DNA Methylation in the CYP3A Distal Regulatory Region (DRR) Is Associated with the Expression of CYP3A5 and CYP3A7 in Human Liver Samples
Abstract
:1. Introduction
2. Results
2.1. Methylation of the CpG Sites Within the DRR
2.2. Associations Between the DNA Methylation of the DRR and the Expression of the CYP3As
2.3. Inter-Person Variability in the Composition of CYP3A Pools
2.4. Changes in the DRR DNA Methylation Status During iPSC-to-Hepatocyte Differentiation
3. Discussion
4. Materials and Methods
4.1. Liver Sample Preparation
4.2. CRISPRi and Cell Culture
4.3. Human iPSC-to-Hepatocyte Differentiation
4.4. Measuring DNA Methylation
4.5. Liver Gene Expression, Genotyping, and Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.S.; Tabor, H.K.; Johnson, A.D.; Snively, B.M.; Assimes, T.L.; Auer, P.L.; Ioannidis, J.P.; Peters, U.; Robinson, J.G.; Sucheston, L.E.; et al. Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset. Hum. Mol. Genet. 2014, 23, 1957–1963. [Google Scholar] [CrossRef] [PubMed]
- Hustert, E.; Haberl, M.; Burk, O.; Wolbold, R.; He, Y.Q.; Klein, K.; Nuessler, A.C.; Neuhaus, P.; Klattig, J.; Eiselt, R.; et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001, 11, 773–779. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenom. J. 2011, 11, 274–286. [Google Scholar] [CrossRef]
- Wang, D.; Sadee, W. CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing. Pharmacogenet. Genom. 2016, 26, 40–43. [Google Scholar] [CrossRef]
- Burk, O.; Tegude, H.; Koch, I.; Hustert, E.; Wolbold, R.; Glaeser, H.; Klein, K.; Fromm, M.F.; Nuessler, A.K.; Neuhaus, P.; et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J. Biol. Chem. 2002, 277, 24280–24288. [Google Scholar] [CrossRef]
- Özdemir, V.; Kalow, W.; Tang, B.K.; Paterson, A.D.; Walker, S.E.; Endrenyi, L.; Kashuba, A.D. Evaluation of the genetic component of variability in CYP3A4 activity: A repeated drug administration method. Pharmacogenetics 2000, 10, 373–388. [Google Scholar] [CrossRef]
- Collins, J.M.; Wang, D. Co-expression of drug metabolizing cytochrome P450 enzymes and estrogen receptor alpha (ESR1) in human liver: Racial differences and the regulatory role of ESR1. Drug Metab. Pers. Ther. 2021, 36, 205–214. [Google Scholar] [CrossRef]
- Wang, D.; Lu, R.; Rempala, G.; Sadee, W. Ligand-Free Estrogen Receptor α (ESR1) as Master Regulator for the Expression of CYP3A4 and Other Cytochrome P450 Enzymes in the Human Liver. Mol. Pharmacol. 2019, 96, 430–440. [Google Scholar] [CrossRef]
- Swart, M.; Dandara, C. Genetic variation in the 3′-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: Potential effects on regulation by microRNA and pharmacogenomics relevance. Front. Genet. 2014, 5, 167. [Google Scholar] [CrossRef] [PubMed]
- Tantawy, M.; Collins, J.M.; Wang, D. Genome-wide microRNA profiles identify miR-107 as a top miRNA associating with expression of the CYP3As and other drug metabolizing cytochrome P450 enzymes in the liver. Front. Pharmacol. 2022, 13, 943538. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, S.; Wen, X.; Sadee, W.; Wang, D.; Yang, S.; Li, L. Transcription factors and ncRNAs associated with CYP3A expression in human liver and small intestine assessed with weighted gene co-expression network analysis. Biomedicines 2022, 10, 3061. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Nie, Y.L.; Li, J.F.; Meng, X.G.; Yang, W.H.; Chen, Y.L.; Wang, S.J.; Ma, X.; Kan, Q.C.; Zhang, L.R. Developmental regulation of CYP3A4 and CYP3A7 in Chinese Han population. Drug Metab. Pharmacokinet. 2016, 31, 433–444. [Google Scholar] [CrossRef]
- Kacevska, M.; Ivanov, M.; Wyss, A.; Kasela, S.; Milani, L.; Rane, A.; Ingelman-Sundberg, M. DNA methylation dynamics in the hepatic CYP3A4 gene promoter. Biochimie 2012, 94, 2338–2344. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Lu, C. The interplay between DNA and histone methylation: Molecular mechanisms and disease implications. EMBO Rep. 2021, 22, e51803. [Google Scholar] [CrossRef]
- Vyhlidal, C.A.; Bi, C.; Ye, S.Q.; Leeder, J.S. Dynamics of Cytosine Methylation in the Proximal Promoters of CYP3A4 and CYP3A7 in Pediatric and Prenatal Livers. Drug Metab. Dispos. 2016, 44, 1020–1026. [Google Scholar] [CrossRef]
- Sim, S.C.; Edwards, R.J.; Boobis, A.R.; Ingelman-Sundberg, M. CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet. Genom. 2005, 15, 625–631. [Google Scholar] [CrossRef]
- Kreibich, E.; Kleinendorst, R.; Barzaghi, G.; Kaspar, S.; Krebs, A.R. Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol. Cell 2023, 83, 787–802.e9. [Google Scholar] [CrossRef]
- Dor, Y.; Cedar, H. Principles of DNA methylation and their implications for biology and medicine. Lancet 2018, 392, 777–786. [Google Scholar] [CrossRef]
- Goodwin, B.; Hodgson, E.; Liddle, C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 1999, 56, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, C.P.; Jover, R.; Teresa Donato, M.; Castell, J.V.; Jose Gomez-Lechon, M. Transcriptional regulation and expression of CYP3A4 in hepatocytes. Curr. Drug Metab. 2007, 8, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, K.; Saito, T.; Takahashi, Y.; Ozeki, T.; Kiyotani, K.; Fujieda, M.; Yamazaki, H.; Kunitoh, H.; Kamataki, T. Identification of a novel polymorphic enhancer of the human CYP3A4 gene. Mol. Pharmacol. 2004, 65, 326–334. [Google Scholar] [CrossRef]
- Tegude, H.; Schnabel, A.; Zanger, U.M.; Klein, K.; Eichelbaum, M.; Burk, O. Molecular mechanism of basal CYP3A4 regulation by hepatocyte nuclear factor 4alpha: Evidence for direct regulation in the intestine. Drug Metab. Dispos. 2007, 35, 946–954. [Google Scholar] [CrossRef]
- Collins, J.M.; Wang, D. Cis-acting regulatory elements regulating CYP3A4 transcription in human liver. Pharmacogenet. Genom. 2020, 30, 107–116. [Google Scholar] [CrossRef]
- Collins, J.M.; Nworu, A.C.; Mohammad, S.J.; Li, L.; Li, C.; Li, C.; Schwendeman, E.; Cefalu, M.; Abdel-Rasoul, M.; Sun, J.W.; et al. Regulatory variants in a novel distal enhancer regulate the expression of CYP3A4 and CYP3A5. Clin. Transl. Sci. 2022, 15, 2720–2731. [Google Scholar] [CrossRef]
- Larson, M.H.; Gilbert, L.A.; Wang, X.; Lim, W.A.; Weissman, J.S.; Qi, L.S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 2013, 8, 2180–2196. [Google Scholar] [CrossRef]
- Wang, D.; Chen, H.; Momary, K.M.; Cavallari, L.H.; Johnson, J.A.; Sadée, W. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 2008, 112, 1013–1021. [Google Scholar] [CrossRef]
- Ohtsuki, S.; Schaefer, O.; Kawakami, H.; Inoue, T.; Liehner, S.; Saito, A.; Ishiguro, N.; Kishimoto, W.; Ludwig-Schwellinger, E.; Ebner, T.; et al. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: Comparison with mRNA levels and activities. Drug Metab. Dispos. 2012, 40, 83–92. [Google Scholar] [CrossRef]
- Ardisasmita, A.I.; Schene, I.F.; Joore, I.P.; Kok, G.; Hendriks, D.; Artegiani, B.; Mokry, M.; Nieuwenhuis, E.E.; Fuchs, S.A. A comprehensive transcriptomic comparison of hepatocyte model systems improves selection of models for experimental use. Commun. Biol. 2022, 5, 1094. [Google Scholar] [CrossRef]
- Klyushova, L.S.; Perepechaeva, M.L.; Grishanova, A.Y. The Role of CYP3A in Health and Disease. Biomedicines 2022, 10, 2686. [Google Scholar] [CrossRef] [PubMed]
- Loyfer, N.; Magenheim, J.; Peretz, A.; Cann, G.; Bredno, J.; Klochendler, A.; Fox-Fisher, I.; Shabi-Porat, S.; Hecht, M.; Pelet, T.; et al. A DNA methylation atlas of normal human cell types. Nature 2023, 613, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhang, G.; Mu, X.; Feng, C.; Zhang, Q.; Song, S.; Zhang, Y.; Yin, M.; Zhang, H.; Tang, H.; et al. eRNAbase: A comprehensive database for decoding the regulatory eRNAs in human and mouse. Nucleic Acids Res. 2024, 52, D81–D91. [Google Scholar] [CrossRef]
- Pulakanti, K.; Pinello, L.; Stelloh, C.; Blinka, S.; Allred, J.; Milanovich, S.; Kiblawi, S.; Peterson, J.; Wang, A.; Yuan, G.C.; et al. Enhancer transcribed RNAs arise from hypomethylated, Tet-occupied genomic regions. Epigenetics 2013, 8, 1303–1320. [Google Scholar] [CrossRef]
- Sartorelli, V.; Lauberth, S.M. Enhancer RNAs are an important regulatory layer of the epigenome. Nat. Struct. Mol. Biol. 2020, 27, 521–528. [Google Scholar] [CrossRef]
- Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C.; et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 2014, 159, 647–661. [Google Scholar] [CrossRef]
- Vega-Benedetti, A.F.; Loi, E.; Moi, L.; Zavattari, P. DNA methylation alterations at RE1-silencing transcription factor binding sites and their flanking regions in cancer. Clin. Epigenet. 2023, 15, 98. [Google Scholar] [CrossRef]
- Yin, Y.; Morgunova, E.; Jolma, A.; Kaasinen, E.; Sahu, B.; Khund-Sayeed, S.; Das, P.K.; Kivioja, T.; Dave, K.; Zhong, F.; et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2017, 356, eaaj2239. [Google Scholar] [CrossRef]
- Xuan Lin, Q.X.; Sian, S.; An, O.; Thieffry, D.; Jha, S.; Benoukraf, T. MethMotif: An integrative cell specific database of transcription factor binding motifs coupled with DNA methylation profiles. Nucleic Acids Res. 2019, 47, D145–D154. [Google Scholar] [CrossRef]
- Carithers, L.J.; Ardlie, K.; Barcus, M.; Branton, P.A.; Britton, A.; Buia, S.A.; Compton, C.C.; DeLuca, D.S.; Peter-Demchok, J.; Gelfand, E.T.; et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv. Biobank 2015, 13, 311–319. [Google Scholar] [CrossRef]
- Ko, J.Y.; Oh, S.; Yoo, K.H. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development. Mol. Cells 2017, 40, 169–177. [Google Scholar] [PubMed]
- Spruijt, C.G.; Gnerlich, F.; Smits, A.H.; Pfaffeneder, T.; Jansen, P.W.; Bauer, C.; Münzel, M.; Wagner, M.; Müller, M.; Khan, F.; et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013, 152, 1146–1159. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.; Padilha, E.C.; Shah, P.; Huang, R.; Sakamuru, S.; Gonzalez, E.; Ye, L.; Hu, X.; Henderson, M.J.; Xia, M.; et al. Identification of Selective CYP3A7 and CYP3A4 Substrates and Inhibitors Using a High-Throughput Screening Platform. Front. Pharmacol. 2022, 13, 899536. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Antona, C.; Savieo, J.L.; Lauschke, V.M.; Sangkuhl, K.; Drögemöller, B.I.; Wang, D.; van Schaik, R.H.; Gilep, A.A.; Peter, A.P.; Boone, E.C.; et al. PharmVar GeneFocus: CYP3A5. Clin. Pharmacol. Ther. 2022, 112, 1159–1171. [Google Scholar] [CrossRef]
- Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [Google Scholar] [CrossRef]
- Sanson, K.R.; Hanna, R.E.; Hegde, M.; Donovan, K.F.; Strand, C.; Sullender, M.E.; Vaimberg, E.W.; Goodale, A.; Root, D.E.; Piccioni, F.; et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 2018, 9, 5416. [Google Scholar] [CrossRef]
- Ran, F.A.F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. JOSS 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kassambara, A. ggpubr: ‘ggplot2′ Based Publication Ready Plots. R Package Version 0.5.0. 2023. Available online: https://rpkgs.datanovia.com/ggpubr/ (accessed on 1 September 2024).
CpG Site | 1b. | 2b | 3b |
---|---|---|---|
2b | r = 0.222, p = 0.064 | ||
3b | r = 0.295, p = 0.013 | r = 0.272, p = 0.022 | |
5e | r = 0.574, p = 2.04 × 10−7 | r = 0.05, p = 0.681 | r = 0.428, p = 2.16 × 10−4 |
CYP3A Gene | CpG Site | |||
---|---|---|---|---|
1b | 2b | 3b | 5e | |
CYP3A4 | −0.442 | 0.036 | −0.029 | −0.156 |
CYP3A5 | −0.109 | 0.214 | −0.164 | −0.201 |
CYP3A7 | −0.156 | 0.137 | −0.11 | 0.118 |
CYP3A43 | −0.34 | 0.123 | 0.224 | −0.09 |
Log(Gene) | Predictors | Estimate | p-Value | Variability Explained | Total R-sq |
---|---|---|---|---|---|
Log(CYP3A4) | ESR1 | 0.958 | 4.4 × 10−14 | 69.71% (All TFs) | 72.27% |
ARNT | 0.335 | 0.064 | |||
RXRA | −0.412 | 0.021 | |||
AHR | 0.474 | 0.058 | |||
CYP3A4*22 | −0.743 | 0.011 | 2.56% | ||
Log(CYP3A5) | ESR1 | 0.444 | 1.47 × 10−5 | 34.18% (All TFs) | 67.56% |
NR1I2 | 0.423 | 0.011 | |||
HNF4A | −0.531 | 0.006 | |||
PPARA | 0.437 | 0.004 | |||
Black Ancestry | 0.315 | 0.011 | 1.01% | ||
CYP3A5*3 | −0.352 | 5.68 × 10−6 | 30.29% | ||
1b DNA methylation | 0.789 | 0.028 | 2.08% | ||
Log(CYP3A7) | RXRA | 0.598 | 0.023 | 18.82% (All TFs) | 45.60% |
ESR1 | 0.452 | 0.005 | |||
CYP3A7*1C | 0.816 | 9.46 × 10−5 | 22.69% | ||
3b DNA methylation | −3.021 | 0.026 | 4.09% | ||
5e DNA methylation | 1.863 | 0.031 | |||
Log(CYP3A43) | ESR1 | 0.912 | 1.88 × 10−10 | 72.18% (All TFs) | 72.18% |
AHR | 1.249 | 9.38 × 10−5 | |||
ARNT | −0.635 | 0.006 | |||
RXRA | −0.664 | 0.006 | |||
HNF4A | 0.58 | 0.037 |
Log(%Gene) | Predictors | Estimate | p-Value | Variability Explained | Total R-sq |
---|---|---|---|---|---|
Log(%CYP3A4) | ESR1 | 1.586 | 7.59 × 10−9 | 47.90% | 52.27% |
RXRA | −0.109 | 0.03 | |||
CYP3A5*3 | 0.054 | 0.008 | 4.37% | ||
Log(%CYP3A5) | ESR1 | −0.343 | 5.45 × 10−4 | 13.14% | 58.42% |
FOXA2 | 0.436 | 0.013 | |||
CYP3A4*3 | −0.361 | 1.10 × 10−7 | 42.78% | ||
1b DNA methylation | 0.852 | 0.033 | 2.50% | ||
Log(%CYP3A7) | RXRA | 0.598 | 0.023 | 13.76% | 39.49% |
ESR1 | 0.452 | 0.005 | |||
CYP3A7*1C | 0.816 | 9.46 × 10−5 | 23.39% | ||
5e DNA methylation | 1.9 | 0.018 | 2.34% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collins, J.M.; Wang, D. DNA Methylation in the CYP3A Distal Regulatory Region (DRR) Is Associated with the Expression of CYP3A5 and CYP3A7 in Human Liver Samples. Molecules 2024, 29, 5407. https://doi.org/10.3390/molecules29225407
Collins JM, Wang D. DNA Methylation in the CYP3A Distal Regulatory Region (DRR) Is Associated with the Expression of CYP3A5 and CYP3A7 in Human Liver Samples. Molecules. 2024; 29(22):5407. https://doi.org/10.3390/molecules29225407
Chicago/Turabian StyleCollins, Joseph M., and Danxin Wang. 2024. "DNA Methylation in the CYP3A Distal Regulatory Region (DRR) Is Associated with the Expression of CYP3A5 and CYP3A7 in Human Liver Samples" Molecules 29, no. 22: 5407. https://doi.org/10.3390/molecules29225407
APA StyleCollins, J. M., & Wang, D. (2024). DNA Methylation in the CYP3A Distal Regulatory Region (DRR) Is Associated with the Expression of CYP3A5 and CYP3A7 in Human Liver Samples. Molecules, 29(22), 5407. https://doi.org/10.3390/molecules29225407