Key Proteins in Rat Cerebral Cortex: Application of Cornu aspersum Extract as a Neuroprotective Agent in Alzheimer’s Type Dementia
Abstract
:1. Introduction
2. Results
2.1. Preparation of Mucus Extract
2.2. Treatment of Laboratory Animals Using Mucus Extract and Scopolamine
2.3. Identification of Proteins on 2D-Gel Electrophoresis Using Mass Spectrometry and Bioinformatics
3. Discussion
4. Materials and Methods
4.1. Snail Extract
4.2. Laboratory Animals
4.3. Scopolamine Induced Dementia
4.4. Treatment of the Laboratory Animals
4.5. Extraction of Proteins from the Rat Brain
4.6. Two-Dimensional-PAGE Analysis
4.7. Trypsin Digestion of Protein Spots
4.8. Mass Spectrometric Analyses (MS and MS/MS)
4.9. Identification of Proteins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Sanabria-Castro, A.; Alvarado-Echeverría, I.; Monge-Bonilla, C. Molecular Pathogenesis of Alzheimer’s Disease: An Update. Ann. Neurosci. 2017, 24, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Hajjo, R.; Sabbah, D.A.; Abusara, O.H.; Al Bawab, A.Q. A Review of the Recent Advances in Alzheimer’s Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics 2022, 12, 2975. [Google Scholar] [CrossRef] [PubMed]
- Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 2019, 25, 270–276. [Google Scholar] [CrossRef]
- Perkovic, M.N.; Paska, A.V.; Konjevod, M.; Kouter, K.; Strac, D.S.; Erjavec, G.N.; Pivac, N. Epigenetics of Alzheimer’s Disease. Biomolecules 2021, 11, 195. [Google Scholar] [CrossRef]
- Wenk, G.L. Neuropathologic changes in Alzheimer’s disease. J. Clin. Psychiatry 2003, 64, 7–10. Available online: https://pubmed.ncbi.nlm.nih.gov/12934968/ (accessed on 15 September 2024).
- Deacon, R.M. Housing, husbandry and handling of rodents for behavioral experiments. Nat. Protoc. 2006, 1, 936–946. [Google Scholar] [CrossRef]
- Benedikz, E.; Kloskowska, E.; Winblad, B. The rat as an animal model of Alzheimer’s disease. J. Cell. Mol. Med. 2009, 13, 1034–1042. [Google Scholar] [CrossRef]
- Malekzadeh, S.; Edalatmanesh, M.A.; Mehrabani, D.; Shariati, M. Drugs Induced Alzheimer’s Disease in Animal Model. Galen Med. J. 2017, 6, 185–196. [Google Scholar] [CrossRef]
- Chen, W.N.; Yeong, K.Y. Scopolamine, a Toxin-Induced Experimental Model, Used for Research in Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 2020, 19, 85–93. [Google Scholar] [CrossRef]
- Yadang, F.S.A.; Nguezeye, Y.; Kom, C.W.; Betote, P.H.D.; Mamat, A.; Tchokouaha, L.R.Y.; Taiwé, G.S.; Agbor, G.A.; Bum, E.N. Scopolamine-Induced Memory Impairment in Mice: Neuroprotective Effects of Carissa edulis (Forssk.) Valh (Apocynaceae) Aqueous Extract. Int. J. Alzheimers Dis. 2020, 2020, 6372059. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Choi, B.J.; Chang, M.S.; Park, S.K. Nelumbo nucifera semen extract improves memory in rats with scopolamine-induced amnesia through the induction of choline acetyltransferase expression. Neurosci. Lett. 2009, 461, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.K.; Tomlinson, B.E.; Blessed, G.; Bergmann, K.; Gibson, P.H.; Perry, R.H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 1978, 2, 1457–1459. [Google Scholar] [CrossRef] [PubMed]
- Bunadri, P.; Neerati, V.; Merugu, S.; Akondi, B.R. Neuroprotective effect of resveratrol against Scopolamine-induced cognitive impairment and oxidative stress in rats. Arch. Biol. Sci. 2013, 65, 1381–1386. [Google Scholar] [CrossRef]
- Dolashki, A.; Velkova, L.; Daskalova, E.; Zheleva, N.; Topalova, Y.; Atanasov, V.; Voelter, W.; Dolashka, P. Antimicrobial Activities of Different Fractions from Mucus of the Garden Snail Cornu aspersum. Biomedicines 2020, 8, 315. [Google Scholar] [CrossRef]
- Topalova, Y.; Belouhova, M.; Velkova, L.; Dolashki, A.; Zheleva, N.; Daskalova, E.; Kaynarov, D.; Voelter, W.; Dolashka, P. Effect and Mechanisms of Antibacterial Peptide Fraction from Mucus of C. aspersum against Escherichia coli NBIMCC 8785. Biomedicines 2022, 10, 672. [Google Scholar] [CrossRef]
- Velkova, L.; Dolashki, A.; Petrova, V.; Pisareva, E.; Kaynarov, D.; Kermedchiev, M.; Todorova, M.; Dolashka, P. Antibacterial Properties of Peptide and Protein Fractions from Cornu aspersum Mucus. Molecules 2024, 29, 2886. [Google Scholar] [CrossRef]
- Vassilev, N.G.; Simova, S.D.; Dangalov, M.; Velkova, L.; Atanasov, V.; Dolashki, A.; Dolashka, P. An 1H NMR- and MS-Based Study of Metabolites Profiling of Garden Snail Helix aspersa Mucus. Metabolites 2020, 10, 360. [Google Scholar] [CrossRef]
- Sawa, K.; Uematsu, T.; Korenaga, Y.; Hirasawa, R.; Kikuchi, M.; Murata, K.; Zhang, J.; Gai, X.; Sakamoto, K.; Koyama, T.; et al. Krebs cycle intermediates protective against oxidative stress by modulating the level of reactive oxygen species in neuronal HT22 cells. Antioxidants 2017, 6, 21. [Google Scholar] [CrossRef]
- Tancheva, L.; Lazarova, M.; Velkova, L.; Dolashki, A.; Uzunova, D.; Minchev, B.; Petkova-Kirova, P.; Hassanova, Y.; Gavrilova, P.; Tasheva, K.; et al. Beneficial Effects of Snail Helix aspersa Extract in an Experimental Model of Alzheimer’s Type Dementia. J. Alzheimer’s Dis. 2022, 88, 155–175. [Google Scholar] [CrossRef]
- Dolashka, P.; Atanasov, D. Device for Collecting Extracts from Garden Snail. BG Utility Model Application Number 2656, 08.11.2013. Patent Number. 2097, 31 August 2015. Available online: https://portal.bpo.bg/bpo_online/-/bpo/utility-model-detail (accessed on 19 May 2024).
- Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell Longev. 2013, 2013, 316523. [Google Scholar] [CrossRef] [PubMed]
- Makhaeva, G.F.; Lushchekina, S.V.; Boltneva, N.P.; Sokolov, V.B.; Grigoriev, V.V.; Serebryakova, O.G.; Vikhareva, E.A.; Aksinenko, A.Y.; Barreto, G.E.; Aliev, G.; et al. Conjugates of γ-carbolines and phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer disease. Sci. Rep. 2015, 5, 13164. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Marutle, A.; Nordberg, A. Modulation of α7 nicotinic acetylcholine receptor and fibrillary amyloid-β interactions in Alzheimer’s disease brain. J. Alzheimer’s Dis. 2013, 33, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef]
- Drummond, E.; Wisniewski, T. (Eds.) Using Proteomics to Understand Alzheimer’s Disease Pathogenesis. In Alzheimer’s Disease; Codon Publications: Brisbane, QLD, Australia, 2019; Chapter 3. [Google Scholar] [CrossRef]
- Preston, G.C.; Brazell, C.; Ward, C.; Broks, P.; Traub, M.; Stahl, S.M. The scopolamine model of dementia: Determination of central cholinomimetic effects of physostigmine on cognition and biochemical markers in man. J. Psychopharmacol. 1988, 2, 67–79. [Google Scholar] [CrossRef]
- Kaur, R.; Mehan, S.; Khanna, D.; Kalra, S. Ameliorative Treatment with Ellagic Acid in Scopolamine Induced Alzheimer’s Type Memory and Cognitive Dysfunctions in Rats. Austin J. Clin. Neurol. 2015, 2, 1053. [Google Scholar]
- Jia, J.; Zeng, X.; Xu, G.; Wang, Z. The Potential Roles of Redox Enzymes in Alzheimer’s Disease: Focus on Thioredoxin. ASN neuro 2021, 13, 1759091421994351. [Google Scholar] [CrossRef]
- Tsvetanova, E.; Alexandrova, A.; Georgieva, A.; Tancheva, L.; Lazarova, M.; Dolashka, P.; Velkova, L.; Dolashki, A.; Atanasov, V.; Kalfin, R. Effect of mucus extract of Helix aspersa on scopolamine-induced cognitive impairment and oxidative stress in rat’s brain. Bulg. Chem. Commun. 2020, 52, 107–111. [Google Scholar]
- Kang, D.E.; Woo, J.A. Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 72, 131–144. [Google Scholar] [CrossRef]
- Bishop, P.; Rocca, D.; Henley, J.M. Ubiquitin C-terminal hydrolase L1 (UCH-L1): Structure, distribution and roles in brain function and dysfunction. Biochem. J. 2016, 473, 2453–2462. [Google Scholar] [CrossRef]
- Kook, S.Y.; Jeong, H.; Kang, M.J.; Park, R.; Shin, H.J.; Han, S.H.; Son, S.M.; Song, H.; Baik, S.H.; Moon, M.; et al. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer’s disease mouse model. Cell Death Differ. 2014, 21, 1575–1587. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Gibson, G.E. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J. Neurochem. 2011, 118, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Pelucchi, S.; Stringhi, R.; Marcello, E. Dendritic Spines in Alzheimer’s Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure. Int. J. Mol. Sci. 2020, 21, 908. [Google Scholar] [CrossRef] [PubMed]
- Bürklen, T.S.; Schlattner, U.; Homayouni, R.; Gough, K.; Rak, M.; Szeghalmi, A.; Wallimann, T. The creatine kinase/creatine connection to Alzheimer’s disease: CK-inactivation, APP-CK complexes and focal creatine deposits. J. Biomed. Biotechnol. 2006, 2006, 35936. [Google Scholar] [CrossRef]
- Kamphuis, W.; Middeldorp, J.; Kooijman, L.; Sluijs, J.A.; Kooi, E.J.; Moeton, M.; Freriks, M.; Mizee, M.R.; Hol, E.M. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer’s disease. Neurobiol. Aging 2014, 35, 492–510. [Google Scholar] [CrossRef]
- Sferra, A.; Nicita, F.; Bertini, E. Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 7354. [Google Scholar] [CrossRef]
- Campanella, C.; Pace, A.; Bavisotto, C.C.; Marzullo, P.; Gammazza, A.M.; Buscemi, S.; Piccionello, A.P. Heat Shock Proteins in Alzheimer’s Disease: Role and Targeting. Int. J. Mol. Sci. 2018, 19, 2603. [Google Scholar] [CrossRef]
- Patro, S.; Ratna, S.; Yamamoto, H.A.; Ebenezer, A.T.; Ferguson, D.S.; Kaur, A.; McIntyre, B.C.; Snow, R.; Solesio, M.E. ATP Synthase and Mitochondrial Bioenergetics Dysfunction in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 11185. [Google Scholar] [CrossRef]
- Gunning, P.; O‘Neill, G.; Hardeman, E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol. Rev. 2008, 88, 1–35. [Google Scholar] [CrossRef]
- Gu, Q.; Cuevas, E.; Raymick, J.; Kanungo, J.; Sarkar, S. Downregulation of 14-3-3 Proteins in Alzheimer’s Disease. Mol. Neurobiol. 2020, 57, 32–40. [Google Scholar] [CrossRef]
- Qureshi, H.Y.; Li, T.; MacDonald, R.; Cho, C.M.; Leclerc, N.; Paudel, H.K. Interaction of 14-3-3ζ with microtubule-associated protein tau within Alzheimer’s disease neurofibrillary tangles. Biochemistry 2013, 52, 6445–6455. [Google Scholar] [CrossRef] [PubMed]
- DeSalle, L.M.; Pagano, M. Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett. 2001, 490, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Selvarasu, K.; Singh, A.K.; Iyaswamy, A.; Sreenivasmurthy, S.G.; Krishnamoorthi, S.; Bera, A.K.; Huang, J.D.; Durairajan, S.S.K. Reduction of kinesin I heavy chain decreases tau hyperphosphorylation, aggregation, and memory impairment in Alzheimer’s disease and tauopathy models. Front. Mol. Biosci. 2022, 9, 1050768. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Shumyatsky, G.P. Deceivingly dynamic: Learning-dependent changes in stathmin and microtubules. Neurobiol. Learn. Mem. 2015, 124, 52–61. [Google Scholar] [CrossRef]
- Walser, M.; Svensson, J.; Karlsson, L.; Motalleb, R.; Åberg, M.; Kuhn, H.G.; Isgaard, J.; Åberg, N.D. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Front. Endocrinol. 2021, 11, 606089. [Google Scholar] [CrossRef]
- Sun, T.; Yu, N.; Zhai, L.K.; Li, N.; Zhang, C.; Zhou, L.; Huang, Z.; Jiang, X.Y.; Shen, Y.; Chen, Z.Y. c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) regulates neuronal axon elongation in a kinesin- and JNK-dependent manner. J. Biol. Chem. 2013, 288, 14531–14543. [Google Scholar] [CrossRef]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 2022, 3, e161. [Google Scholar] [CrossRef]
- Chait, B.T.; Kent, S.B. Weighing naked proteins: Practical, high-accuracy mass measurement of peptides and proteins. Science 1992, 257, 1885–1894. [Google Scholar] [CrossRef]
- Chuang, J.Y.; Lee, C.W.; Shih, Y.H.; Yang, T.; Yu, L.; Kuo, Y.M. Interactions between amyloid-beta and hemoglobin: Implications for amyloid plaque formation in Alzheimer’s disease. PLoS ONE 2012, 7, e33120. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- O’Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007–4021. [Google Scholar] [CrossRef]
- Rosenfeld, J.; Capdevielle, J.; Guillemot, J.C.; Ferrara, P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal. Biochem. 1992, 203, 173–179. [Google Scholar] [CrossRef]
No. Spot Cortex | Protein Name (UniProtKB) | Volume (Pixels) Sco | Volume (Pixels) Sco + SE | MW Exp. | pI Exp. | MW Theor | pI Theor | Expression |
---|---|---|---|---|---|---|---|---|
1 | Thioredoxin; P11232 (THIO_RAT) | 6,050,118 | 5,441,182 | 15.081 | 4.48 | 11.673 | 4.80 | |
2 | Superoxide dismutase [Cu-Zn]; P07632 (SODC_RAT) | 6,261,736 | 7,118,268 | 18.158 | 5.51 | 15.912 | 5.88 | |
3 | Cofilin-1; P45592, (COF1_RAT) | 1,157,164 | 1,101,119 | 20 | 7.46 | 18.533 | 8.22 | |
4 | Ubiquitin carboxyl-terminal hydrolase isozyme L1; Q00981 (UCHL1_RAT) | 2,204,242 | 3,605,218 | 22 | 4.9 | 24.838 | 5.14 | |
5 | Calbindin; P07171 (CALB1_RAT) | 8,396,846 | 11,756,730 | 28 | 3.94 | 29.994 | 4.71 | |
6 | Malate dehydrogenase, cytoplasmic; O88989 (MDHC_RAT) | 12,166,374 | 15,772,607 | 36 | 5.63 | 36.483 | 6.16 | |
7 | β –Actin; P60711 (ACTB_RAT) | 18,729,148 | 13,744,467 | 48 | 5.35 | 41.737 | 5.2 | |
8 | Creatine Kinase B-type; P07335 (KCRB_RAT) | 375,048 | 448,176 | 40 | 5.52 | 42.725 | 5.4 | |
9 | Glial Fibrillary Acidic Protein; P47819 (GFAP_RAT) | 582,304 | 583,050 | 53 | 5.17 | 49.957 | 5.02 | |
10 | Tubulin α-1 chain; Q6P9V9 (TBA1B_RAT) | 22,419,986 | 7,427,465 | 53 | 4.35 | 50.152 | 4.94 | |
11 | 60 kDa heat shock protein, mitochondrial; P63039 (CH60_RAT) | 10,059,479 | 13,101,991 | 71 | 5.44 | 60.955 | 5.91 | |
12 | Vacuolar ATP synthase catalytic subunit A; P50516 (VATA_RAT) | 2,211,577 | 3,933,414 | 73 | 5.28 | 68.326 | 5.41 | |
13 | Tropomyosin beta chain P58775 (TPM2_RAT) | 2,502,851 | 451,024 | 32.817 | 4.66 | 41.253 | 4.45 | |
14 | 14-3-3 protein zeta/delta P63102 (1433Z_RAT) | 15,894,376 | 7,086,121 | 27.754 | 4.73 | 33.326 | 4.46 | |
15 | Kinesin-1 heavy chain Q2PQA9 (KINH_RAT) | 4,906,008 | 3,993,752 | 109.463 | 6.06 | 126.318 | 5.51 | |
16 | Stathmin-4; P63043 (STMN4_RAT) | 39,377,068 | 10,224,790 | 22.073 | 5.76 | 17.650 | 6.42 | |
17 | Hemoglobin subunit alpha-1/2; P01946 (HBA_RAT) | 27,582,716 | 2,551,968 | 15.319 | 7.82 | 21.167 | 7.7 |
Spot No. | AAS of Peptide | Mass [M+H]+ | Spot No | AAS of Peptide | Mass [M+H]+ |
---|---|---|---|---|---|
6 | DLDVAVLVGSMPR | 1371.71 | 14 | MKGDYYR | 932.21 |
FVEGLLPNDFSR | 1393.68 | DSTLIMQLLR | 1189.39 | ||
SQIALKLGVTADDVK | 1558.84 | KEMQPTHPIR | 1236.38 | ||
VIVVGNPANTNCLTASK | 1700.89 | SVTEQGAELSNEER | 1548.37 | ||
GEFITTVQQRGAAVIK | 1719.94 | LAEQAERYDDMAACMK | 1844.40 | ||
7 | EITALAPSTMK | 1161.61 | 15 | KMEENEK | 908.29 |
IWHHTFYNELR | 1515.74 | YQQEVDRIK | 1177.35 | ||
SYELDPGQVITIGNER | 1790.87 | EYELLSDELNQK | 1479.48 | ||
YPIEHGIVTNWDDMEK | 1946.89 | TQMLDQEELLASTRR | 1791.35 | ||
VAPEEHPVLLTEAPLNPK | 1954.06 | GLEETVAKELQTLHNLR | 1949.51 | ||
10 | YMACCLLYR | 1135.50 | 16 | MTLAAYKEK | 1053.45 |
QLFHPEQLITGK | 1410.77 | EAHLAAMLER | 1141.43 | ||
SIQFVDWCPTGFK | 1527.73 | RKYQEAELLK | 1277.72 | ||
IHFPLATYAPVISAEK | 1756.67 | YQEAELLKHLAEK | 1572.46 | ||
EDAANNYARGFYTIGK | 1790.87 | MKELPLVSLFCSCFLSDPLNK | 2383.53 | ||
KKMQMLK | 907.24 | MFAAFPTTK | 1013.31 | ||
HIAEDSDR | 941.24 | LRVDPVNFK | 1087.42 | ||
13 | AEFAERSVAK | 1107.91 | 17 | IGGHGGEYGEEALQR | 1572.47 |
LEEAEKAADESER | 1475.70 | TYFSHIDVSPGSAQVK | 1735.55 | ||
LEEAEKAADESERGMK | 1791.71 | AADHVEDLPGALSTLSDLHAHK | 2296.75 | ||
TIDDLEDEVYAQKMKYK | 2088.89 |
Spot No. | Protein Name | Molecular Function | Biological Process |
---|---|---|---|
1 | Thioredoxin P11232 (THIO_RAT) | Thioredoxin (Trx) inhibits caspase-3 activity by nitrosylating its active Cys site. | Trx has multiple biological functions, including protective cellular mechanisms against oxidative stress and cytokine-induced damage. The elevation of endogenous Trx expression and transfer of exogenous Trx-inducers activate pro-survival signaling pathways, thus playing a neuroprotective role in AD [29]. |
2 | Superoxide dismutase [Cu-Zn] P07632, SODC_RAT) | CuZnSOD catalyzes the dismutation of the superoxide anion radical to O2 and H2O2. | It is suggested that CuZnSOD plays a key role in the antioxidant protection of neurons. In aging and in AD, a decrease in the expression of the enzyme is usually observed [30]. |
3 | Cofilin-1; P45592, (COF1_RAT) | Cofilin exhibits pH-sensitive depolymerizing activity in F-actin upon binding to it. | CB is an essential protein for maintaining calcium homeostasis and preventing neuronal death. Research has shown that removing CB from the amyloid precursor protein presenilin in transgenic mice worsens the pathogenesis of AD. This suggests its key role [31]. |
4 | Ubiquitin carboxyl-terminal hydrolase isozyme L1 Q00981 (UCHL1_RAT) | UCHL1_RAT is a thiol protease. It hydrolyzes a peptide bond at the C-terminal glycine of ubiquitin. | There is evidence that UCH L1 binds and co-localizes with monoubiquitin and prolongs the half-life of ubiquitin. Uch-L1 reduction is part of a cycle that favors Aβ accumulation in vascular injury [32]. |
5 | Calbindin P07171 (CALB1_RAT) | Calbindin (CB) buffers cytosolic calcium. It can stimulate membrane Ca2+-ATPase and 3’,5’-cyclic nucleotide phosphodiesterase. | CB is an essential protein for maintaining calcium homeostasis and preventing neuronal death. Research has shown that removing CB from the amyloid precursor protein presenilin in transgenic mice worsens the pathogenesis of AD. This suggests its key role [33]. |
6 | Malate dehydrogenase, cytoplasmic O88989 (MDHC_RAT) | MDHC_RAT participates in the reduction in aromatic alpha-keto acids in the presence of NADH. | The enzyme is involved in oxidative phosphorylation by supplying NADH to the mitochondria. It has a key function in the Krebs cycle and the malate–aspartate shuttle. The functional significance of MDH elevation in AD is unknown [34]. |
7 | Actin, cytoplasmic 1 P60711 (ACTB_RAT) | Actins are expressed in all eukaryotic cells and are involved in their motor processes. | A number of studies have shown that the actin cytoskeleton is essential for the function and plasticity of synapses. It is at the crossroads of the pathways between the amyloid cascade and synaptic dysfunction and therefore has a key role in AD pathogenesis [35]. |
8 | Creatine kinase B-type P07335 (KCRB_RAT) | Creatine kinase (CK) is a transferase that catalyzes the reversible phosphate transfer reaction between ATP and various phosphogens. | CK plays a major role in the cellular energetics of the brain, so any disruption of this enzyme can worsen AD pathology. In AD patients, oxidation inactivates brain-type cytosolic creatine kinase (BB-CK) [36]. |
9 | Glial fibrillary acidic protein P47819 (GFAP_RAT) | GFAP is a class III intermediate filament. It is a cell-specific marker that distinguishes astrocytes from other glial cells during the development of the central nervous system. | GFAP is a key protein and is a marker of astroglial damage. It is responsible for the structure of the cytoskeleton of glial cells, and for the regulation of the morphology and function of astrocytes, as well as for maintaining the blood–brain barrier. In AD, amyloid plaques are surrounded by reactive astrocytes with increased expression of GFAP filaments [37]. |
10 | Tubulin alpha-1B chain Q6P9V9 (TBA1B_RAT) | Tubulin is the main building block of microtubules which are composed of α–β-tubulin heterodimers forming linear protofilaments that form a hollow polar cylinder. | Microtubules (MT) are essential components of the cytoskeleton of the cell, which has locomotory functions. A number of studies show that MT dysfunction may contribute to neurodegenerative processes and AD in particular. Disruption of the neuronal cytoskeleton is a feature of the neurodegenerative brain, and tubulin levels are decreased in the AD brain [38]. |
11 | 60 kDa heat shock protein, mitochondrial P63039 (CH60_RAT) | Hsp60 is a chaperone that is localized in the mitochondria and is involved in the correct folding of proteins. | Hsp60 is a protein that, together with Hsp10, is considered essential for mitochondrial protein folding. The role of Hsp60 in AD is still unclear [39]. |
12 | V-type proton ATPase catalytic subunit A P50516 (VATA_MOUSE) | ATP synthase is the last enzyme of the mitochondrial electron transport chain, where oxidative phosphorylation takes place in order to synthesize ATP, which is a universal energy carrier in the cell. | In mammalian cells, ATP synthase, in addition to ATP synthesis, can also degrade (ATPase), which indicates the important function of this enzyme in the regulation of cellular metabolism and bioenergetics. The mechanisms of bioenergetic dysfunction, including the dysregulation of ATP synthase in AD, remain unclear [40]. |
13 | Tropomyosin beta chain P58775 (TPM2_RAT) | Tropomyosin (Tm) binds to actin filaments in the cells. In non-muscle cells, it is involved in the stabilization of cytoskeletal actin filaments. | Tm has been shown to play an essential role in neurofibrillary pathology in AD. However, the exact role of Tm in AD pathology is still not well understood [41]. |
14 | 14-3-3 protein zeta/delta P63102 (1433Z_RAT) | 14-3-3 is involved in the regulation of a broad spectrum of general and specialized signaling pathways. Binding usually results in a modulation of the activity of the protein to which 14-3-3 binds. | 14-3-3 isoforms regulate a wide range of cellular processes, such as the cell cycle, transcription, intracellular trafficking, apoptosis, and autophagy [42]. In AD, they are thought to contribute to NFT formation through τ-hyperphosphorylation [43]. |
15 | Kinesin-1 heavy chain Q2PQA9 (KINH_RAT) | Kinesin is a microtubule-dependent motor protein that participates in the normal distribution of mitochondria and lysosomes. It has a key role in the anterograde axonal transport of MAPK8IP3/JIP3, which is involved in axon elongation [44] | Studies have shown that the Kinesin-1 heavy chain is part of a key molecular motor protein involved in τ-homeostasis. It has been proposed that a reduction in Kinesin-1 heavy chain levels is sufficient to prevent and/or delay tau pathology in AD and other tauopathies [45]. |
16 | Stathmin-4 P63043 (STMN4_RAT) | Stathmin (STM) is a ubiquitous cytosolic phosphoprotein primarily expressed in the nervous system and a member of a family of phosphoproteins that bind to tubulin and destabilize MTs. | STM-4 in the unphosphorylated or hypophosphorylated state binds to tubulin and prevents its polymerization, thereby preventing MTs assembly. After phosphorylation, STM-4 is released from tubulin and allows for the formation of MTs. The dysregulation of STM and MTs dynamics has been observed in aged animals and in patients with AD and depression [46]. |
17 | Hemoglobin subunit alpha-1/2P01946 (HBA_RAT) | Hemoglobin participates in the transfer of oxygen from the lung to the various peripheral tissues. | According to research, hemoglobin (Hb) binds to Aβ and is found together with plaques and vascular amyloid deposits in the the brains of AD patients after death. Research by Chuang et al., 2012, suggests that the genesis of some plaques may be a consequence of prolonged amyloid accumulation at sites of vascular injury [47]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanasov, V.; Velkova, L.; Tancheva, L.; Dolashki, A.; Kalfin, R.; Dolashka, P. Key Proteins in Rat Cerebral Cortex: Application of Cornu aspersum Extract as a Neuroprotective Agent in Alzheimer’s Type Dementia. Molecules 2024, 29, 5375. https://doi.org/10.3390/molecules29225375
Atanasov V, Velkova L, Tancheva L, Dolashki A, Kalfin R, Dolashka P. Key Proteins in Rat Cerebral Cortex: Application of Cornu aspersum Extract as a Neuroprotective Agent in Alzheimer’s Type Dementia. Molecules. 2024; 29(22):5375. https://doi.org/10.3390/molecules29225375
Chicago/Turabian StyleAtanasov, Ventseslav, Lyudmila Velkova, Lyubka Tancheva, Aleksandar Dolashki, Reni Kalfin, and Pavlina Dolashka. 2024. "Key Proteins in Rat Cerebral Cortex: Application of Cornu aspersum Extract as a Neuroprotective Agent in Alzheimer’s Type Dementia" Molecules 29, no. 22: 5375. https://doi.org/10.3390/molecules29225375
APA StyleAtanasov, V., Velkova, L., Tancheva, L., Dolashki, A., Kalfin, R., & Dolashka, P. (2024). Key Proteins in Rat Cerebral Cortex: Application of Cornu aspersum Extract as a Neuroprotective Agent in Alzheimer’s Type Dementia. Molecules, 29(22), 5375. https://doi.org/10.3390/molecules29225375