Vibrational Spectroscopic Identification of the [AlCl2]+ Cation in Ether-Containing Liquid Electrolytes
Abstract
:1. Introduction
2. Results
2.1. Experimental Spectra
2.1.1. AlCl3-THF System
2.1.2. AlCl3-G4 System
2.2. Simulated Spectra
3. Discussion
4. Materials and Methods
4.1. Experimental Details
4.2. Computational Details
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Couch, D.E.; Brenner, A. A Hydride Bath for the Electrodeposition of Aluminum. J. Electrochem. Soc. 1952, 99, 234–244. [Google Scholar] [CrossRef]
- Doe, R.E.; Han, R.; Hwang, J.; Gmitter, A.J.; Shterenberg, I.; Yoo, H.D.; Pour, N.; Aurbach, D. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 2014, 50, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Eilmes, A.; Alves, W.A. Combining experimental and theoretical vibrational spectroscopy to study magnesium aluminum chloride complex electrolytes. J. Mol. Liq. 2021, 333, 116053. [Google Scholar] [CrossRef]
- Eilmes, A.; Alves, W.A. Theory-experiment partnership applied to the spectroscopic analysis of a promising conditioning-free electrolyte for Mg batteries. J. Mol. Liq. 2022, 350, 118528. [Google Scholar] [CrossRef]
- Eilmes, A.; Alves, W.A. Unraveling the solvates in a diethylene glycol dimethyl ether-based electrolyte: A computational-experimental spectroscopic contribution to Mg battery area. J. Mol. Liq. 2022, 359, 119251. [Google Scholar] [CrossRef]
- Eilmes, A.; Alves, W.A. On the solvation structures formed in conditioning-free MMAC-based electrolytes: A theoretical-experimental spectroscopic insight of interest to Mg battery area. J. Mol. Liq. 2023, 384, 122199. [Google Scholar] [CrossRef]
- Quintanilha, O.B.A.; Alves, W.A.; Eilmes, A. Experimental-computational study on the competition between 1,2-dimethoxyethane and tetrahydrofuran in a MACC-based electrolyte. J. Mol. Liq. 2024, 395, 123927. [Google Scholar] [CrossRef]
- Bieker, G.; Salama, M.; Kolek, M.; Gofer, Y.; Bieker, P.; Aurbach, D.; Winter, M. The Power of Stoichiometry: Conditioning and Speciation of MgCl2/AlCl3 in Tetraethylene Glycol Dimethyl Ether-Based Electrolytes. ACS Appl. Mater. Interfaces 2019, 11, 24057–24066. [Google Scholar] [CrossRef] [PubMed]
- Nöth, H.; Rurländer, R.; Wolfgardt, P. An Investigation of AlCl3 Solutions in Ethers by 27Al NMR Spectroscopy. Z. Naturforsch. B Chem. Sci. 1982, 37, 29–37. [Google Scholar] [CrossRef]
- Kitada, A.; Nakamura, K.; Fukami, K.; Murase, K. Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions. Electrochim. Acta 2016, 211, 561–567. [Google Scholar] [CrossRef]
- Derouault, J.; Forel, M.T. Spectroscopic Investigation of Aluminum Trihalide-Tetrahydrofuran Complexes. 1. Structure and Force Fields of the 1:l and 1:2 Solid Compounds Formed by Aluminum Chloride or Bromide. Inorg. Chem. 1977, 16, 3207–3213. [Google Scholar] [CrossRef]
- Derouault, J.; Granger, P.; Forel, M.T. Spectroscopic Investigation of Aluminum Trihalide-Tetrahydrofuran Complexes. 2. Solutions of Aluminum Chloride or Bromide in Tetrahydrofuran and in Tetrahydrofuran-Dichloromethane. Inorg. Chem. 1977, 16, 3214–3218. [Google Scholar] [CrossRef]
- Alves, C.C.; Campos, T.B.C.; Alves, W.A. FT-Raman spectroscopic analysis of the most probable structures in aluminum chloride and tetrahydrofuran solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 1085–1088. [Google Scholar] [CrossRef] [PubMed]
- Pour, N.; Gofer, Y.; Major, D.T.; Aurbach, D. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J. Am. Chem. Soc. 2011, 133, 6270–6278. [Google Scholar] [CrossRef]
- See, K.A.; Chapman, K.W.; Zhu, L.; Wiaderek, K.M.; Borkiewicz, O.J.; Barile, C.J.; Chupas, P.J.; Gewirth, A.A. The interplay of Al and Mg speciation in advanced Mg battery electrolyte solutions. J. Am. Chem. Soc. 2016, 138, 328–337. [Google Scholar] [CrossRef]
- Pye, C.C.; Rudolph, W.W. An ab initio and Raman investigation of magnesium(II) hydration. J. Phys. Chem. A 1998, 102, 9933–9943. [Google Scholar] [CrossRef]
- Rudolph, W.W.; Irmer, G.; Hefter, G.T. Raman spectroscopic investigation of speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 2003, 5, 5253–5261. [Google Scholar] [CrossRef]
- Dalibart, M.; Derouault, J.; Granger, P.; Chapelle, S. Spectroscopic Investigations of Complexes between Acetonitrile and Aluminum Trichloride. 1. Aluminum Chloride-Acetonitrile Solutions. Inorg. Chem. 1982, 21, 1040–1046. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Terachem, v. 1.93; PetaChem: Los Altos Hills, CA, USA, 2017. Available online: http://www.petachem.com/ (accessed on 21 October 2024).
- Yang, Y.; Wang, W.; Nuli, Y.; Yang, J.; Wang, J. High active magnesium trifluoromethanesulfonate-based electrolytes for magnesium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 9062–9072. [Google Scholar] [CrossRef]
Experimental | Calculated | Chemical Species | ||
---|---|---|---|---|
Raman | IR | Raman | IR | |
271 | 280 | Trans-[AlCl2(THF)4]+ | ||
286 | 287 | THF solvent | ||
330 | 331 | 319 322 | AlCl3(THF) Planar-AlCl3(THF)2 | |
349 | 339 | [AlCl4]− | ||
360 | 353 | [AlCl4]− | ||
382 | N.A.1 | |||
405 | 408 | Cis-[AlCl2(THF)4]+ | ||
420 | 420 | 416 | 420 | AlCl3(THF) |
446 | N.A.1 | |||
492 | 491 | 492 | 492 | [AlCl4]− |
510 | N.A.1 | |||
522 | AlCl3(THF) Planar-AlCl3(THF)2 Cis-[AlCl2(THF)4]+ |
Experimental | Calculated | Chemical Species | ||
---|---|---|---|---|
Raman | IR | Raman | IR | |
280 | G4 solvent | |||
320 | AlCl3(G4) | |||
349 | 339 | [AlCl4]− | ||
350 | 370 | Cis-[AlCl2(G4)]+ | ||
360 | 353 | [AlCl4]− | ||
400 | 405 | 399 | Cis-[AlCl2(G4)]+ | |
420 | 425 | 428 | 420 | Cis-[AlCl2(G4)]+ |
492 | 491 | 492 | 492 | [AlCl4]− |
524 | Cis-[AlCl2(G4)]+ | |||
550 | G4 solvent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomide, G.P.; Alves, W.A.; Eilmes, A. Vibrational Spectroscopic Identification of the [AlCl2]+ Cation in Ether-Containing Liquid Electrolytes. Molecules 2024, 29, 5377. https://doi.org/10.3390/molecules29225377
Gomide GP, Alves WA, Eilmes A. Vibrational Spectroscopic Identification of the [AlCl2]+ Cation in Ether-Containing Liquid Electrolytes. Molecules. 2024; 29(22):5377. https://doi.org/10.3390/molecules29225377
Chicago/Turabian StyleGomide, Gabriela P., Wagner A. Alves, and Andrzej Eilmes. 2024. "Vibrational Spectroscopic Identification of the [AlCl2]+ Cation in Ether-Containing Liquid Electrolytes" Molecules 29, no. 22: 5377. https://doi.org/10.3390/molecules29225377
APA StyleGomide, G. P., Alves, W. A., & Eilmes, A. (2024). Vibrational Spectroscopic Identification of the [AlCl2]+ Cation in Ether-Containing Liquid Electrolytes. Molecules, 29(22), 5377. https://doi.org/10.3390/molecules29225377