 reduction. Appl. Catal. B 2020, 264, 118544. [Google Scholar] [CrossRef]
- Ling, L.L.; Yang, W.J.; Yan, P.; Wang, M.; Jiang, H.L. Light-assisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in Close Proximity. Angew. Chem. Int. Ed. 2022, 61, e202116396. [Google Scholar] [CrossRef]
- Deng, B.W.; Song, H.; Peng, K.; Li, Q.; Ye, J.H. Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Appl. Catal. B 2021, 298, 120519. [Google Scholar] [CrossRef]
- Cui, J.X.; Wang, L.J.; Feng, L.; Meng, B.; Zhou, Z.Y.; Su, Z.M.; Wang, K.; Liu, S.M. A metal-free covalent organic framework as a photocatalyst for CO2 reduction at low CO2 concentration in a gas–solid system. J. Mater. Chem. A 2021, 9, 24895–24902. [Google Scholar] [CrossRef]
- Yan, J.Y.; Wang, C.H.; Ma, H.; Li, Y.Y.; Dr Liu, Y.C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X.T. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Appl. Catal. B 2020, 268, 118401. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Y.P.; Tian, J.S.; Zhang, L.J.; Wan, S.L.; Lin, J.D.; Wang, Y. Direct coupling of thermos-and photocatalysis for conversion of CO2–H2O into fuels. ChemSusChem 2017, 10, 4709–4714. [Google Scholar] [CrossRef]
- Miao, C.; Chen, S.M.; Shang, K.X.; Liang, L.X.; Ouyang, J. Highly active Ni–Ru bimetallic catalyst integrated with MFI zeolite-loaded cerium zirconium oxide for dry reforming of methane. ACS Appl. Mater. Interfaces 2022, 14, 47616–47632. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Yang, Z.Q.; Kadirova, Z.C.; Guo, M.N.; Fang, R.M.; He, J.; Yan, Y.F.; Ran, J.Y. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance; application and prospect. Coord. Chem. Rev. 2022, 473, 214794. [Google Scholar] [CrossRef]
- Song, C.; Wang, Z.H.; Yin, Z.; Xiao, D.Q.; Ma, D. Principles and applications of photothermal catalysis. Chem. Catal. 2022, 2, 52–83. [Google Scholar] [CrossRef]
- Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B.A.; Jamal, A.; Moon, D.; et al. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 2020, 367, 777–781. [Google Scholar] [CrossRef]
- Xiao, Y.; Xie, K. Active exsolved metal–oxide interfaces in porous single-crystalline ceria monoliths for efficient and durable CH4/CO2 reforming. Angew. Chem. Int. Ed. 2022, 61, e202113079. [Google Scholar] [CrossRef]
- Min, H.K.; Kweon, S.; Kim, Y.W.; An, H.; Jo, D.; Park, E.D.; Shin, C.H.; Park, M.B. Atomically dispersed nickel species in a two-dimensional molecular sieve: Origin of high activity and stability in dry reforming of methane. Appl. Catal. B 2021, 298, 120627. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Wang, W.; Cao, M.; Li, S.; Wang, P.; He, J.; Li, R.; Yan, X. Effect of interstitial carbon atoms in core-shell Ni3ZnC0.7/Al2O3 catalyst for high-performance dry reforming of methane. Appl. Catal. B 2022, 317, 121806. [Google Scholar] [CrossRef]
- Sun, N.N.; Wen, X.; Wang, F.; Wei, W.; Sun, Y.H. Effect of pore structure on Ni catalyst for CO2 reforming of CH4. Energy Environ. Sci. 2010, 3, 366–369. [Google Scholar] [CrossRef]
- Zhou, R.; Mohamedali, M.; Ren, Y.; Lu, Q.; Mahinpey, N. Facile synthesis of multi-layered nanostructured Ni/CeO2 catalyst plus in-situ pre-treatment for efficient dry reforming of methane. Appl. Catal. B 2022, 316, 121696. [Google Scholar] [CrossRef]
- Pan, Y.X.; Kuai, P.; Liu, Y.; Ge, Q.; Liu, C.J. Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst. Energy Environ. Sci. 2010, 3, 1322–1325. [Google Scholar] [CrossRef]
- Miao, C.; Shang, K.X.; Liang, L.X.; Chen, S.M.; Ouyang, J. A superior strategy for CO2 methanation under atmospheric pressure: Organic acid-assisted Co nanoparticles assembly on diatomite. Fuel 2023, 351, 128931. [Google Scholar]
- Lu, Y.; Kang, L.; Guo, D.; Zhao, Y.; Zhao, Y.; Wang, S.; Ma, X. Double-site doping of a V promoter on NixV-MgAl catalysts for the DRM reaction: Simultaneous effect on CH4 and CO2 activation. ACS Catal. 2021, 11, 8749–8765. [Google Scholar] [CrossRef]
- Wu, S.W.; Li, Y.Z.; Zhang, Q.; Hu, Q.Q.; Wu, J.C.; Zhou, C.Y.; Zhao, X.J. Formation of NiCo alloy nanoparticles on Co doped Al2O3 leads to high fuel production rate; large light-to-fuel efficiency; and excellent durability for photothermocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 2002602. [Google Scholar] [CrossRef]
- Tan, X.; Wu, S.W.; Li, Y.Z.; Zhang, Q.; Hu, Q.Q.; Wu, J.C.; Zhang, A.; Zhang, Y.D. Highly efficient photothermocatalytic CO2 reduction in Ni/Mg-doped Al2O3 with high fuel production rate; largelight-to-fuel efficiency; and dood durability. Energy Environ. Mater. 2022, 5, 582–591. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, B.H.; Tang, L.; Chen, L.; Guo, J.K.; Pan, J.B.; Lei, B.; Hu, B.; Bai, Z.J.; Tulu, M.; et al. Photocatalytic dry reforming of methane enhanced by “dual-path” strategy with excellent low-temperature catalytic performance. Adv. Funct. Mater. 2023, 33, 2214068. [Google Scholar] [CrossRef]
- Pan, F.P.; Xiang, X.M.; Deng, W.; Zhao, H.L.; Feng, X.H.; Li, Y. A novel photo-thermochemical approach for enhanced carbon dioxide reforming of methane. ChemCatChem 2018, 10, 940–945. [Google Scholar] [CrossRef]
- Kim, S.M.; Abdala, P.M.; Margossian, T.; Hosseini, D.; Foppa, L.; Armutlulu, A.; Beek, W.V.; Orcid, A.C.V.; Copéret, C.; Müller, C. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. J. Am. Chem. Soc. 2017, 139, 1937–1949. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.W.; Hu, Q.Q.; Li, Y.Z. Photothermocatalytic CO2 reduction on magnesium oxide-cluster-modified Ni nanoparticles with high fuel production rate; large light-to-fuel efficiency and excellent durability. Sol. RRL 2021, 5, 202100735. [Google Scholar] [CrossRef]
- Jiang, Z.K.; Li, Y.Z.; Zhang, Q.; Yang, Y.; Wu, S.W. A novel nanocomposite of mesoporous silica supported Ni nanocrystals modified by ceria clusters with extremely high light-to-fuel efficiency for UV-vis-IR light-driven CO2 reduction. J. Mater. Chem. A 2019, 7, 4881–4892. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.Z.; Wu, S.W.; Wu, J.C.; Jiang, Z.K.; Yang, Y.; Ren, L.; Zhao, X.J. UV-vis-IR irradiation driven CO2 reduction with high light-to-fuel efficiency on a unique nanocomposite of Ni nanoparticles loaded on Ni doped Al2O3 nanosheets. J. Mater. Chem. A 2019, 7, 19800–19810. [Google Scholar] [CrossRef]
- Khan, I.S.; Mateo, D.; Shterk, G.; Shoinkhorova, T.; Poloneeva, D.; Garzón-Tovar, L.; Gascon, J. An efficient metal-organic framework-derived nickel catalyst for the light driven methanation of CO2. Angew. Chem. 2021, 133, 26680–26686. [Google Scholar] [CrossRef]
- Cai, M.; Wu, Z.; Li, Z.; Wang, L.; Sun, W.; Tountas, A.A.; Li, C.; Wang, S.H.; Feng, K.; Xu, A.B.; et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 2021, 6, 807–814. [Google Scholar] [CrossRef]
- Ren, Y.Q.; Fu, Y.W.; Li, N.X.; You, C.J.; Huang, J.; Huang, K.; Sun, Z.K.; Zhou, J.C.; Si, Y.T.; Zhu, Y.H.; et al. Concentrated solar CO2 reduction in H2O vapour with >1% energy conversion efficiency. Nat. Commun. 2024, 15, 4675. [Google Scholar] [CrossRef]
- Huang, H.; Mao, M.Y.; Zhang, Q.; Li, Y.Z.; Bai, J.L.; Yang, Y.; Zeng, M.; Zhao, X.J. Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv. Energy Mater. 2018, 8, 1702472. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer: Waltham, MA, USA, 1979. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhang, Y.; Sun, N.; Cheng, D.; Sun, P.; Zhang, Q. Co Cluster-Modified Ni Nanoparticles with Superior Light-Driven Thermocatalytic CO2 Reduction by CH4. Molecules 2024, 29, 5338. https://doi.org/10.3390/molecules29225338
Li M, Zhang Y, Sun N, Cheng D, Sun P, Zhang Q. Co Cluster-Modified Ni Nanoparticles with Superior Light-Driven Thermocatalytic CO2 Reduction by CH4. Molecules. 2024; 29(22):5338. https://doi.org/10.3390/molecules29225338
Chicago/Turabian StyleLi, Mei, Yuhua Zhang, Na Sun, Dan Cheng, Peng Sun, and Qian Zhang. 2024. "Co Cluster-Modified Ni Nanoparticles with Superior Light-Driven Thermocatalytic CO2 Reduction by CH4" Molecules 29, no. 22: 5338. https://doi.org/10.3390/molecules29225338
APA StyleLi, M., Zhang, Y., Sun, N., Cheng, D., Sun, P., & Zhang, Q. (2024). Co Cluster-Modified Ni Nanoparticles with Superior Light-Driven Thermocatalytic CO2 Reduction by CH4. Molecules, 29(22), 5338. https://doi.org/10.3390/molecules29225338