LC-MS/MS-Based Site-Specific N-Glycosylation Analysis of VEGFR-IgG Fusion Protein for Sialylation Assessment Across IEF Fractions
Abstract
:1. Introduction
2. Results and Discussion
2.1. IEF Fractionation
2.2. Identification and Quantification of Site-Specific N-Glycopeptides
2.3. The Relative Abundance of N-Glycosylation in IEF Fraction Samples
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of VEGFR-IgG Fusion Protein Fractions
3.3. Sample Analysis with LC-MS/MS
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Gupta, S.K.; Shukla, P. Glycosylation Control Technologies for Recombinant Therapeutic Proteins. Appl. Microbiol. Biotechnol. 2018, 102, 10457–10468. [Google Scholar] [CrossRef] [PubMed]
- Delobel, A. Glycosylation of Therapeutic Proteins: A Critical Quality Attribute. Methods Mol. Biol. 2021, 2271, 1–21. [Google Scholar] [PubMed]
- Cavallero, G.J.; Wang, Y.; Nwosu, C.; Gu, S.; Meiyappan, M.; Zaia, J. O-Glycoproteomic Analysis of Engineered Heavily Glycosylated Fusion Proteins Using NanoHILIC-MS. Anal. Bioanal. Chem. 2022, 414, 7855–7863. [Google Scholar] [CrossRef]
- Bork, K.; Horstkorte, R.; Weidemann, W. Increasing the Sialylation of Therapeutic Glycoproteins: The Potential of the Sialic Acid Biosynthetic Pathway. J. Pharm. Sci. 2009, 98, 3499–3508. [Google Scholar] [CrossRef]
- Huang, J.; Huang, J.; Zhang, G. Insights into the Role of Sialylation in Cancer Metastasis, Immunity, and Therapeutic Opportunity. Cancers 2022, 14, 5840. [Google Scholar] [CrossRef]
- Chia, S.; Tay, S.J.; Song, Z.; Yang, Y.; Walsh, I.; Pang, K.T. Enhancing Pharmacokinetic and Pharmacodynamic Properties of Recombinant Therapeutic Proteins by Manipulation of Sialic Acid Content. Biomed. Pharmacother. 2023, 163, 114757. [Google Scholar] [CrossRef]
- Vattepu, R.; Sneed, S.L.; Anthony, R.M. Sialylation as an Important Regulator of Antibody Function. Front. Immunol. 2022, 13, 818736. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021442/#:~:text=Many%20of%20these%20glycan%20structures (accessed on 7 April 2022). [CrossRef]
- Liu, J.; Wang, J.; Fan, L.; Chen, X.; Hu, D.; Deng, X.; Poon, H.F.; Wang, H.; Liu, X.; Tan, W.S. Galactose Supplementation Enhances Sialylation of Recombinant Fc-Fusion Protein in CHO Cell: An Insight into the Role of Galactosylation in Sialylation. World J. Microbiol. Biotechnol. 2015, 31, 1147–1156. [Google Scholar] [CrossRef]
- Liu, L. Antibody Glycosylation and Its Impact on the Pharmacokinetics and Pharmacodynamics of Monoclonal Antibodies and Fc-Fusion Proteins. J. Pharm. Sci. 2015, 104, 1866–1884. [Google Scholar] [CrossRef]
- Higel, F.; Seidl, A.; Sörgel, F.; Friess, W. N-Glycosylation Heterogeneity and the Influence on Structure, Function and Pharmacokinetics of Monoclonal Antibodies and Fc Fusion Proteins. Eur. J. Pharm. Biopharm. 2016, 100, 94–100. [Google Scholar] [CrossRef]
- Cymer, F.; Beck, H.; Rohde, A.; Reusch, D. Therapeutic Monoclonal Antibody N-Glycosylation—Structure, Function and Therapeutic Potential. Biologicals 2018, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Rathinavel, A.K.; Radhakrishnan, P. Altered Glycosylation in Cancer: A Promising Target for Biomarkers and Therapeutics. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188464. [Google Scholar] [CrossRef] [PubMed]
- Lis, H.; Sharon, N. Protein Glycosylation: Structural and Functional Aspects. Eur. J. Biochem. 1993, 218, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.R.; Rodrigues, M.E.; Henriques, M.; Oliveira, R.; Azeredo, J. Glycosylation: Impact, Control and Improvement during Therapeutic Protein Production. Crit. Rev. Biotechnol. 2014, 34, 281–299. [Google Scholar] [CrossRef]
- Zhang, P.; Woen, S.; Wang, T.; Liau, B.; Zhao, S.; Chen, C.; Yang, Y.; Song, Z.; Wormald, M.R.; Yu, C.; et al. Challenges of Glycosylation Analysis and Control: An Integrated Approach to Producing Optimal and Consistent Therapeutic Drugs. Drug Discov. Today 2016, 21, 740–765. [Google Scholar] [CrossRef]
- Zhang, H.; Yi, E.C.; Li, X.J.; Mallick, P.; Kelly-Spratt, K.S.; Masselon, C.D.; Camp, D.G.; Smith, R.D.; Kemp, C.J.; Aebersold, R. High Throughput Quantitative Analysis of Serum Proteins Using Glycopeptide Capture and Liquid Chromatography Mass Spectrometry. Mol. Cell. Proteom. 2005, 4, 144–155. [Google Scholar] [CrossRef]
- Suttipong Suttapitugsakul, S.F.; Wu, R. Recent Advances in Glycoproteomic Analysis by Mass Spectrometry. Anal. Chem. 2019, 92, 267–291. [Google Scholar] [CrossRef]
- Ivancic, M.M.; Gadgil, H.S.; Halsall, H.B.; Treuheit, M.J. LC/MS Analysis of Complex Multiglycosylated Human α1-Acid Glycoprotein as a Model for Developing Identification and Quantitation Methods for Intact Glycopeptide Analysis. Anal. Biochem. 2010, 400, 25–32. [Google Scholar] [CrossRef]
- Palmisano, G.; Larsen, M.R.; Packer, N.H.; Thaysen-Andersen, M. Structural Analysis of Glycoprotein Sialylation–Part II: LC-MS Based Detection. RSC Adv. 2013, 3, 22706–22726. [Google Scholar] [CrossRef]
- Eon-Duval, A.; Broly, H.; Gleixner, R. Quality Attributes of Recombinant Therapeutic Proteins: An Assessment of Impact on Safety and Efficacy as Part of a Quality by Design Development Approach. Biotechnol. Prog. 2012, 28, 608–622. [Google Scholar] [CrossRef]
- Dalziel, M.; Crispin, M.; Scanlan, C.N.; Zitzmann, N.; Dwek, R.A. Emerging Principles for the Therapeutic Exploitation of Glycosylation. Science 2014, 343, 1235681. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, X.; Xiao, Z.; Liu, J.; Zhao, L.; Tan, W.S.; Fan, L. Insights into the Loss of Protein Sialylation in an Fc-Fusion Protein-Producing CHO Cell Bioprocess. Appl. Microbiol. Biotechnol. 2019, 103, 4753–4765. [Google Scholar] [CrossRef] [PubMed]
- Hossler, P.; Khattak, S.F.; Li, Z.J. Optimal and Consistent Protein Glycosylation in Mammalian Cell Culture. Glycobiology 2009, 19, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.R.; Baker, D.; James, N.H.; Ratcliffe, K.; Jenkins, M.; Ashton, S.E.; Womack, C. Vascular Endothelial Growth Factor Receptors VEGFR-2 and VEGFR-3 Are Localized Primarily to the Vasculature in Human Primary Solid Cancers. Clin. Cancer Res. 2010, 16, 3548–3561. [Google Scholar] [CrossRef]
- Hamla, S.; Sacré, P.Y.; Derenne, A.; Derfoufi, K.M.; Cowper, B.; Butré, C.I.; Ziemons, E. A New Alternative Tool to Analyze Glycosylation in Pharmaceutical Proteins Based on Infrared Spectroscopy Combined with Nonlinear Support Vector Regression. Int. J. Mol. Sci. 2022, 147, 1086–1098. [Google Scholar]
- Keshvari, T.; Melnik, S.; Sun, L.; Niazi, A.; Aram, F.; Moghadam, A.; Steinkellner, H. Efficient Expression of Functionally Active Aflibercept with Designed N-Glycans. Antibodies 2024, 13, 29. [Google Scholar] [CrossRef]
- Liu, H.; Gaza-Bulseco, G. Characterization of the Charge Heterogeneity of Monoclonal Antibodies Using Capillary Isoelectric Focusing with Whole Column Imaging Detection. J. Chromatogr. A 2007, 1154, 331–339. [Google Scholar]
- Lee, J.Y.; Choi, J.W.; Hwang, S.; Hahm, S.H.; Ahn, Y.H. Site-Specific Glycan Microheterogeneity Evaluation of Aflibercept Fusion Protein by Glycopeptide-Based LC-MSMS Mapping. Int. J. Mol. Sci. 2022, 23, 11807. [Google Scholar] [CrossRef]
- Bas, M.; Terrier, A.; Jacque, E.; Dehenne, A.; Pochet-Béghin, V.; Beghin, C.; Monnet, C. Fc Sialylation Prolongs Serum Half-Life of Therapeutic Antibodies. J. Immunol. 2019, 202, 1582–1594. [Google Scholar] [CrossRef]
- Hahm, Y.H.; Hahm, S.H.; Jo, H.Y.; Ahn, Y.H. Comparative Glycopeptide Analysis for Protein Glycosylation by Liquid Chromatography and Tandem Mass Spectrometry: Variation in Glycosylation Patterns of Site-Directed Mutagenized Glycoprotein. Int. J. Anal. Chem. 2018, 2018, 8605021. [Google Scholar] [CrossRef]
- Park, G.W.; Kim, J.Y.; Hwang, H.; Lee, J.Y.; Ahn, Y.H.; Lee, H.K.; Yoo, J.S. Integrated GlycoProteome Analyzer (I-GPA) for Automated Identification and Quantitation of Site-Specific N-Glycosylation. Sci. Rep. 2016, 6, 21175. [Google Scholar] [CrossRef]
Sample | The Number of Identified N-Glycopeptides | The Number of Identified N-Glycopeptides with Sialic Acid | The Number of Quantified N-Glycopeptides | The Number of Quantified N-Glycopeptides with Sialic Acid |
---|---|---|---|---|
Basic | 103 | 52 | 47 | 23 |
Main | 104 | 57 | 43 | 26 |
Acidic | 73 | 47 | 39 | 25 |
Sample | C/H | C/H-F | C/H-FS | C/H-S | HM |
---|---|---|---|---|---|
Basic | 14 | 23 | 29 | 23 | 11 |
Main | 14 | 19 | 31 | 26 | 12 |
Acidic | 10 | 7 | 26 | 21 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.H.; Ji, E.S.; Lee, J.Y.; Song, J.H.; Ahn, Y.H. LC-MS/MS-Based Site-Specific N-Glycosylation Analysis of VEGFR-IgG Fusion Protein for Sialylation Assessment Across IEF Fractions. Molecules 2024, 29, 5393. https://doi.org/10.3390/molecules29225393
Kim KH, Ji ES, Lee JY, Song JH, Ahn YH. LC-MS/MS-Based Site-Specific N-Glycosylation Analysis of VEGFR-IgG Fusion Protein for Sialylation Assessment Across IEF Fractions. Molecules. 2024; 29(22):5393. https://doi.org/10.3390/molecules29225393
Chicago/Turabian StyleKim, Kwang Hoe, Eun Sun Ji, Ju Yeon Lee, Ju Hwan Song, and Yeong Hee Ahn. 2024. "LC-MS/MS-Based Site-Specific N-Glycosylation Analysis of VEGFR-IgG Fusion Protein for Sialylation Assessment Across IEF Fractions" Molecules 29, no. 22: 5393. https://doi.org/10.3390/molecules29225393
APA StyleKim, K. H., Ji, E. S., Lee, J. Y., Song, J. H., & Ahn, Y. H. (2024). LC-MS/MS-Based Site-Specific N-Glycosylation Analysis of VEGFR-IgG Fusion Protein for Sialylation Assessment Across IEF Fractions. Molecules, 29(22), 5393. https://doi.org/10.3390/molecules29225393