Toward Extensive Utilization of Pulping Liquor from Chemical–Mechanical Pulping Process of Wheat Straw in Biorefinery View
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pulping Liquor Extensive Utilization Scheme of the Chemical–Mechanical Pulping Process of Wheat Straw
2.2. Facile Separation of Lignin and Saccharides of the Pulping Liquor
2.3. Characterization of Recycled Lignin During Acid Treatment of the Pulping Liquor
2.4. Enzymatic Hydrolysis of Puling Liquor for the Recovery of XOSs
2.5. Mass Balance of the Extensive Utilization of Wheat Straw Based on Chemical–Mechanical Process
3. Materials and Methods
3.1. Materials
3.2. Acid Treatment Pulping Liquor
3.3. Xylanase Treatment
3.4. Characterization
3.4.1. Determination of Saccharides in the Pulping Liquor of Wheat Straw Chemical–Mechanical Pulp
3.4.2. Determination of Acetic Acid, Furfural and 5-HMF in Pulping Liquor
3.4.3. Lignin Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, L.; Sun, J.; Liu, W.; Zhang, W.; Sun, L.; Wu, J. Policy Analysis of Biomass Recycling Supply Chain Considering Carbon and Pollution Emission Reduction—Taking China’s Straw Subsidy Policy for Example. Systems 2023, 11, 343. [Google Scholar] [CrossRef]
- Queneau, Y.; Han, B. Biomass: Renewable carbon resource for chemical and energy industry. Innovation 2022, 3, 100184. [Google Scholar] [CrossRef]
- Das, S.; Chandukishore, T.; Ulaganathan, N.; Dhodduraj, K.; Gorantla, S.S.; Chandna, T.; Gupta, L.K.; Sahoo, A.; Atheena, P.V.; Raval, R.; et al. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int. J. Biol. Macromol. 2024, 266, 131290. [Google Scholar] [CrossRef]
- Daza-Serna, L.; Masi, A.; Serna-Loaiza, S.; Pfnier, J.; Stark, G.; Mach, R.L.; Mach-Aigner, A.R.; Friedl, A. Detoxification strategy of wheat straw hemicellulosic hydrolysate for cultivating Trichoderma reesei: A contribution towards the wheat straw biorefinery. Biomass Convers. Biorefinery 2023, 13, 16495–16509. [Google Scholar] [CrossRef]
- Wang, T.; Zhong, Y.; Wang, C.; Tong, G. A low capital method for silicon interference in bamboo kraft pulping alkaline recovery system. J. Clean. Prod. 2021, 315, 128238. [Google Scholar] [CrossRef]
- Urdaneta, F.; Kumar, R.; Marquez, R.; Vera, R.E.; Franco, J.; Urdaneta, I.; Saloni, D.; Venditti, R.A.; Pawlak, J.J.; Jameel, H.; et al. Evaluating chemi-mechanical pulping processes of agricultural residues: High-yield pulps from wheat straw for fiber-based bioproducts. Ind. Crop. Prod. 2024, 221, 119379. [Google Scholar] [CrossRef]
- Xie, Z.; Tian, Z.; Liu, S.; Ma, H.; Ji, X.-X.; Si, C. Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark. Adv. Compos. Hybrid Mater. 2022, 5, 1294–1306. [Google Scholar] [CrossRef]
- Huang, F.; Tian, Z.; Ma, H.; Ding, Z.; Ji, X.; Si, C.; Wang, D. Combined alkali impregnation and poly dimethyl diallyl ammonium chloride-assisted cellulase absorption for high-efficiency pretreatment of wheat straw. Adv. Compos. Hybrid Mater. 2023, 6, 230. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Y.; Tian, D.; Hu, J.; He, J.; Yang, G.; Luo, L.; Xiao, Y.; Deng, S.; Deng, O.; et al. Fabrication of spherical lignin nanoparticles using acid-catalyzed condensed lignins. Int. J. Biol. Macromol. 2020, 164, 3038–3047. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, L.; Yao, S.; Zhou, X.; Jiang, K. Green Process for Producing Xylooligosaccharides by Using Sequential Auto-hydrolysis and Xylanase Hydrolysis. Appl. Biochem. Biotechnol. 2023, 196, 5317–5333. [Google Scholar] [CrossRef]
- He, Z.; Li, Y.; Liu, C.; Yang, J.; Qian, M.; Zhu, Y.; Wang, X. Turning lignin into treasure: An innovative filler comparable to commercial carbon black for the green development of the rubber industry. Int. J. Biol. Macromol. 2022, 218, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Du, J. Coupling between acid precipitation and resin adsorption for purifying alkaline extracted hemicellulose from sugarcane bagasse. J. Clean. Prod. 2022, 358, 132041. [Google Scholar] [CrossRef]
- Lyu, G.; Lou, R.; Zhao, Y.; Wu, S. Correlation between pyrolysis behaviors of the components and the overall pyrolysates from pulping spent liquor. Bioresour. Technol. 2018, 259, 343–348. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, L.; Wang, B.; Xu, F.; Sun, R. Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study. Process Biochem. 2012, 47, 1799–1806. [Google Scholar] [CrossRef]
- Mendes, S.F.; Rodrigues, J.S.; de Lima, V.H.; Botaro, V.R.; Cardoso, V.L.; Reis, M.H.M. Forward Black Liquor Acid Precipitation: Lignin Fractionation by Ultrafiltration. Appl. Biochem. Biotechnol. 2021, 193, 3079–3097. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Jiang, K.; Liu, X.; Han, D.; Zhang, Q. Review on development of ionic liquids in lignocellulosic biomass refining. J. Mol. Liq. 2022, 359, 119326. [Google Scholar] [CrossRef]
- David, A.N.; Sewsynker-Sukai, Y.; Sithole, B.; Gueguim Kana, E.B. Development of a green liquor dregs pretreatment for enhanced glucose recovery from corn cobs and kinetic assessment on various bioethanol fermentation types. Fuel 2020, 274, 117797. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Deng, X.-Y.; Shen, W.-H.; Jia, M.-Y. Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydr. Polym. 2018, 181, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Tao, P.; Zhang, N.; Nie, S. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents. Carbohydr. Polym. 2020, 245, 116463. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, M.; Li, Y.; Qiu, X.; Yang, D. Formation of Uniform Colloidal Spheres Based on Lignosulfonate, a Renewable Biomass Resource Recovered from Pulping Spent Liquor. ACS Sustain. Chem. Eng. 2017, 6, 1379–1386. [Google Scholar] [CrossRef]
- Kamali, M.; Khodaparast, Z. Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol. Environ. Saf. 2015, 114, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Hidayati, S.; Satyajaya, W.; Fudholi, A. Lignin isolation from black liquor from oil palm empty fruit bunch using acid. J. Mater. Res. Technol. 2020, 9, 11382–11391. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, Z.; Ma, Y.; Fan, J.; Clark, J.H.; Zhang, W.; Shi, B. Co-self-assembly of lignin and tannin: A novel catalyst support for hydrogenation of lignin-derived aldehydes. Appl. Catal. B-Environ. 2023, 339, 123175. [Google Scholar] [CrossRef]
- Tarasov, D.; Leitch, M.; Fatehi, P. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnol. Biofuels Bioprod. 2018, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- He, M.-K.; He, Y.-L.; Li, Z.-Q.; Zhao, L.-N.; Zhang, S.-Q.; Liu, H.-M.; Qin, Z. Structural characterization of lignin and lignin-carbohydrate complex (LCC) of sesame hull. Int. J. Biol. Macromol. 2022, 209, 258–267. [Google Scholar] [CrossRef]
- Saeed, A.; Jahan, M.S.; Li, H.; Liu, Z.; Ni, Y.; van Heiningen, A. Mass balances of components dissolved in the pre-hydrolysis liquor of kraft-based dissolving pulp production process from Canadian hardwoods. Biomass Bioenergy 2012, 39, 14–19. [Google Scholar] [CrossRef]
- Toledano, A.; García, A.; Mondragon, I.; Labidi, J. Lignin separation and fractionation by ultrafiltration. Sep. Purif. Technol. 2010, 71, 38–43. [Google Scholar] [CrossRef]
- Lourençon, T.V.; Hansel, F.A.; da Silva, T.A.; Ramos, L.P.; de Muniz, G.I.B.; Magalhães, W.L.E. Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Sep. Purif. Technol. 2015, 154, 82–88. [Google Scholar] [CrossRef]
- Sun, S.-L.; Wen, J.-L.; Ma, M.-G.; Sun, R.-C.; Jones, G.L. Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem. Ind. Crop. Prod. 2014, 56, 128–136. [Google Scholar] [CrossRef]
- Li, H.; McDonald, A.G. Fractionation and characterization of industrial lignins. Ind. Crop. Prod. 2014, 62, 67–76. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, J.; Wang, X.; Guo, Y.; Han, Y.; Zhou, J. Lignin Structure and Solvent Effects on the Selective Removal of Condensed Units and Enrichment of S-Type Lignin. Polymers 2018, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Liu, R.; Li, B.; Wu, Y.; Wang, K.; Yang, Y.; Li, A.; Zhuang, Y.; Cai, D.; Qin, P. Biobased rigid polyurethane foam using gradient acid precipitated lignin from the black liquor: Revealing the relationship between lignin structural features and polyurethane performances. Ind. Crop. Prod. 2022, 177, 114480. [Google Scholar] [CrossRef]
- Ma, S.; Chen, B.; Zeng, A.; Li, Z.; Tang, X.; Sun, Y.; Lin, L.; Zeng, X. Chemical structure change of lignin extracted from bamboo biomass by maleic acid. Int. J. Biol. Macromol. 2022, 221, 986–993. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Raj, T.; Mohanta, C.S.; Semwal, S.; Satlewal, A.; Gupta, R.P.; Puri, S.K.; Ramakumar, S.S.V.; Kumar, R. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development. Chemosphere 2021, 268, 129326. [Google Scholar] [CrossRef]
- Paananen, H.; Eronen, E.; Mäkinen, M.; Jänis, J.; Suvanto, M.; Pakkanen, T.T. Base-catalyzed oxidative depolymerization of softwood kraft lignin. Ind. Crop. Prod. 2020, 152, 112473. [Google Scholar] [CrossRef]
- Wang, G.; Liu, X.; Yang, B.; Si, C.; Parvez, A.M.; Jang, J.; Ni, Y. Using Green γ-Valerolactone/Water Solvent To Decrease Lignin Heterogeneity by Gradient Precipitation. ACS Sustain. Chem. Eng. 2019, 7, 10112–10120. [Google Scholar] [CrossRef]
- Silveira, R.L.; Stoyanov, S.R.; Gusarov, S.; Skaf, M.S.; Kovalenko, A. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation. J. Phys. Chem. Lett. 2014, 6, 206–211. [Google Scholar] [CrossRef]
- Reinoso, F.A.M.; Rencoret, J.; Gutiérrez, A.; Milagres, A.M.F.; del Río, J.C.; Ferraz, A. Fate of p-hydroxycinnamates and structural characteristics of residual hemicelluloses and lignin during alkaline-sulfite chemithermomechanical pretreatment of sugarcane bagasse. Biotechnol. Biofuels Bioprod. 2018, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Liu, C.; Fan, Y.; Li, M.; Xiao, R. Depolymerization of Methylene Linkage in Condensed Lignin with Commercial Zeolite in Water. ACS Catal. 2023, 13, 10048–10055. [Google Scholar] [CrossRef]
- Ma, M.; Dai, L.; Xu, J.; Liu, Z.; Ni, Y. A simple and effective approach to fabricate lignin nanoparticles with tunable sizes based on lignin fractionation. Green Chem. 2020, 22, 2011–2017. [Google Scholar] [CrossRef]
- Yue, X.; Suopajärvi, T.; Sun, S.; Mankinen, O.; Mikkelson, A.; Huttunen, H.; Komulainen, S.; Romakkaniemi, I.; Ahola, J.; Telkki, V.-V.; et al. High-purity lignin fractions and nanospheres rich in phenolic hydroxyl and carboxyl groups isolated with alkaline deep eutectic solvent from wheat straw. Bioresour. Technol. 2022, 360, 127570. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Smeds, A.; Wang, L.; Pranovich, A.; Hemming, J.; Willför, S.; Zhang, H.; Xu, C. Fractionation of Lignin with Decreased Heterogeneity: Based on a Detailed Characteristics Study of Sequentially Extracted Softwood Kraft Lignin. ACS Sustain. Chem. Eng. 2021, 9, 13862–13873. [Google Scholar] [CrossRef]
- Sun, S.-F.; Yang, H.-Y.; Yang, J.; Wang, D.-W.; Shi, Z.-J. Integrated treatment of perennial ryegrass: Structural characterization of hemicelluloses and improvement of enzymatic hydrolysis of cellulose. Carbohydr. Polym. 2021, 254, 117257. [Google Scholar] [CrossRef] [PubMed]
- Ying, W.; Fang, X.; Xu, Y.; Zhang, J. Combined acetic acid and enzymatic hydrolysis for xylooligosaccharides and monosaccharides production from poplar. Biomass Bioenergy 2022, 158, 106377. [Google Scholar] [CrossRef]
- Zhai, Y.; Yao, S.; Zhang, L.; Huang, R.; Xu, Y.; Zhou, X.; Jiang, K. Xylooligosaccharides and glucose preparation from sugarcane bagasse by a combination of acetic acid treatment and sequential xylanase and cellulase enzymatic hydrolysis. Ind. Crop. Prod. 2024, 210, 118202. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Gabaldón, J.A.; Gómez-López, V.M. Effect of pH on pulsed light inactivation of polyphenol oxidase. Enzym. Microb. Technol. 2021, 148, 109812. [Google Scholar] [CrossRef]
- Thomas, L.; Parameswaran, B.; Pandey, A. Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production. Renew. Energy 2016, 98, 9–15. [Google Scholar] [CrossRef]
- Xu, X.; Gai, J.; Li, Y.; Zhang, Z.; Wu, S.; Song, K.; Hu, J.; Chu, Q. Integrated acetic acid and deep eutectic solvent pretreatment on poplar for co-production of xylo-oligosaccharides, fermentable sugars and lignin antioxidants/adsorbents. Int. J. Biol. Macromol. 2024, 259, 129138. [Google Scholar] [CrossRef]
- Yu, S.; Gan, M.; Chen, Y.; Hu, Z.; Xie, Y.; Feng, Q. Fabrication of lignin-containing cellulose bio-composite based on unbleached corncob and wheat straw pulp. Int. J. Biol. Macromol. 2022, 208, 741–747. [Google Scholar] [CrossRef]
- Chen, X.; Cao, X.; Sun, S.; Yuan, T.; Wang, S.; Shi, Q.; Sun, R. Hydrothermal acid hydrolysis for highly efficient separation of lignin and xylose from pre-hydrolysis liquor of kraft pulping process. Sep. Purif. Technol. 2019, 209, 741–747. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, J.; Fu, Y.; Wang, Z.; Qin, M. Recycling of pre-hydrolysis liquor to improve the concentrations of hemicellulosic saccharides during water pre-hydrolysis of aspen woodchips. Carbohydr. Polym. 2017, 174, 385–391. [Google Scholar] [CrossRef] [PubMed]
Samples | Concentration (g/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Arabinan | Galactan | Glucan | Xylan | Mannan | Acetic Acid | Furfural | 5-HMF | Lignin | |
Pulping liquor | 1.17 ± 0.11 | 0.48 ± 0.01 | 0.36 ± 0.01 | 1.87 ± 0.13 | 0.06 ± 0.01 | 3.26 ± 0.17 | 0.38 ± 0.02 | 0.11 ± 0.01 | 18.86 ± 0.33 |
pH 6 | 1.16 ± 0.11 | 0.48 ± 0.01 | 0.35 ± 0.01 | 1.86 ± 0.14 | 0.06 ± 0.00 | 3.31 ± 0.14 | 0.38 ± 0.01 | 0.11 ± 0.00 | 15.75 ± 0.32 |
pH 5 | 1.14 ± 0.12 | 0.46 ± 0.02 | 0.34 ± 0.02 | 1.85 ± 0.14 | 0.06 ± 0.01 | 3.37 ± 0.13 | 0.38 ± 0.00 | 0.11 ± 0.01 | 12.43 ± 0.31 |
pH 4.5 | 1.13 ± 0.11 | 0.46 ± 0.01 | 0.34 ± 0.01 | 1.81 ± 0.12 | 0.05 ± 0.00 | 3.42 ± 0.14 | 0.38 ± 0.02 | 0.11 ± 0.00 | 5.18 ± 0.22 |
pH 4 | 1.10 ± 0.11 | 0.45 ± 0.01 | 0.33 ± 0.01 | 1.77 ± 0.13 | 0.05 ± 0.00 | 3.59 ± 0.12 | 0.38 ± 0.01 | 0.11 ± 0.02 | 4.31 ± 0.22 |
pH 3.5 | 1.05 ± 0.11 | 0.43 ± 0.02 | 0.31 ± 0.01 | 1.70 ± 0.12 | 0.05 ± 0.01 | 3.71 ± 0.13 | 0.38 ± 0.00 | 0.11 ± 0.01 | 3.89 ± 0.16 |
pH 3 | 1.02 ± 0.09 | 0.42 ± 0.01 | 0.30 ± 0.00 | 1.68 ± 0.13 | 0.04 ± 0.01 | 3.75 ± 0.13 | 0.39 ± 0.02 | 0.10 ± 0.00 | 3.54 ± 0.14 |
pH 2 | 0.99 ± 0.07 | 0.41 ± 0.01 | 0.29 ± 0.00 | 1.63 ± 0.12 | 0.04 ± 0.00 | 3.81 ± 0.14 | 0.39 ± 0.01 | 0.10 ± 0.01 | 3.31 ± 0.14 |
Samples | Mw (g/mol) | Mn (g/mol) | PDI |
---|---|---|---|
L1 | 3031 | 1588 | 1.91 |
L2 | 2897 | 1557 | 1.86 |
L3 | 2695 | 1482 | 1.82 |
L4 | 2496 | 1462 | 1.71 |
L5 | 2394 | 1427 | 1.68 |
L6 | 2283 | 1381 | 1.65 |
L7 | 2128 | 1354 | 1.57 |
Samples | Concentration (g/L) | ||||
---|---|---|---|---|---|
Xylose | Xylobiose | Xylotriose | Xylotetraose | XOS2–4 | |
Before enzymatic hydrolysis | 0 | 0.31 ± 0.02 | 0.13 ± 0.01 | 0.17 ± 0.01 | 0.61 ± 0.02 |
After enzymatic hydrolysis | 0.12 ± 0.01 | 0.50 ± 0.01 | 0.23 ± 0.01 | 0.24 ± 0.01 | 0.97 ± 0.03 |
Samples | Target pH Value |
---|---|
L1 | 6 |
L2 | 5 |
L3 | 4.5 |
L4 | 4 |
L5 | 3.5 |
L6 | 3 |
L7 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, N.; Ji, X.; Tian, Z.; Wang, B. Toward Extensive Utilization of Pulping Liquor from Chemical–Mechanical Pulping Process of Wheat Straw in Biorefinery View. Molecules 2024, 29, 5368. https://doi.org/10.3390/molecules29225368
Sun N, Ji X, Tian Z, Wang B. Toward Extensive Utilization of Pulping Liquor from Chemical–Mechanical Pulping Process of Wheat Straw in Biorefinery View. Molecules. 2024; 29(22):5368. https://doi.org/10.3390/molecules29225368
Chicago/Turabian StyleSun, Ning, Xingxiang Ji, Zhongjian Tian, and Baobin Wang. 2024. "Toward Extensive Utilization of Pulping Liquor from Chemical–Mechanical Pulping Process of Wheat Straw in Biorefinery View" Molecules 29, no. 22: 5368. https://doi.org/10.3390/molecules29225368
APA StyleSun, N., Ji, X., Tian, Z., & Wang, B. (2024). Toward Extensive Utilization of Pulping Liquor from Chemical–Mechanical Pulping Process of Wheat Straw in Biorefinery View. Molecules, 29(22), 5368. https://doi.org/10.3390/molecules29225368