Quantitative Analysis of Lactobionic Acid in Bioreactor Cultures and Selected Biological Activities
Abstract
:1. Introduction
1.1. Lactose Oxidation with Microorganisms
1.2. Characteristics of Pseudomonas Taetrolens
1.3. Characterisation of Whey in Production of Lactobionic Acid
1.4. Flow Cytometry in Food Analysis
- -
- Culture and microencapsulation of bacteria of the Pseudomonas taetrolens species.
- -
- Use of whey as a substrate in the microbiological production of lactobionic acid.
- -
- Analysis of culture parameters: duration of culture, form of microorganisms (free and microencapsulated), concentration of lactose in the bioreactor (2% w/v) and effect of adding fresh, sterile whey on lactobionic acid production.
- -
- Quantitative analysis of lactose and lactobionic acid using high-performance liquid chromatography.
- -
- Analysis of metabolic activity of micro-organisms using flow cytometry with imaging.
- -
- Culture of bacteria of the genus Bifidobacterium.
- -
- Microencapsulation of Bifidobacteria with lactobionic acid and their placement in an in vitro model gastrointestinal tract.
- -
- Survival analysis of microencapsulated bacteria and assessment of the prebiotic properties of lactobionic acid.
2. Results and Discussion
2.1. Antagonistic Activity of Lactobionic Acid
2.2. Quantitative Analysis of Lactobionic Acid Obtained in Bioreactor Cultures
- Pseudomonas taetrolens 1
- Pseudomonas taetrolens 4
- Psedomonas taetrolens 4′
2.3. Analysis of Metabolic Activity of Microorganisms Using Flow Cytometer with Imaging
2.4. Survival of Bifidobacterium Bifidum DSM 20239, DSM 20082, DSM 20215 and DSM 20456 Microencapsulated with Lactobionic Acid in In Vitro Model of Gastrointestinal Tract
3. Materials and Methods
3.1. Microorganisms
3.2. Substances Used for Microencapsulation of Bifidobacterium
- -
- Cationic starch (Central Potato Industry Laboratory, Luboń, Poland) with a degree of substitution of 0.03 and a concentration of 8%
- -
- Calcium chloride with a concentration of 1.22% (POCH, Gliwice, Poland)
- -
- Alginic acid sodium salt with a concentration of 0.6% (Sigma-Aldrich, St. Louis, MO, USA)
- -
- Bidistilled water
- -
- Lactobionic acid (Sigma-Aldrich, St. Louis, MO, USA) (Table 13)
3.3. Substances Used During In Vitro Digestion
- -
- Pepsin: 0.0453 g was dissolved in 1 mL of 0.1M HCl (Sigma-Aldrich).
- -
- Pancreatin: 0.01 g and bile acid salts 0.06 g were dissolved in 5 mL of 0.1M NaHCO3 (Sigma-Aldrich).
- -
- 100 mL MRS Broth (Oxoid, England).
3.4. Methods
3.4.1. Preparation of Inoculum for Microencapsulation of Bifidobacterium
3.4.2. Microencapsulation of Probiotic Bacteria
- (a)
- An amount of 0.61 g of CaCl2 was weighed, then the volumetric flask was made up to 100 mL with distilled water. After dissolving the calcium chloride, 8 g of cationic starch was poured in.
- (b)
- A total of 1.22 g CaCl2 was weighed into a volumetric flask and the flask was then made up to 100 mL with distilled water.
- (c)
- Finally, 0.6 g of sodium alginate was weighed into a volumetric flask and the flask was made up to 100 mL with distilled water. Due to the difficult dissolution of alginate, the prepared solution was slightly heated.
3.4.3. Determination of Number of Live Cells Encapsulated in Microcapsules
3.4.4. Analysis of Obtained Microencapsulated Synbiotic Preparations with Lactobionic Acid
Stomach Stage
Small Intestine Stage
3.4.5. Determination of Number of Viable Cells During In Vitro Digestion
3.4.6. Preparation of Inoculum of P. taetrolens DSM 21104 (Free and Microencapsulated) for Production of Lactobionic Acid in Bioreactor
- Pseudomonas taetrolens 1
- Pseudomonas taetrolens 4
- Pseudomonas taetrolens 4′
- -
- Cationic starch 4% w/v (Central Laboratory of the Potato Industry, Luboń, Poland).
- -
- Alginic acid sodium salt (Sigma-Aldrich, St. Louis, MO, USA).
- -
- Calcium chloride (POCH, Gliwice, Poland).
- -
- Sodium citrate 3% w/v (POCH, Gliwice, Poland).
3.4.7. Preparation of Substrate for Lactobionic Acid Biosynthesis
3.4.8. Preparation of Lactobionic Acid in Bioreactor
3.4.9. Determination of Lactose and Lactobionic Acid
Preparation of Samples for Chromatographic Analysis
Quantitative Analysis of Lactose and Lactobionic Acid Using High-Performance Liquid Chromatography
3.4.10. Analysis of Microorganisms Using Flow Cytometer with Imaging
- -
- BacLight™ Redox Sensor™ Green
- -
- Fluorochrome PI (propidium iodide)
- -
- 3 lasers (405 nm, 488 nm and 642 nm).
- -
- 5 fluorescence channels (multi-channel CCD camera acquisition)
- -
- a laser-scattered–side-scatter (SSC) detector.
- (1)
- In the first step, Gradient RMS and Contrast parameters were used to define images of cells located in a well-defined plane of focus with high resolution and contrast.
- (2)
- In the second stage, the intensity of the Ch2 channel green fluorescence (RSG) signals from the Redox Sensor™ Green reagent was used in the form of the Intensity parameter (discrimination of cells from a non-cellular background—a gate defining cells covering low median values of fluorescence intensity from Redox Sensor™ Green).
- (3)
- The third stage used parameters: Aspect Ratio and Area, derived from the digital image processing of cells in the bright field of view, and related to the shape and size of the analysed cells, respectively.
3.4.11. Analysis of Antagonistic Activity of Lactobionic Acid
3.4.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.S.; Oh, Y.R.; Jeong, B.Y.; Eom, G.T. Isolation of new lactobionic acid-producing microorganisms and improvement of their production ability by heterologous expression of glucose dehydrogenase from Pseudomonas taetrolens. Enzym. Microb. Technol. 2022, 153, 109954. [Google Scholar] [CrossRef] [PubMed]
- Sarenkova, I.; Saez-Orviz, S.; Ciprovica, I.; Rendueles, M.; Diaz, M. Lactobionic acid production by Pseudomonas taetrolens in a fed-batch bioreactor using acid whey as substrate. Int. J. Dairy Technol. 2022, 75, 361–371. [Google Scholar] [CrossRef]
- Wu, J.; Liu, P.; Zheng, J.; Ouyang, J. Valorization of cheese whey to lactobionicacid by a novel strain Pseudomonas fragiand identifcation of enzyme involved in lactoseoxidation. Microb. Cell Factories 2022, 21, 184. [Google Scholar] [CrossRef] [PubMed]
- Sarenkova, I.; Ciprovica, I. The current status and future perspectives of lactobionic acid production: A review. Res. Rural. Dev. 2018, 1, 233–239. [Google Scholar]
- Alonso, S.; Rendueles, M.; Diaz, M. Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Bioresour. Technol. 2015, 196, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Alonso, S.; Rendueles, M.; Diaz, M. Tunable decoupled overproduction of lactobionic acid in Pseudomonas taetrolens through temperature-control strategies. Process Biochem. 2017, 58, 9–16. [Google Scholar] [CrossRef]
- Sarenkova, I.; Ciprovica, I.; Cinkmanis, I. Effect of Different Salts on Pseudomonas taetrolens’ Ability to Lactobionic Acid Production. Int. J. Biol. Life Agric. Sci. 2019, 13, 208–213. [Google Scholar]
- Sarenkova, I.; Ciprovica, I.; Cinkmanis, I. The effect of concentrated whey solids on lactobionic acid production by Pseudomonas taetrolens. Foodbalt 2019, 13, 250–253. [Google Scholar]
- Oh, Y.R.; Eom, G.T. Identification of a lactose-oxidizing enzyme in Escherichia coli and improvement of lactobionic acid production by recombinant expression of a quinoprotein glucose dehydrogenase from Pseudomonas taetrolens. Enzym. Microb. Technol. 2021, 148, 109828. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Orviz, S.; Marcet, I.; Rendueles, M.; Díaz, M. Preparation of Edible Films with Lactobacillus plantarum and Lactobionic Acid Produced by Sweet Whey Fermentation. Membranes 2022, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Narala, V.R.; Zagorska, J.; Sarenkova, I.; Ciprovica, I.; Majore, K. Acid Whey Valorization for Biotechnological Lactobionic Acid Bio-production. J. Hum. Earth Future 2022, 3, 46–55. [Google Scholar] [CrossRef]
- Sarenkova, I.; Saez-Orviz, S.; Ciprovica, I.; Rendueles, M.; Diaz, M. Lactobionic Acid Production from Acid Whey under Different Fermentative Conditions. J. Adv. Agric. Technol. 2021, 8, 35–40. [Google Scholar] [CrossRef]
- Burchardt, D.; Machowska, L.; Derwich, K.; Samara, H.; Dworacki, G. Cytometria przepływowa—możliwości zastosowania w diagnostyce klinicznej zmian w obrębie jamy ustnej. Now. Lek. 2008, 77, 324–329. [Google Scholar]
- Olszewska, M.A.; Kocot, A.M.; Łaniewska-Trokenheim, Ł. Analiza cytometryczna w mikrobiologicznych badaniach żywności. Med. Weter. 2016, 72, 162–167. [Google Scholar]
- Goderska, K. Biosynthesis of lactobionic acid in whey-containing medium by microencapsulated and free bacteria of Pseudomonas taetrolens. Indian J. Microbiol. 2021, 61, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Goderska, K.; Kozłowski, P. Evaluation of microencapsulated synbiotic preparations containing lactobionic acid. Appl. Biochem. Biotechnol. 2021, 193, 3483–3495. [Google Scholar] [CrossRef] [PubMed]
- Niamah, A.K.; Al-Manhel, A.J.; Al-Sahlany, S.T.G. Effect microencapsulation of Saccharomyces boulardii on viability of yeast in vitro and ice cream. Carpathian J. Food Sci. Technol. 2018, 10, 100–107. [Google Scholar]
- Goderska, K.; Czarnecki, Z. Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains. Pol. J. Microbiol. 2008, 57, 135–140. [Google Scholar] [PubMed]
- Ratajczak, K.; Juzwa, W.; Piotrowska-Cyplik, A. Optimization of the flow cytometry method of detection, quantification and qualification of microorganisms in carrot juice. Food Chem. 2024, 460 Pt 2, 140606. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, T.M.; Ożarowski, M. Plant Organic Acids as Natural Inhibitors of Foodborne Pathogens. Appl. Sci. 2024, 14, 6340. [Google Scholar] [CrossRef]
Microbial Species (Two Strains from Each) | LBA MIC (mg/mL) |
---|---|
Staphylococcus aureus | 2 |
S. aureus methicillin-resistant (MRSA) | 2–5 |
S. epidermidis | 5 |
Escherichia coli | 5 |
Pseudomonas aeruginosa | 5 |
Proteus mirabilis | 5 |
Candida albicans | 2–5 |
C. tropicalis | >5 |
C. parapsilosis | 5 |
C. glabrata | >5 |
C. krusei | >5 |
Rhodotorula rubra | 5 |
Time [h] | Lactose [g/L] ± SD | Lactobionic Acid ± SD [g/L] |
---|---|---|
0 | 5.62 ± 0.01 | 0.00 ± 0 |
15 | 5.54 ± 0.01 | 0.00 ± 0 |
21 | 5.43 ± 0.01 | 0.00 ± 0 |
26 | 4.96 ± 0.01 | 0.54 ± 0.001 |
41 | 4.76 ± 0.01 | 0.61 ± 0.002 |
45 | 4.35 ± 0.01 | 0.46 ± 0.001 |
49 | 3.44 ± 0.007 | 0.00 ± 0 |
65 | 1.64 ± 0.003 | 0.00 ± 0 |
74 | 1.39 ± 0.003 | 0.00 ± 0 |
90 | 0.63 ± 0.002 | 1.05 ± 0.003 |
98 | 0.36 ± 0.001 | 0.78 ± 0.002 |
115 | 0.27 ± 0.001 | 0.42 ± 0.001 |
123 | 0.00 ± 0 | 0.12 ± 0.001 |
138 | 0.00 ± 0 | 0.00 ± 0 |
Time [h] | Lactose [g/L] | Lactobionic Acid [g/L] |
---|---|---|
0 | 8.57 ± 0.015 | 0.52 ± 0.001 |
3 | 7.86 ± 0.016 | 0.47 ± 0.001 |
18 | 7.73 ± 0.017 | 0.00 ± 0 |
22 | 7.53 ± 0.016 | 0.76 ± 0.002 |
27 | 5.37 ± 0.014 | 0.74 ± 0.002 |
42 | 3.35 ± 0.012 | 0.00 ± 0 |
46 | 1.10 ± 0.005 | 0.00 ± 0 |
51 | 1.60 ± 0.007 | 0.00 ± 0 |
73 | 0.50 ± 0.001 | 0.00 ± 0 |
97 | 0.48 ± 0.001 | 0.00 ± 0 |
116 | 0.29 ± 0.001 | 0.00 ± 0 |
Time [h] | Lactose [g/L] | Lactobionic Acid [g/L] |
---|---|---|
0 | 18.75 ± 0.03 | 0.00 ± 0 |
19 | 20.90 ± 0.031 | 0.00 ± 0 |
22 | 21.80 ± 0.031 | 0.00 ± 0 |
25 | 21.11± 0.032 | 0.00 ± 0 |
45 | 20.29 ± 0.03 | 0.00 ± 0 |
49 | 10.93 ± 0.01 | 0.70 ± 0.002 |
51 | 6.38 ± 0.007 | 0.73 ± 0.002 |
69 | 5.52 ± 0.006 | 0.00 ± 0 |
71 | 5.00 ± 0.005 | 0.00 ± 0 |
91 | 17.57 ± 0.007 | 1.36 ± 0.005 |
95 | 8.81 ± 0.035 | 0.94 ± 0.002 |
114 | 4.03 ± 0.004 | 0.00 ± 0 |
Time [h] | Lactose [g/L] | Lactobionic Acid [g/L] |
---|---|---|
0 | 14.97 ± 0.032 | 0.00 ± 0 |
21 | 14.82 ± 0.031 | 0.39 ± 0.001 |
45 | 9.41 ± 0.018 | 0.41 ± 0.001 |
48 | 5.38 ± 0.006 | 0.47 ± 0.002 |
54 | 3.37 ± 0.004 | 2.74 ± 0.006 |
70 | 2.53 ± 0.003 | 2.37 ± 0.006 |
74 | 1.64 ± 0.0015 | 1.43 ± 0.003 |
94 | 1.53 ± 0.014 | 0.98 ± 0.002 |
99 | 1.34 ± 0.012 | 0.00 ± 0 |
118 | 0.98 ± 0.001 | 0.00 ± 0 |
142 | 0.00 ± 0 | 0.00 ± 0 |
147 | 0.00 ± 0 | 0.00 ± 0 |
166 | 0.00 ± 0 | 0.00 ± 0 |
169 | 6.33 ± 0.007 | 0.00± 0 |
190 | 4.44 ± 0.004 | 0.00 ± 0 |
214 | 2.25 ± 0.002 | 0.82 ± 0.002 |
238 | 1.55± 0.001 | 0.81 ± 0.002 |
262 | 1.47 ± 0.001 | 0.79 ± 0.002 |
286 | 1.36 ± 0.001 | 0.77 ± 0.002 |
310 | 1.23 ± 0.001 | 0.74 ± 0.002 |
334 | 1.04 ± 0.001 | 0.69 ± 0.001 |
Time [h] | Lactose [g/L] | Lactobionic Acid [g/L] |
---|---|---|
0 | 16.52 ± 0.034 | 0.46 ± 0.001 |
23 | 11.94 ± 0.021 | 0.40 ± 0.001 |
47 | 1.19 ± 0.002 | 0.34 ± 0.001 |
73 | 1.10 ± 0.002 | 0.00 ± 0 |
95 | 1.10 ± 0.002 | 0.00 ± 0 |
121 | 1.08 ± 0.002 | 0.00 ± 0 |
143 | 0.96 ± 0.002 | 0.00 ± 0 |
169 | 0.78 ± 0.001 | 0.00 ± 0 |
193 | 0.00 ± 0 | 0.00 ± 0 |
194 | 6.36 ± 0.015 | 0.00 ± 0 |
220 | 3.14 ± 0.007 | 0.00 ± 0 |
247 | 0.99 ± 0.002 | 0.80 ± 0.002 |
261 | 0.54 ± 0.001 | 0.74 ± 0.002 |
284 | 0.00 ± 0 | 0.00 ± 0 |
Time [h] | Lactose [g/L] | Lactobionic Acid [g/L] |
---|---|---|
0 | 18.46 ± 0.031 | 0.00 ± 0 |
28 | 8.60 ± 0.016 | 0.98 ± 0.002 |
44 | 8.95 ± 0.016 | 1.50 ± 0.003 |
67 | 5.57 ± 0.005 | 1.39 ± 0.003 |
95 | 4.29 ± 0.004 | 0.70 ± 0.001 |
118 | 4.23 ± 0.004 | 0.68 ± 0.001 |
141 | 4.54 ± 0.004 | 0.55 ± 0.001 |
167 | 3.66 ± 0.003 | 0.41 ± 0.001 |
187 | 3.55 ± 0.002 | 0.38 ± 0.001 |
210 | 3.34 ± 0.007 | 0.31 ± 0.001 |
231 | 3.10 ± 0.007 | 0.21 ± 0.001 |
252 | 12.24 ± 0.004 | 0.15 ± 0.001 |
275 | 12.20 ± 0.004 | 0.00 ± 0 |
302 | 12.12 ± 0.004 | 0.00 ± 0 |
232 | 11.69 ± 0.003 | 0.00 ± 0 |
347 | 11.54 ± 0.003 | 0.00 ± 0 |
378 | 11.22 ± 0.002 | 0.00 ± 0 |
396 | 11.26 ± 0.002 | 0.00 ± 0 |
421 | 11.16 ± 0.002 | 0.00 ± 0 |
Time [h] | Lactose [g/L] | Lactobionic Acid [g/L] |
---|---|---|
0 | 24.85 ± 0.068 | 0.70 ± 0.001 |
24 | 25.11 ± 0.070 | 1.72 ± 0.003 |
44 | 24.76 ± 0.067 | 1.61 ± 0.003 |
65 | 23.99 ± 0.065 | 0.95 ± 0.001 |
89 | 23.93 ± 0.065 | 0.51 ± 0.001 |
113 | 20.68 ± 0.051 | 0.00 ± 0 |
138 | 20.93 ± 0.052 | 0.00± 0 |
Time [h] | Lactose [g/L] | Lactobionic Acid [g/L] |
---|---|---|
0 | 39.90 ± 0.1 | 0.00 ± 0 |
8 | 45.18 ± 0.110 | 1.32 ± 0.002 |
25 | 39.79 ± 0.1 | 6.75 ± 0.005 |
54 | 24.85 ± 0.02 | 28.66 ± 0.01 |
80 | 23.87 ± 0.019 | 34.54 ± 0.02 |
102 | 21.22 ± 0.017 | 37.42 ± 0.03 |
Time [h] | Lactose [g/L] | Lactobionic Acid [g/L] |
---|---|---|
0 | 44.68 ± 0.12 | 0.79 ± 0.001 |
21 | 41.59 ± 0.105 | 1.43 ± 0.002 |
45 | 32.22 ± 0.061 | 1.35 ± 0.002 |
71 | 25.60 ± 0.032 | 1.23 ± 0.002 |
93 | 24.67 ± 0.031 | 1.23 ± 0.002 |
117 | 22.39 ± 0.028 | 1.22 ± 0.002 |
141 | 15.63± 0.030 | 1.98 ± 0.003 |
166 | 18.40 ± 0.033 | 1.17 ± 0.002 |
SAMPLES | DEAD | SD/2 | MID-ACTIVE_1 | SD/2 | MID-ACTIVE_2 | SD/2 | ACTIVE | SD/2 |
---|---|---|---|---|---|---|---|---|
1 day | 14.3 | 0.1 | 81.4 | 0.1 | 0.5 | 0.0 | 0.0 | 0.0 |
1 day (2nd sample) | 19.1 | 0.2 | 76.5 | 0.5 | 1.2 | 0.1 | 0.1 | 0.0 |
2 day | 79.4 | 0.3 | 8.3 | 0.1 | 7.1 | 0.3 | 0.3 | 0.0 |
3 day | 64.4 | 0.2 | 28.7 | 0.1 | 1.3 | 0.2 | 0.1 | 0.0 |
4 day | 54.5 | 0.3 | 30.7 | 0.3 | 8.1 | 0.0 | 3.5 | 0.3 |
5 day | 56.9 | 0.3 | 35.4 | 0.3 | 5.6 | 0.1 | 0.4 | 0.0 |
6 day | 39.4 | 0.2 | 46.9 | 0.1 | 7.8 | 0.1 | 3.0 | 0.0 |
7 day | 36.5 | 0.1 | 53.7 | 0.3 | 5.3 | 0.1 | 1.2 | 0.0 |
8 day | 18.4 | 0.1 | 47.4 | 0.5 | 23.5 | 0.8 | 7.0 | 0.3 |
9 day | 16.7 | 0.2 | 33.5 | 0.1 | 25.6 | 0.4 | 20.1 | 0.6 |
10 day | 10.5 | 0.0 | 45.8 | 0.3 | 16.6 | 0.3 | 14.0 | 0.3 |
11 day | 6.0 | 0.1 | 14.1 | 0.1 | 30.1 | 0.5 | 39.0 | 0.4 |
12 day | 23.4 | 0.4 | 22.8 | 0.3 | 23.9 | 0.6 | 20.5 | 0.6 |
13 day | 15.2 | 0.2 | 28.3 | 0.2 | 13.5 | 0.2 | 32.3 | 0.5 |
14 day | 19.9 | 0.0 | 25.4 | 0.4 | 19.5 | 0.1 | 25.0 | 0.3 |
15 day | 19.0 | 0.6 | 50.0 | 0.3 | 7.4 | 0.2 | 10.5 | 0.2 |
16 day | 26.1 | 0.3 | 31.9 | 0.7 | 18.4 | 0.1 | 12.0 | 0.2 |
17 day | 22.9 | 0.4 | 28.6 | 0.4 | 15.2 | 0.2 | 23.2 | 0.6 |
17 day (2nd sample) | 35.7 | 0.3 | 21.5 | 0.2 | 22.8 | 0.4 | 14.3 | 0.4 |
18 day | 24.2 | 0.2 | 27.4 | 0.2 | 18.7 | 0.4 | 19.7 | 0.4 |
19 day | 24.7 | 0.2 | 27.5 | 0.3 | 19.6 | 0.3 | 18.9 | 0.2 |
Strain | Microcapsules Before Digestion [cfu/g] | Broth Medium After Stomach [cfu/mL] | Broth Medium After Small Intestine [cfu/mL] | Microcapsules After Digestion [cfu/g] |
---|---|---|---|---|
B. bifidum DSM 20239 | 2.2 × 109 | 1.0 × 103 | 2.0 × 104 | 7.0 × 104 |
B. bifidum DSM 20082 | 2.08 × 108 | 4.0 × 102 | 1.9 × 106 | 6.5 × 106 |
B. bifidum DSM 20215 | 1.9 × 109 | 2.5 × 102 | 3.0 × 102 | 7.6 × 104 |
B. bifidum DSM 20456 | 2.8 × 108 | 4.25 × 101 | 3.75 × 101 | 2.0 × 105 |
Strain | Concentration of Lactobionic Acid [%] |
---|---|
Bifidobacterium bifidum DSM 20239 | 2% |
Bifidobacterium bifidum DSM 20082 | 2% |
Bifidobacterium bifidum DSM 20215 | 2% |
Bifidobacterium bifidum DSM 20456 | 2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goderska, K.; Juzwa, W.; Karpiński, T.M. Quantitative Analysis of Lactobionic Acid in Bioreactor Cultures and Selected Biological Activities. Molecules 2024, 29, 5400. https://doi.org/10.3390/molecules29225400
Goderska K, Juzwa W, Karpiński TM. Quantitative Analysis of Lactobionic Acid in Bioreactor Cultures and Selected Biological Activities. Molecules. 2024; 29(22):5400. https://doi.org/10.3390/molecules29225400
Chicago/Turabian StyleGoderska, Kamila, Wojciech Juzwa, and Tomasz M. Karpiński. 2024. "Quantitative Analysis of Lactobionic Acid in Bioreactor Cultures and Selected Biological Activities" Molecules 29, no. 22: 5400. https://doi.org/10.3390/molecules29225400
APA StyleGoderska, K., Juzwa, W., & Karpiński, T. M. (2024). Quantitative Analysis of Lactobionic Acid in Bioreactor Cultures and Selected Biological Activities. Molecules, 29(22), 5400. https://doi.org/10.3390/molecules29225400