Mechanistic Insights into the Reaction of Wulfenite with Aqueous Sodium Sulfide Solution and Its Industrial Implications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dissolution/Leaching Behavior of Wulfenite
2.2. Phase Composition Determination
2.3. Surface Chemical Characterization
2.4. Surface Morphology Observations
2.5. Reaction Mechanism and the Associated Industrial Implications
3. Materials and Methods
3.1. Materials
3.2. Sulfidization Leaching Procedure
3.3. Characterizations
4. Conclusions
- (1)
- Wulfenite sulfidization proceeds through the ICDP mechanism. In the presence of sodium sulfide solution, the dissolution of the less stable PbMoO4 and the precipitation of the more stable PbS phase are coupled at the wulfenite–sodium sulfide aqueous solution interface.
- (2)
- For the process of PbS precipitation, PbS nanoparticles grow on the surface of wulfenite through three-dimensional heterogeneous nucleation and growth.
- (3)
- Sulfidized wulfenite particles have a PbMoO4/PbS core–shell structure. The PbS shell layer can restrict the diffusion of the reactant and the product, thereby limiting further reactions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Sun, T.; Zhou, Y.; Li, Z.; Wei, S. Evaluation of tensile property and strengthening mechanism of molybdenum alloy bars doped with different ultrafine oxides. Trans. Nonferrous Met. Soc. China 2023, 33, 3083–3099. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, Z.; Li, S.; He, J.; Fam, Y.; Song, J. Electrochemical behavior and cathodic nucleation mechanism of molybdenum ions in NaCl-KCl. Sep. Purif. Technol. 2024, 329, 125121. [Google Scholar] [CrossRef]
- Hu, X.; Qian, J.; Ying, Y.; Li, X.; Li, T.; Li, J. Approaches to electrodeposit molybdenum from ionic liquid. Rare Met. 2023, 42, 2439–2446. [Google Scholar] [CrossRef]
- Hua, W.; Sun, H.; Xu, F.; Wang, J. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39, 335–351. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Q.; Wang, D.; Yang, S.; He, K. Release mechanism of impurity potassium in molybdenum concentrate treatment process. Trans. Nonferrous Met. Soc. China 2023, 33, 917–928. [Google Scholar] [CrossRef]
- Li, J.; Deng, W.; Liu, Z.; Pei, B.; Ning, S.; Cai, Z.; Liu, R. Detrimental effect of dissolved natural organic matter on molybdenite flotation. Miner. Eng. 2023, 193, 108006. [Google Scholar] [CrossRef]
- Wu, J.; Li, S.; Yang, B.; Shao, H.; Song, S.; Jia, F.; Quintana, M. Improving the flotation of molybdenite fines based on the targeted regulation of edges using a novel chelating collector. Colloids Surf. A 2024, 703, 135354. [Google Scholar] [CrossRef]
- Chen, J.; Peng, Y. Electrochemical and surface properties of sulphidised molybdate minerals. Appl. Surf. Sci. 2022, 592, 153358. [Google Scholar] [CrossRef]
- Xie, K.; Wang, H.; Wang, S. Direct leaching of molybdenum and lead from lean wulfenite raw ore. Trans. Nonferrous Met. Soc. China 2019, 29, 2638–2645. [Google Scholar] [CrossRef]
- Song, B.; Tao, D.; Li, P.; Wang, X.; Ran, J. Cleavage nature and surface appearances of wulfenite by first-principles calculations and experimental measurement. Results Phys. 2020, 16, 102849. [Google Scholar] [CrossRef]
- Bissengaliyeva, M.R.; Ogorodova, L.P.; Vigasina, M.F.; Mel’chakova, L.V. Enthalpy of formation of wulfenite (natural lead molybdate). Russ. J. Phys. Chem. 2013, 87, 163–165. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, L.; Zhang, W.; Jiang, L.; Li, Y. Research Status of Molybdenum Extraction from Wulfenite. China Molybdenum Ind. 2021, 45, 4. (In Chinese) [Google Scholar] [CrossRef]
- Song, B.; Zhu, Y.; Ran, B.; Han, J.; Han, B.; Sun, X.; Zhou, Y. Flotation assessment and adsorption mechanism of wulfenite with three anionic collectors. Sep. Sci. Technol. 2023, 58, 257–265. [Google Scholar] [CrossRef]
- Liu, R.; Liu, D.; Li, J.; Li, J.; Liu, Z.; Jia, X.; Yang, S.; Li, J.; Ning, S. Sulfidization mechanism in malachite flotation: A heterogeneous solid-liquid reaction that yields CuxSy phases grown on malachite. Miner. Eng. 2020, 154, 106420. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Liu, D.; Liu, R.; Liu, Z.; Jia, X.; Chang, T. Sulfidization mechanism in the flotation of cerussite: A heterogeneous solid-liquid reaction that yields PbCO3/PbS core-shell particles. Miner. Eng. 2020, 153, 106400. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Liu, Z.; Ning, S.; Liu, R. Interface-coupled PbSO4 dissolution and PbS precipitation and its effect on sulfidization flotation of anglesite. Trans. Nonferrous Met. Soc. China 2023, 33, 3503–3513. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, S.; Feng, Q.; Zhang, S. Surface characterization of azurite modified with sodium sulfide and its response to flotation mechanism. Sep. Purif. Technol. 2020, 242, 116760. [Google Scholar] [CrossRef]
- Han, G.; Wen, S.; Wan, H.; Feng, Q. Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide. Trans. Nonferrous Met. Soc. China 2021, 31, 3564–3578. [Google Scholar] [CrossRef]
- Zhou, X.; Song, X.; Gao, Z. Research on comprehensive recovery of wulfenite polymetallic ore in Henan. Min. Mettal. Eng. 2011, 31, 56–59. (In Chinese) [Google Scholar]
- Chen, J.; Wei, Z.; Zhu, X. Experimental study on a new flotation technique for slimy wulfenite with high limonite content. Min. Res. Dev. 2017, 27, 37–39. (In Chinese) [Google Scholar] [CrossRef]
- Ma, F.; Zhao, Z.; Cao, C.; Zhang, G.; Huo, G.; Chen, A.; Li, H. Thermodynamic analysis on sodium sulfide decomposition of wulfenite. China Molybdenum Ind. 2008, 32, 4. [Google Scholar] [CrossRef]
- Crane, M.; Frost, R.; Williams, P.; Kloprogge, J. Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite-I4), stolzite, scheelite, wolframite and wulfenite. J Raman Spectrosc. 2002, 33, 62–66. [Google Scholar] [CrossRef]
- Vilaplana, R.; Gomis, O.; Manjon, F.J.; Rodriguez-Hernandez, P.; Munoz, A.; Errandonea, D.; Achary, S.N.; Tyagi, A.K. Raman scattering study of bulk and nanocrystalline PbMoO4 at high pressures. J. Appl. Phys. 2012, 112, 103510. [Google Scholar] [CrossRef]
- Zheng, Y.; Jin, X.; Shi, J.; Xie, H.; Xu, H.; Zhang, T.; Wang, Y.; Li, C. Boosting the photocarrier separation of PbMoO4 through facet collaboration. ACS Appl. Energy Mater. 2021, 4, 14287–14294. [Google Scholar] [CrossRef]
- Chen, W.; Chen, T.; Bu, X.; Chen, F.; Ding, Y.; Zhong, C.; Deng, S.; Song, Y. The selective flotation of chalcopyrite against galena using alginate as a depressant. Miner. Eng. 2019, 141, 105848. [Google Scholar] [CrossRef]
- Liu, R.; Liu, D.; Li, J.; Liu, S.; Liu, Z.; Gao, L.; Jia, X.; Ao, S. Improved understanding of the sulfidization mechanism in cerussite flotation: An XPS, ToF-SIMS and FESEM investigation. Colloids Surf. 2020, 595, 124508. [Google Scholar] [CrossRef]
- Wang, X.; Qin, W.; Jiao, F.; Wang, D. The galvanic interaction enhanced the flotation separation of chalcopyrite and galena with humic acid as galena depressant. Miner. Eng. 2023, 201, 108197. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Putnis, C.V.; Putnis, A. Coupled dissolution and precipitation at mineral–fluid interfaces. Chem. Geol. 2014, 383, 132–146. [Google Scholar] [CrossRef]
- Skierszkan, E.; Mayer, K.; Weis, D.; Roberston, J.; Beckie, R. Molybdenum stable isotope fractionation during the precipitation of powellite (CaMoO4) and wulfenite (PbMoO4). Geochim. Cosmochim. Acta 2019, 244, 383–402. [Google Scholar] [CrossRef]
- Wu, K.; Tse, E.; Shang, C.; Guo, Z. Nucleation and growth in solution synthesis of nanostructures–From fundamentals to advanced applications. Prog. Mater. Sci. 2022, 123, 100821. [Google Scholar] [CrossRef]
- Tang, H.; Jiang, F.; Hu, Y.; Han, H.; Wang, L.; Sun, W. Flotability of laurionite and its response to sulfidization flotation. Miner. Eng. 2020, 148, 106183. [Google Scholar] [CrossRef]
- Achary, S.N.; Patwe, S.J.; Vishwanath, A.; Wajhal, S.; Krishna, P.S.R.; Tyagi, A.K. Evolution of crystal structure of PbMoO4 between 5 and 300 K: A low temperature powder neutron diffraction study. Mater. Chem. Phys. 2021, 260, 124111. [Google Scholar] [CrossRef]
- Yuan, K.; De Andrade, V.; Feng, Z.; Sturchio, N.C.; Lee, S.S.; Fenter, P. Pb2+–calcite interactions under far-from-equilibrium conditions: Formation of micropyramids and pseudomorphic growth of cerussite. J. Phys. Chem. C 2018, 122, 2238–2247. [Google Scholar] [CrossRef]
Pb (wt.%) | Mo (wt.%) | Purity (%) on Pb Basis. | Purity (%) on Mo Basis. | |
---|---|---|---|---|
Theoretical value | 56.43 | 26.13 | 100.00 | 100.00 |
Analyzed value | 54.64 | 25.43 | 96.83 | 97.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Li, J.; Ning, S.; Liu, R. Mechanistic Insights into the Reaction of Wulfenite with Aqueous Sodium Sulfide Solution and Its Industrial Implications. Molecules 2024, 29, 5404. https://doi.org/10.3390/molecules29225404
Cai Z, Li J, Ning S, Liu R. Mechanistic Insights into the Reaction of Wulfenite with Aqueous Sodium Sulfide Solution and Its Industrial Implications. Molecules. 2024; 29(22):5404. https://doi.org/10.3390/molecules29225404
Chicago/Turabian StyleCai, Zi, Jialei Li, Shuai Ning, and Ruizeng Liu. 2024. "Mechanistic Insights into the Reaction of Wulfenite with Aqueous Sodium Sulfide Solution and Its Industrial Implications" Molecules 29, no. 22: 5404. https://doi.org/10.3390/molecules29225404
APA StyleCai, Z., Li, J., Ning, S., & Liu, R. (2024). Mechanistic Insights into the Reaction of Wulfenite with Aqueous Sodium Sulfide Solution and Its Industrial Implications. Molecules, 29(22), 5404. https://doi.org/10.3390/molecules29225404