Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Inhibition of AChE and BChE
2.3. In Vitro Antioxidative Potential
2.4. Metal Chelation Study
2.5. Cytotoxicity
2.6. In Silico Prediction of Blood–Brain Barrier (BBB) Penetration
2.7. Human Intestinal Absorption
3. Discussion
4. Materials and Methods
4.1. Synthesis and Isolation of Compounds
4.2. Inhibition Study
4.3. Molecular Docking
4.4. Antioxidant Activity
4.5. Metal Chelation
4.6. Cytotoxicity Assay
4.7. Prediction of Ability to Pass the Blood–Brain Barrier (BBB)
4.8. In Silico Evaluation of Human Intestine Absorption
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hatton, C.S.; Peto, T.E.; Bunch, C.; Pasvol, G.; Russell, S.J.; Singer, C.R.; Edwards, G.; Winstanley, P. Frequency of severe neutropenia associated with amodiaquine prophylaxis against malaria. Lancet Lond. Engl. 1986, 1, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Neftel, K.A.; Woodtly, W.; Schmid, M.; Frick, P.G.; Fehr, J. Amodiaquine induced agranulocytosis and liver damage. Br. Med. J. 1986, 292, 721–723. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, R.; Atsumi, K.; Itokawa, M.; Iwasaki, T.; Aoki, C.; Ono, T.; Izumi, K.; Sudo, O.; Okazaki, O. Metabolism-dependent hepatotoxicity of amodiaquine in glutathione-depleted mice. Arch. Toxicol. 2009, 83, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Olliario, P.; Nevill, C.; Lebras, J.; Ringwald, P.; Mussano, P.; Garner, P.; Basseur, P. Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet 1996, 348, 1196–2001. [Google Scholar] [CrossRef]
- Li, E.Z.; Nguyen, T.D.; Tran, T.N.-A.; Zupko, R.J.; Boni, M.F. Assessing emergence risk of double-resistant and triple-resistant genotypes of Plasmodium falciparum. Nat. Commun. 2024, 15, 1390. [Google Scholar] [CrossRef]
- Antinarelli, L.M.R.; Midlej, V.; da Silva, E.D.S.; Coelho, E.A.F.; da Silva, A.D.; Coimbra, E.S. Exploring the repositioning of the amodiaquine as potential drug against visceral leishmaniasis: The in vitro effect against Leishmania infantum is associated with multiple mechanisms, involving mitochondria dysfunction, oxidative stress and loss of cell cycle control. Chem.-Biol. Interact. 2023, 371, 110333. [Google Scholar] [CrossRef]
- Parvathaneni, V.; Chilamakuri, R.; Kulkarni, N.S.; Baig, N.F.; Agarwal, S.; Gupta, V. Exploring amodiaquine’s repurposing potential in breast cancer treatment—Assessment of In-Vitro Efficacy & Mechanism of Action. Int. J. Mol. Sci. 2022, 23, 11455. [Google Scholar] [CrossRef]
- Freitas, G.J.C.; Ribeiro, N.Q.; Gouveia-Eufrasio, L.; Emidio, E.C.P.; Guimarães, G.M.; César, I.C.; Paixão, T.A.; Oliveira, J.B.S.; Caza, M.; Kronstad, J.W.; et al. Antimalarials and amphotericin B interact synergistically and are new options to treat cryptococcosis. Int. J. Antimicrob. Agents 2023, 62, 106807. [Google Scholar] [CrossRef]
- Baba, M.; Okamoto, M.; Toyama, M.; Sakakibara, N.; Shimojima, M.; Saijo, M.; Niwa, T.; Yagi, Y. Amodiaquine derivatives as inhibitors of severe fever with thrombocytopenia syndrome virus (SFTSV) replication. Antiv. Res. 2023, 210, 105479. [Google Scholar] [CrossRef]
- Guevara-Pulido, J.; Jiménez, R.A.; Morantes, S.J.; Jaramillo, D.N.; Acosta-Guzmán, P. Design, synthesis, and development of 4-[(7-chloroquinoline-4-yl)amino]phenol as a potential SARS-CoV-2 Mpro inhibitor. ChemistrySelect 2022, 7, e20220012. [Google Scholar] [CrossRef]
- Si, L.; Bai, H.; Rodas, M.; Cao, W.; Oh, C.Y.; Jiang, A.; Moller, R.; Hoagland, D.; Oishi, K.; Horiuchi, S.; et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 2021, 5, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Pickard, A.; Calverley, B.C.; Chang, J.; Garva, R.; Gago, S.; Lu, Y.; Kadler, K.E. Discovery of re-purposed drugs that slow SARS-CoV-2 replication in human cells. PLoS Pathog. 2021, 17, e1009840. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.Z.; Zandarowska, E. Effect of amodiaquine on histamine level and histamine-methyltransferase activity in the rat. Brain. Arch. Immunol. Ther. Exp. 1980, 28, 927–930. [Google Scholar] [CrossRef]
- Moon, M.; Jung, E.S.; Jeon, S.G.; Cha, M.-Y.; Jang, Y.; Kim, W.; Lopes, C.; Mook-Jung, I.; Kim, K.-S. Nurr1 (NR4A2) regulates program using Alzheimer’s disease-related pathogenesis and cognitive function in the 5XFAD mouse model. Aging Cell 2019, 18, e12866. [Google Scholar] [CrossRef]
- Kambey, P.A.; Chengcheng, M.; Xiaoxiao, G.; Abdulrahman, A.A.; Kanwore, K.; Nadeem, I.; Jiao, W.; Gao, D. The orphan nuclear receptor Nurr1 agonist amodiaquine mediates neuroprotective effects in 6-OHDA Parkinson’s disease animal model by enhancing the phosphorylation of P38 mitogen-activated kinase, vbut not PI3K/AKT signaling pathway. Metab. Brain Dis. 2021, 36, 609–625. [Google Scholar] [CrossRef]
- Amadio, S.; Conte, F.; Esposito, G.; Fiscon, G.; Paci, P.; Volonté, C. Repurposing histaminergic drugs in Multiple sclerosis. Int. J. Mol. Sci. 2022, 23, 6347. [Google Scholar] [CrossRef]
- Lim, L.Y.; Go, M.L. The Anticholinesterase Activity of Mefloquine. Clinical. Exp. Pharm. Phys. 1985, 12, 527–531. [Google Scholar] [CrossRef]
- Katz, F.S.; Pecic, S.; Tran, T.H.; Trakht, I.; Schneider, L.; Zhu, Z.; Ton-That, L.; Luzac, M.; Zlatanic, V.; Damera, S.; et al. Discovery of new classes of compounds that reactivate acetylcholinesterase inhibited by organophosphates. ChemBioChem 2015, 16, 2205–2215. [Google Scholar] [CrossRef]
- Bierwisch, A.; Wille, T.; Thiermann, H.; Worek, F. Kinetic analysis of interactions of amodiaquine with human cholinesterases and organophosphorus compounds. Toxicol. Lett. 2016, 246, 49–56. [Google Scholar] [CrossRef]
- Go, M.; Ngiam, T.; Lim, L. Anticholinesterase activity of 4-aminoquinolines related to amodiaquine and their respective N-oxides. Eur. J. Med. Chem. 1986, 21, 81–85. [Google Scholar]
- Zhu, J.; Wang, L.-N.; Cai, R.; Geng, S.-Q.; Dong, Y.-F.; Liu, Y.-M. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg. Med. Chem. Lett. 2019, 29, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Srivastava, P.; Seth, A.; Tripathi, P.N.; Banerjee, A.G.; Shrivastava, S.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol. 2019, 174, 53–89. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association Report. 2021 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2021, 17, 327–406. [Google Scholar] [CrossRef] [PubMed]
- Szeto, J.Y.Y.; Lewis, S.J.G. Current treatment options for Alzheimer’s disease and Parkinson’s disease dementia. Curr. Neuropharmacol. 2016, 14, 326–338. [Google Scholar] [CrossRef]
- Greig, N.H.; Lahiri, D.K.; Sambamurti, K. Butyrylcholinesterase: An importanr new target in Alzheimer’s disease therapy. Int. Psychogeritar. 2002, 14, 77–91. [Google Scholar] [CrossRef]
- Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA 2005, 102, 17213–17218. [Google Scholar] [CrossRef]
- Cummings, J. Anti-amyloid monoclonal antibodies are transform-ative treatments that redefine Alzheimer’s disease therapeutics. Drugs 2023, 83, 569–576. [Google Scholar] [CrossRef]
- Matošević, A.; Opsenica, D.; Spasić, M.; Maraković, N.; Zandona, A.; Žunec, S.; Bartolić, M.; Kovarik, Z.; Bosak, A. Evaluation of 4-aminoquinoline derivatives with an n-octylamino spacer as potential multi-targeting ligands for the treatment of Alzheimer’s disease. Chem. Biol. Interact. 2023, 382, 110620. [Google Scholar] [CrossRef]
- Matošević, A.; Bartolić, M.; Maraković, N.; Zandona, A.; Petrić, R.; Opsenica, D.; Bosak, A. Synthesis and biological evaluation of novel aminoquinolines with an n-octyl linker: Impact of halogen substituents on C(7) or a terminal amino group on anticholinesterase and BACE1 activity. Bioorg. Med. Chem. Lett. 2024, 112, 129928. [Google Scholar] [CrossRef]
- Caia, R.; Wangb, L.-N.; Fana, J.-J.; Genga, S.-Q.; Liua, Y.-M. New 4-N-phenylaminoquinoline derivatives as antioxidant, metal chelating and cholinesterase inhibitors for Alzheimer’s disease. Bioorg. Chem. 2019, 93, 103328. [Google Scholar] [CrossRef]
- Raynes, K.J.; Stocks, P.A.; O’Neill, P.M.; Park, B.K.; Ward, S.A. New 4-aminoquinoline Mannich base antimalarials: Effect of an alkyl substituent in the 5′-position of the 4′-hydroxyanilino side chain. J. Med. Chem. 1999, 42, 2747–2751. [Google Scholar] [CrossRef] [PubMed]
- Okombo, J.; Brunschwig, C.; Singh, K.; Dziwornu, G.A.; Barnard, L.; Njoroge, M.; Wittlin, S.; Chibale, K. Antimalarial pyrido [1,2 a]benzimidazole derivatives with Mannich base side chains: Synthesis, pharmacological evaluation, and reactive metabolite trapping studies. ACS Infect. Dis. 2019, 5, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Bacon, E.R.; Robinson, S.; Fritz, R.K.; Lesher, G.Y.; Kumar, V.; Dority, J.A.; Reuman, M.; Kuo, G.-H.; Eissenstat, M.A.; et al. Novel cAMP PDE III inhibitors: Imidazo [4,5-b]pyridin-2(3H)-ones and thiazolo [4,5-h]pyridin-2(3H)-ones and their analogs. J. Med. Chem. 1994, 37, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Komatović, K.; Matošević, A.; Terzić-Jovanović, N.; Žunec, S.; Šegan, S.; Zlatović, M.; Maraković, N.; Bosak, A.; Opsenica, D.M. 4-Aminoquinoline-based adamantanes as potential anticholinesterase agents in symptomatic treatment of Alzheimer’s disease. Pharmaceutics 2022, 14, 1305. [Google Scholar] [CrossRef]
- Bourne, Y.; Hartmuth, C.K.; Radić, Z.; Sharpless, K.B.; Taylor, P.; Marchot, P. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc. Natl. Acad. Sci. USA 2004, 101, 1449–1454. [Google Scholar] [CrossRef]
- Patocka, J.; Jun, D.; Kuca, K. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer’s disease. Curr. Drug Metab. 2008, 9, 332–335. [Google Scholar] [CrossRef]
- Bubley, A.; Erofeev, A.; Gorelkin, P.; Beloglazkina, E.; Majouga, A.; Krasnovskaya, O. Tacrine-based hybrids: Past, present, and future. Int. J. Mol. Sci. 2023, 24, 1717. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 77–106. [Google Scholar] [CrossRef]
- Wudarska, E.; Chrzescijanska, E.; Kusmierek, E.; Rynkowski, J. Voltammetric study of the behaviour of N -acetyl-p-aminophenol in aqueous solutions at a platinum electrode. C. R. Chim. 2015, 18, 993–1000. [Google Scholar] [CrossRef]
- Beiginejad, H.; Nematollahi, D.; Varmaghani, F. Electrochemical oxidation of some aminophenols in various pHs. JES 2012, 160, H41–H46. [Google Scholar] [CrossRef]
- Plattner, S.; Erb, R.; Chervet, J.-P.; Oberacher, H. Studying the reducing potencies of antioxidants with the electrochemistry inherently present in electrospray ionization-mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 213–224. [Google Scholar] [CrossRef]
- Fernández-Bachiller, M.I.; Pérez, C.; Campillo, N.E.; Páez, J.A.; González-Muñoz, G.C.; Usán, P.; García-Palomero, E.; López, M.G.; Villarroya, M.; García, A.G.; et al. Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antiox-idant, and neuroprotective properties. Chem. Med. Chem. 2009, 4, 828–841. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bachiller, M.I.; Pérez, C.; González-Muñoz, G.C.; Conde, S.; López, M.G.; Villarroya, M.; García, A.G.; Rodríguez-Franco, M.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J. Med. Chem. 2010, 53, 4927–4937. [Google Scholar] [CrossRef] [PubMed]
- Digiacomo, M.; Chen, Z.; Wang, S.; Lapucci, A.; Macchia, M.; Yang, X.; Chu, J.; Han, Y.; Pi, R.; Rapposelli, S. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg. Med. Chem. Lett. 2015, 25, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Nguyen, M.; Robert, A.; Meunier, B. Metal ions in Alzheimer’s disease: A key role or not? Acc. Chem. Res. 2019, 52, 2026–2035. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.C.; Lim, S.; Kim, Y.K. Metal ion effects on Aβ and tau aggregation. Int. J. Mol. Sci. 2018, 19, 128. [Google Scholar] [CrossRef]
- Pal, T.; Patil, P.; Shrama, A. Synthesis, molecular docking and spectroscopic studies of pyridoxine carbamates as metal chelator. J. Mol. Struct. 2021, 1223, 128837. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, X.; Wu, M.; Cao, X.; Bao1, W.; Zhu, L.Q. Ferroptosis, a potential therapeutic target in Alzheimer’s disease. Front. Cell Dev. Biol. 2021, 9, 704298. [Google Scholar] [CrossRef]
- Reichert, C.O.; de Freitas, F.A.; Sampaio-Silva, J.; Rokita-Rosa, L.; de Lima Barros, P.; Levy, D.; Bydlowski, S.P. Ferroptosis mechanisms involved in neurodegenerative diseases. Int. J. Mol. Sci. 2020, 21, 8765. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRX 2005, 2, 541–553. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Savva, K.; Zachariou, M.; Bourdakou, M.M.; Dietis, N.; Spyrou, G.M. Network-based stage-specific drug repurposing for Alzheimer’s disease. Comput. Struct. Biotechnol. J. 2022, 20, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
- Darvesh, S.W.; Kumar, R.R.; Caines, A.; Roberts, S.; Magee, D.; Rockwood, K.; Martin, E. Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2003, 17, 117–126. [Google Scholar] [CrossRef]
- Armarego, W.L.F. Purification of Laboratory Chemicals, 8th ed.; Elsevier: Butterworth-Heinemann, The Netherlands, 2017. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. New and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Simeon-Rudolf, V.; Šinko, G.; Štuglin, A.; Reiner, E. Inhibition of human blood acetylcholinesterase and butyrylcholinesterase by ethopropazine. Croat. Chem. Acta 2001, 74, 173–182. [Google Scholar]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef]
- Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003, 278, 41141–41147. [Google Scholar] [CrossRef]
- Prati, F.; Bergamini, C.; Farto, R.; Soukup, A.; Korabency, J.; Andrisano, V.; Bartolini, M.; Bolognesi, M.L. Novel 8-hydroxyquinoline derivatives as multitarget compounds for the treatment of Alzheimer’s disease. Chem. Med. Chem. 2016, 11, 1284–1295. [Google Scholar] [CrossRef]
- Zandona, A.; Maraković, N.; Mišetić, P.; Madunić, J.; Miš, K.; Padovan, J.; Pirkmajer, S.; Katalinić, M. Activation of (un)regulated cell death as a new perspective for bispyridinium and imidazolium oximes. Arch. Toxicol. 2021, 95, 2737–2754. [Google Scholar] [CrossRef]
- ECACC. Fundamental Techniques in Cell Culture Laboratory Handbook, 4th ed.; Merck KGaA: Darmstadt, Germany, 2018. [Google Scholar]
- Zandona, A.; Katalinić, M.; Šinko, G.; Radman Kastelic, A.; Primožič, I.; Kovarik, Z. Targeting organophosphorus compounds poisoning by novel quinuclidine-3 oximes: Development of butyrylcholinesterase-based bioscavengers. Arch. Toxicol. 2020, 94, 3157–3171. [Google Scholar] [CrossRef]
- Carvey, P.M.; Hendey, B.; Monahan, A.J. The blood-brain barrier in neurodegenerative disease: A rhetorical perspective. J. Neurochem. 2009, 111, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Rankovic, Z. CNS drug design: Balancing physicochemical properties for optimal brain exposure. J. Med. Chem. 2015, 58, 2584–2608. [Google Scholar] [CrossRef] [PubMed]
- Chemicalize. Calculation Module. 2018. Available online: https://chemicalize.com/ (accessed on 25 May 2024).
- Myung, Y.; de Sa, A.G.; Ascher., D.B. Deep-PK: Deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res. 2024, 52, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Nsumiwa, S.; Kuter, D.; Wittlin, S.; Chibale, K.; Egan, T.J. Structure–activity relationships for ferriprotoporphyrin IX association and β-hematin inhibition by 4-aminoquinolines using experimental and ab initio methods. Bioorg. Med. Chem. 2013, 21, 3738–3748. [Google Scholar] [CrossRef]
Compound | Structure | Ki/µM | SI | |
---|---|---|---|---|
AChE | BChE | |||
AMQ | 0.046 ± 0.001 | 9.1 ± 0.7 | 200 | |
1 | 0.17 ± 0.01 | 13 ± 1 | 77 | |
2 | 0.075± 0.003 | 7.3 ± 0.8 | 97 | |
3 | 0.078 ± 0.004 | 19 ± 1 | 240 | |
4 | 0.084 ± 0.003 | 14 ± 1 | 170 | |
5 | 0.025 ± 0.001 | 7.6 ± 0.4 | 300 | |
6 | 0.23 ± 0.01 | 5.9 ± 0.8 | 26 | |
7 | 0.051 ± 0.002 | 11 ± 1 | 220 | |
8 | 0.51 ± 0.03 | 5.4 ± 0.5 | 11 | |
9 | 0.093 ± 0.003 | 14 ± 1 | 150 | |
10 | 1.2 ± 0.1 | 20 ±1 | 17 | |
11 | 7.6 ± 0.3 | 1.7 ± 0.1 | 0.22 | |
12 | 0.19 ± 0.01 | 21 ± 1 | 111 | |
13 | 1.3 ± 0.1 | 16 ± 1 | 12 | |
14 | 0.11 ± 0.00 | 6.8 ± 0.3 | 62 | |
Tacrine [34] | 0.040 ± 0.006 | 0.0063 ± 0.0001 | 0.16 |
Compound | HEK293 | HepG2 | SH-SY5Y |
---|---|---|---|
AMQ | ≥1 mM | ≥1 mM | 134 ± 36 |
1 | 90 ± 22 | 219 ± 28 | 90 ± 10 |
2 | ≥1 mM | ≥1 mM | ≥1 mM |
3 | 103 ± 3 | 471 ± 19 | 98 ± 3 |
4 | 33 ± 3 | 39 ± 6 | 26 ± 4 |
5 | 37 ± 11 | 100 ± 10 | 36 ± 5 |
6 | 350 ± 40 | ≥1 mM | 453 ± 12 |
7 | 159 ± 41 | 529 ± 29 | 181 ± 41 |
8 | 134 ± 47 | ≥1 mM | 85 ± 5 |
9 | ≥1 mM | ≥1 mM | ≥1 mM |
10 | 87 ± 33 | ≥1 mM | 88 ± 8 |
11 | 25 ± 4 | 232 ± 68 | 35 ± 5 |
12 | 88 ± 31 | 276 ± 46 | 92 ± 17 |
13 | 103 ± 8 | 546 ± 46 | 148 ± 17 |
14 | ≥1 mM | ≥1 mM | ≥1 mM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matošević, A.; Opsenica, D.M.; Bartolić, M.; Maraković, N.; Stoilković, A.; Komatović, K.; Zandona, A.; Žunec, S.; Bosak, A. Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer’s Disease. Molecules 2024, 29, 5357. https://doi.org/10.3390/molecules29225357
Matošević A, Opsenica DM, Bartolić M, Maraković N, Stoilković A, Komatović K, Zandona A, Žunec S, Bosak A. Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer’s Disease. Molecules. 2024; 29(22):5357. https://doi.org/10.3390/molecules29225357
Chicago/Turabian StyleMatošević, Ana, Dejan M. Opsenica, Marija Bartolić, Nikola Maraković, Andriana Stoilković, Katarina Komatović, Antonio Zandona, Suzana Žunec, and Anita Bosak. 2024. "Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer’s Disease" Molecules 29, no. 22: 5357. https://doi.org/10.3390/molecules29225357
APA StyleMatošević, A., Opsenica, D. M., Bartolić, M., Maraković, N., Stoilković, A., Komatović, K., Zandona, A., Žunec, S., & Bosak, A. (2024). Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer’s Disease. Molecules, 29(22), 5357. https://doi.org/10.3390/molecules29225357