Effect of Fluridone on Roots and Leaf Buds Development in Stem Cuttings of Salix babylonica (L.) ‘Tortuosa’ and Related Metabolic and Physiological Traits
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Determination of Anthocyanins
4.2. Determination of Phenolic Acids, Flavonoids and Salicinoids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandmann, G.; Schmidt, A.; Linden, H.; Böger, P. Phytoene desaturase, the essential target for bleaching herbicides. Weed Sci. 1991, 39, 474–479. [Google Scholar] [CrossRef]
- Michel, A.; Arias, R.S.; Scheffler, B.E.; Duke, S.O.; Netherland, M.; Dayan, F.E. Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Mol. Ecol. 2004, 13, 3229–3237. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, N.; Conrad, J.L.; Green, H.; Khanna, S.; Wright, H.; Hoffmann, K.; Caudill, J.; Gilbert, P. Efficacy and fate of fluridone applications for control of invasive submersed aquatic vegetation in the estuarine environment of the Sacramento-San Joaquin Delta. Estuar. Coast. 2022, 45, 1842–1860. [Google Scholar] [CrossRef]
- Khanna, S.; Gaeta, J.W.; Conrad, J.L.; Gross, E.S. Multi-year landscape-scale efficacy analysis of fluridone treatment of invasive submerged aquatic vegetation in the Sacramento–San Joaquin Delta. Biol. Invasions 2023, 25, 1827–1843. [Google Scholar] [CrossRef]
- Gettys, L.A.; Leon, R.G. A population genetics approach for the study of fluridone resistance in hydrilla. Aquat. Invasions 2021, 16, 28–42. [Google Scholar] [CrossRef]
- Butts, T.R.; Souza, M.C.; Norsworthy, J.K.; Barber, L.T.; Hardke, J.T. Rice response to fluridone following topsoil removal on a precision-leveled field. Agrosys. Geosci. Environ. 2024, 7, e20541. [Google Scholar] [CrossRef]
- Butts, T.R.; Kouame, K.B.J.; Norsworthy, J.K.; Barber, L.T. Arkansas rice: Herbicide resistance concerns, production practices, and weed management costs. Front. Agron. 2022, 4, 881667. [Google Scholar] [CrossRef]
- Breitenbach, J.; Sandmann, G. ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta 2005, 220, 785–793. [Google Scholar] [CrossRef]
- Rodríguez-Villalón, A.; Gas, E.; Rodríguez-Concepción, M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J. 2009, 60, 424–435. [Google Scholar] [CrossRef]
- Schmitz, N.; Xia, J.H.; Kermode, A.R. Dormancy of yellow cedar seeds is terminated by gibberellic acid in combination with fluridone or with osmotic priming and moist chilling. Seed Sci. Technol. 2001, 29, 331–346. [Google Scholar]
- Jiang, Y.; Joyce, D. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic concentrations of strawberry fruit. J. Plant Growth Regul. 2003, 39, 171–174. [Google Scholar] [CrossRef]
- Yamazaki, H.; Nishijima, T.; Yamato, Y.; Koshioka, M.; Miura, H. Involvement of abscisic acid (ABA) in bulb dormancy of Allium wakegi Araki I. Endogenous levels of ABA in relation to bulb dormancy and effects of exogenous ABA and fluridone. Plant Growth Regul. 1999, 29, 189–194. [Google Scholar] [CrossRef]
- Worarad, K.; Xie, X.; Rumainum, I.M.; Burana, C.; Yamane, K. Effects of fluridone treatment on seed germination and dormancy-associated gene expression in an ornamental peach (Prunus persica (L.) Batsch). Horticut. J. 2017, 86, 317–326. [Google Scholar] [CrossRef]
- Chen, Q.L.; Guo, Y.; Jiang, Y.; Tu, P. Mechanism of fluridone-induced seed germination of Cistanche tubulosa. Pak. J. Bot. 2016, 48, 971–976. Available online: http://www.pakbs.org/pjbot/PDFs/48(3)/15.pdf (accessed on 13 October 2024).
- González-Villagra, J.; Cohen, J.D.; Reyes-Díaz, M.M. Abscisic acid is involved in phenolic compounds biosynthesis, mainly anthocyanins, in leaves of Aristotelia chillensis plants (Mol.) subjected to drought stress. Physiol. Plant. 2019, 165, 855–866. [Google Scholar] [CrossRef]
- Lama, K.; Harlev, G.; Shafran, H.; Peer, R.; Flaishman, M.A. Anthocyanin accumulation is initiated by abscisic acid to enhance fruit color of fig (Ficus carica L.) ripening. J. Plant Physiol. 2020, 251, 153192. [Google Scholar] [CrossRef]
- Karppinen, K.; Tegelberg, P.; Haggman, H.; Jaakola, L. Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits. Front. Plant Sci. 2018, 9, 1259. [Google Scholar] [CrossRef]
- Ryu, S.; Kwon, Y.H.; Do, G.R.; Jeong, J.H.; Han, H.H.; Han, J.H. Effects of abscisic acid (ABA) and fluridone on red coloration of Hongro’apple fruit skins. J. Bio-Environ. Contr. 2016, 25, 240–248. [Google Scholar] [CrossRef]
- Rasmussen, A.; Beveridge, C.A.; Geelen, D. Inhibition of strigolactones promotes adventitious root formation. Plant Signal. Behav. 2012, 7, 694–697. [Google Scholar] [CrossRef]
- Konieczny, R.; Kępczyński, J.; Pilarska, M.; Cembrowska, D.; Menzel, D.; Šamaj, J. Cytokinin and ethylene affect auxin transport-dependent rhizogenesis in hypocotyls of common ice plant (Mesembryanthemum crystallinum L.). J. Plant Growth Regul. 2009, 28, 331–340. [Google Scholar] [CrossRef]
- Hooker, T.S.; Thorpe, T.A. Effects of fluridone and abscisic acid on lateral root initiation and root elongation of excised tomato roots cultured in vitro. Plant Cell Tiss. Org. 1998, 52, 199–203. [Google Scholar] [CrossRef]
- López-Ráez, J.A.; Charnikhova, T.; Gómez-Roldán, V.; Matusova, R.; Kohlen, W.; De Vos, R.; Verstappen, F.; Puech-Pages, V.; Bécard, G.; Mulder, P.; et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 2008, 178, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Charnikhova, T.; Verstappen, F.; Bouwmeester, H. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Arch. Biochem. Biophys. 2010, 504, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Omoarelojie, L.O.; Kulkarni, M.G.; Finnie, J.F.; Van Staden, J. Strigolactones and their crosstalk with other phytohormones. Ann. Bot. 2019, 124, 749–767. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, W.; Burritt, D.J.; Tian, H.; Zhang, H.; Liang, X.; Miao, Y.; Mostafa, M.G.; Tran, L.S.P. Strigolactones interact with other phytohormones to modulate plant root growth and development. Crop J. 2022, 10, 1517–1527. [Google Scholar] [CrossRef]
- Khuvung, K.; Silva Gutierrez, F.A.O.; Reinhardt, D. How strigolactone shapes shoot architecture. Front. Plant Sci. 2022, 13, 889045. [Google Scholar] [CrossRef]
- Yoneyama, K.; Brewer, P. Strigolactones, how are they synthesized to regulate plant growth and development? Curr. Opin. Plant Biol. 2021, 63, 102072. [Google Scholar] [CrossRef]
- Góraj-Koniarska, J.; Saniewski, M.; Kosson, R.; Wiczkowski, W.; Horbowicz, M. Effect of fluridone on some physiological and qualitative features of ripening tomato fruit. Acta Biol. Cracov. Bot. 2017, 59, 41–49. [Google Scholar] [CrossRef]
- Barros, J.; Dixon, R.A. Plant phenylalanine/tyrosine ammonialyases. Trends Plant Sci. 2020, 25, 66–79. [Google Scholar] [CrossRef]
- Marin-Recinos, M.F.; Pucker, B. Genetic factors explaining anthocyanin pigmentation differences. BMC Plant Biol. 2024, 24, 627. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, S. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
- Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005, 10, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef] [PubMed]
- Fellenberg, C.; Corea, O.; Yan, L.-H.; Archinuk, F.; Piirtola, E.-M.; Gordon, H.; Reichelt, M.; Brandt, W.; Wulff, J.; Ehlting, J.; et al. Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis. Plant J. 2020, 102, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Kulasekaran, S.; Cerezo-Medina, S.; Harflett, C.; Lomax, C.; de Jong, F.; Rendour, A.; Ruvo, G.; Hanley, S.J.; Beale, M.H.; Ward, J.L. A willow UDP-glycosyltransferase involved in salicinoid biosynthesis. J. Exp. Bot. 2021, 72, 1634–1648. [Google Scholar] [CrossRef]
- Boeckler, G.A.; Gershenzon, J.; Unsicker, S.B. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 2011, 72, 1497–1509. [Google Scholar] [CrossRef]
- Gordon, H.; Fellenberg, C.; Lackus, N.D.; Archinuk, F.; Sproule, A.; Nakamura, Y.; Köllner, T.G.; Gershenzon, J.; Overy, D.P.; Constabel, C.P. CRISPR/Cas9 disruption of UGT71L1 in poplar connects salicinoid and salicylic acid metabolism and alters growth and morphology. Plant Cell 2022, 34, 2925–2947. [Google Scholar] [CrossRef]
- Babst, B.A.; Harding, S.A.; Tsai, C.J. Biosynthesis of phenolic glycosides from phenylpropanoid and benzenoid precursors in Populus. J. Chem. Ecol. 2010, 36, 286–297. [Google Scholar] [CrossRef]
- Zenk, M.H. Pathways of salicyl alcohol and salicin formation in Salix purpurea L. Phytochemistry 1967, 6, 245–252. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, B.; Leng, P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot. 2009, 60, 1579–1588. [Google Scholar] [CrossRef]
- Chen, S.W.; Zhang, D.P. Effects of abscisic acid and fluridone on ripening of apple fruits. Acta Phytophysiol. Sin. 2000, 26, 123–129. [Google Scholar]
- Cao, Y.; Wang, Y.; Ji, K.; Dai, S.; Li, Q.; Duan, C.; Chen, P.; Wu, Y.; Sun, Y.; Luo, H.; et al. Effects of different harvest maturities and exogenous ABA, fluridone, and ethephon treatments on fruit ripening of “Zhonghuashoutao” peach. Acta Aliment. Hung. 2013, 42, 186–197. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Góraj-Koniarska, J.; Saniewski, M.; Horbowicz, M. The effect of fluridone on accumulation of carotenoids, flavonoids and phenolic acids in ripening tomato fruit. Acta Sci. Pol. Hortorum Cultus 2019, 18, 39–46. [Google Scholar] [CrossRef]
- Marasek-Ciołakowska, A.; Mitrus, J.; Saniewski, M.; Góraj-Koniarska, J.; Horbowicz, M. Effect of fluridone on the breaking of inflorescence stalk dormancy and pigments content in Muscari armeniacum leaves. J. Elem. 2024, 29, 619–634. [Google Scholar] [CrossRef]
- Chmelar, J. Propagation of willows by cuttings. N. Z. J. For. Sci. 1974, 4, 185–190. [Google Scholar]
- Lux, A.; Šottníková, A.; Opatrná, J.; Greger, M. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol. Plant. 2004, 120, 537–545. [Google Scholar] [CrossRef]
- Marasek-Ciołakowska, A.; Wiczkowski, W.; Szawara-Nowak, D.; Kaszubski, W.; Góraj-Koniarska, J.; Saniewski, M.; Horbowicz, M. The effect of natural light on development of adventitious roots in stem cuttings of Salix babylonica ‘Tortuosa’: Histological evaluation and composition of polyphenols and salicinoids. J. Elem. 2024; submitted. [Google Scholar]
- Xu, K.; Zeng, H.; Yumoto, E.; Asahina, M.; Hayashi, K.; Fukai, H.; Ito, H.; Watahiki, M.K. Carotenoid metabolism negatively regulates auxin-mediated root growth. bioRxiv 2023. [Google Scholar] [CrossRef]
- Ng, Y.K.; Moore, R. Root growth, secondary root formation and gravitropism in carotenoid-deficient seedlings of Zea mays L. Ann. Bot. 1985, 55, 387–394. [Google Scholar] [CrossRef]
- Saab, I.N.; Sharp, R.E.; Pritchard, J.; Voetberg, G.S. Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol. 1990, 93, 1329–1336. [Google Scholar] [CrossRef]
- McAdam, S.A.M.; Brodribb, T.J.; Ross, J.J. Shoot-derived abscisic acid promotes root growth. Plant Cell Environ. 2016, 39, 652–659. [Google Scholar] [CrossRef]
- Zou, Z.; Zou, X.; Zhao, S.; Xia, C.; Qian, K.; Wang, P.; Yin, C. Fluridone induces leaf bleaching by inhibiting pigment biosynthetic genes in rice (Oryza sativa L.). J. Plant Growth Regul. 2018, 37, 1385–1395. [Google Scholar] [CrossRef]
- Veljanovski, V.; Constabel, C.P. Molecular cloning and biochemical characterization of two UDP-glycosyltransferases from poplar. Phytochemistry 2013, 91, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agr. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Shi, M.; Fu, R.; Zhang, Y.; Wang, Q.; Zhou, Y.; Wang, Y.; Ma, X.; Kai, G. ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. J. Exp. Bot. 2020, 71, 5948–5962. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Ma, Y.; Xu, T.; Cui, B.; Liu, Y.; Guo, Z.; Yang, D. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza Bunge hairy roots. PLoS ONE 2013, 8, e72806. [Google Scholar] [CrossRef] [PubMed]
- Meyers, L.L.; Russelle, M.P.; Lamb, J.F.S. Fluridone reveals root elongation differences among alfalfa germplasms. Agron. J. 1996, 88, 67–72. [Google Scholar] [CrossRef]
- Ogawa, H.; Yamada, I.; Arai, K.; Hirase, K.; Moriyasu, K.; Schneider, C.; Sandmann, G.; Böger, P.; Wakabayashi, K. Mode of bleaching phytotoxicity of herbicidal diphenylpyrrolidinones. Pest. Manag. Sci. 2001, 57, 33–40. [Google Scholar] [CrossRef]
- Berard, D.F.; Rainey, D.P.; Lin, C.C. Absorption, translocation, and metabolism of fluridone in selected crop species. Weed Sci. 1978, 26, 252–254. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Romaszko, J. The impact of red cabbage fermentation on bioavailability of anthocyanins and antioxidant capacity of human plasma. Food Chem. 2016, 190, 730–740. [Google Scholar] [CrossRef]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of phenolic acids and flavonoids of red beet and its fermentation products. Does long-term consumption of fermented beetroot juice affect phenolics profile in human blood plasma and urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Ostolski, M.; Adamczak, M.; Brzozowski, B.; Wiczkowski, W. Antioxidant activity and chemical characteristics of supercritical CO2 and water extracts from willow and poplar. Molecules 2021, 26, 545. [Google Scholar] [CrossRef] [PubMed]
Anthocyanin | Roots | Leaf buds | ||
---|---|---|---|---|
Control | Fluridone (10 mg/L) | Control | Fluridone (10 mg/L) | |
Cyanidin rutinoside | 5.4 ± 0.2 b | 5.3 ± 0.3 b | 3.5 ± 0.2 c | 17.3 ± 0.3 a |
Delphinidin rutinoside | 5.1 ± 0.7 d | 32.5 ± 0.6 b | 23.8 ± 0.4 c | 43.3 ± 1.0 a |
Petunidin glucoside | 30.0 ± 0.8 a | 24.5 ± 0.5 b | 1.11 ± 0.02 c | 0.31 ± 0.02 d |
Malvidin glucoside | 81.2 ± 0.6 a | 51.9 ± 0.7 b | 0.61 ± 0.04 c | 0.42 ± 0.04 c |
Peonidin rhamnoside-glucoside | 40.9 ± 0.4 a | 18.7 ± 0.8 b | 1.61 ± 0.24 d | 4.74 ± 0.16 c |
Total major and minor anthocyanins | 4317 ± 18 a | 3288 ± 28 b | 713 ± 12.5 d | 841 ± 12.7 c |
Flavonoid | Roots | Leaf buds | ||
---|---|---|---|---|
Control | Fluridone (10 mg/L) | Control | Fluridone (10 mg/L) | |
Prunin | 0.70 ± 0.08 a | 1.06 ± 0.08 a | 0.42 ± 0.06 b | 0.94 ± 0.09 a |
Taxifolin | 2.83 ± 0.09 b | 5.33 ± 0.11 a | 0.15 ± 0.01 d | 0.42 ± 0.01 c |
Quercetin total | 7.08 ± 0.28 a | 5.76 ± 0.33 b | 1.00 ± 0.12 d | 2.92 ± 0.20 c |
Quercetin, F/E/G | 3.68/2.80/0.60 | 3.50/1.99/0.27 | 0.42/0.52/0.06 | 1.54/0.81/0.11 |
Kaempferol total | 0.93 ± 0.07 a | 0.64 ± 0.10 ab | 0.95 ± 0.08 a | 1.08 ± 0.09 a |
Kaemperol, F/E/G | 0.12/0.23/0.58 | 0.10/0.12/0.42 | 0.18/0.36/0.41 | 0.32/0.48/0.29 |
Epicatechin total | 4.61 ± 0.05 a | 3.61 ± 0.39 a | 0.10 ± 0.02 b | 0.06 ± 0.01 b |
Epicatechin, F/E/G | 4.61/tr/tr | 3.18/tr/tr | 0.10/tr/tr | 0.06/tr/tr |
Total flavonoids | 16.29 ± 0.58 a | 16.52 ± 1.02 a | 3.62 ± 0.21 c | 5.97 ± 0.38 b |
Phenolic Acid | Roots | Leaf Buds | ||
---|---|---|---|---|
Control | Fluridone (10 mg/L) | Control | Fluridone (10 mg/L) | |
p-Coumaric total | 0.48 ± 0.02 d | 0.73 ± 0.09 c | 15.54 ± 0.20 b | 27.36 ± 1.19 a |
p-Coumaric, F/E/G | 0.05/0.41/0.02 | 0.10/0.61/0.02 | 0.37/15.09/tr | 1.43/25.58/0.55 |
Caffeic total | 0.63 ± 0.06 c | 0.39 ± 0.05 c | 14.32 ± 0.44 a | 5.77 ± 0.30 b |
Caffeic, F/E/G | 0.22/0.41/tr | 0.07/0.32/tr | 0.51/13.81/tr | 0.17/5.59/tr |
Ferulic total | 0.03 ± 0.01 b | 0.03 ± 0.01 b | 0.59 ± 0.06 a | 0.60 ± 0.02 a |
Ferulic, F/E/G | 0.01/0.02/tr | 0.01/0.02/tr | 0.02/0.56/tr | 0.02/0.58/tr |
3-hydroxy-Benzoic total | 1.00 ± 0.05 a | 0.85 ± 0.04 a | 0.42 ± 0.03 b | 0.51 ± 0.05 b |
3-hydroxy- Benzoic F/E/G | 0.08/0.40/0.52 | 0.07/0.24/0.54 | 0.02/0.21/0.19 | 0.06/0.25/0.21 |
Protocatechuic total | 1.54 ± 0.03 a | 1.60 ± 0.08 a | 1.39 ± 0.12 ab | 1.38 ± 0.06 ab |
Protocatechuic, F/E/G | tr/1.47/0.07 | 0.07/0.24/0.54 | 0.18/0.18/1.03 | 0.16/0.46/0.77 |
Total phenolic acids | 3.68 ± 0.17 b | 3.60 ± 0.27 b | 32.26 ± 0.65 a | 35.62 ± 1.63 a |
Pigment | Leaf Buds Inside Water | Leaf Buds Inside Fluridone Solution (10 mg/L) | Leaf Buds Above Water | Leaf Buds Above Fluridone Solution (10 mg/L) |
---|---|---|---|---|
Chlorophyll a | 3.85 ± 0.26 a | 0.11 ± 0.01 c | 4.26 ± 0.07 a | 2.99 ± 0.02 b |
Chlorophyll b | 2.02 ± 0.11 a | 0.13 ± 0.03 c | 1.64 ± 0.05 a | 1.23 ± 0.03 b |
Chlorophylls, total | 5.87 ± 0.37 a | 0.24 ± 0.04 c | 5.90 ± 0.12 a | 4.22 ± 0.05 b |
Carotenoids, total | 0.69 ± 0.08 a | 0.02 ± 0.01 b | 0.57 ± 0.04 a | 0.48 ± 0.05 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiczkowski, W.; Marasek-Ciołakowska, A.; Szawara-Nowak, D.; Kaszubski, W.; Góraj-Koniarska, J.; Mitrus, J.; Saniewski, M.; Horbowicz, M. Effect of Fluridone on Roots and Leaf Buds Development in Stem Cuttings of Salix babylonica (L.) ‘Tortuosa’ and Related Metabolic and Physiological Traits. Molecules 2024, 29, 5410. https://doi.org/10.3390/molecules29225410
Wiczkowski W, Marasek-Ciołakowska A, Szawara-Nowak D, Kaszubski W, Góraj-Koniarska J, Mitrus J, Saniewski M, Horbowicz M. Effect of Fluridone on Roots and Leaf Buds Development in Stem Cuttings of Salix babylonica (L.) ‘Tortuosa’ and Related Metabolic and Physiological Traits. Molecules. 2024; 29(22):5410. https://doi.org/10.3390/molecules29225410
Chicago/Turabian StyleWiczkowski, Wiesław, Agnieszka Marasek-Ciołakowska, Dorota Szawara-Nowak, Wiesław Kaszubski, Justyna Góraj-Koniarska, Joanna Mitrus, Marian Saniewski, and Marcin Horbowicz. 2024. "Effect of Fluridone on Roots and Leaf Buds Development in Stem Cuttings of Salix babylonica (L.) ‘Tortuosa’ and Related Metabolic and Physiological Traits" Molecules 29, no. 22: 5410. https://doi.org/10.3390/molecules29225410
APA StyleWiczkowski, W., Marasek-Ciołakowska, A., Szawara-Nowak, D., Kaszubski, W., Góraj-Koniarska, J., Mitrus, J., Saniewski, M., & Horbowicz, M. (2024). Effect of Fluridone on Roots and Leaf Buds Development in Stem Cuttings of Salix babylonica (L.) ‘Tortuosa’ and Related Metabolic and Physiological Traits. Molecules, 29(22), 5410. https://doi.org/10.3390/molecules29225410