Photocatalytic Enhancement and Recyclability in Visible-Light-Responsive 2D/2D g-C3N4/BiOI p-n Heterojunctions via a Z-Scheme Charge Transfer Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology of BiOI, g-C3N4 and g-C3N4/BiOI
2.2. Mechanism Analysis
2.3. Photocatalytic Activity
2.4. Photocatalytic Mechanism
3. Experiment
3.1. Experimental Materials
3.2. Preparation of Heterojunction Materials
3.2.1. Preparation of g-C3N4 NSs
3.2.2. Preparation of BiOI NSs
3.2.3. Preparation of g-C3N4/BiOI heterojunctions
3.3. Characterization of Materials
3.4. Photocatalytic Degradation Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theerthagiri, J.; Karuppasamy, K.; Lee, S.J.; Shwetharani, R.; Kim, H.-S.; Pasha, S.K.K.; Ashokkumar, M.; Choi, M.Y. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci. Appl. 2022, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Huang, W.; Zhu, F.; Liu, X.; Jin, C.; Guo, C.; An, Y.; Kivshar, Y.; Qiu, C.-W.; Li, W. Dispersion-assisted high-dimensional photodetector. Nature 2024, 630, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Feng, J.; Gao, X.; Zhang, H. Nanocomposites based on lanthanide-doped upconversion nanoparticles: Diverse designs and applications. Light Sci. Appl. 2022, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z. Research progress of semiconductor photocatalysis applied to environmental governance. IOP Conf. Ser. Earth Environ. Sci. 2021, 631, 012022. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 2020, 828, 154281. [Google Scholar] [CrossRef]
- Ahmad, I.; Zou, Y.; Yan, J.; Liu, Y.; Shukrullah, S.; Naz, M.Y.; Hussain, H.; Khan, W.Q.; Khalid, N.R. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Adv. Colloid Interface Sci. 2022, 311, 102830. [Google Scholar] [CrossRef]
- Iqbal, W.; Dong, C.; Xing, M.; Tan, X.; Zhang, J. Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity†. Catal. Sci. Technol. 2017, 7, 1726–1734. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, X.; Liu, E.; Fan, J. Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. Chin. J. Catal. 2021, 42, 1519–1529. [Google Scholar] [CrossRef]
- Luo, W.; Chen, X.; Wei, Z.; Liu, D.; Yao, W.; Zhu, Y. Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance. Appl. Catal. B Environ. Energy 2019, 255, 117761. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu, B. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl. Catal. B Environ. Energy 2020, 269, 118828. [Google Scholar] [CrossRef]
- Shahzad, R.; Muneer, M.; Khalid, R.; Amin, H.M.A. ZnO-Bi2O3 Heterostructured Composite for the Photocatalytic Degradation of Orange 16 Reactive Dye: Synergistic Effect of UV Irradiation and Hydrogen Peroxide. Catalysts 2023, 13, 1328. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Z.; Wang, Y.; Ai, H.; Zhang, W.; Liu, X.; Han, X.; Zhao, J.; Zhang, H. Exploiting synergistic effects: Co3O4/g-C3N4 composite catalyst for enhanced oxygen evolution reaction. Int. J. Electrochem. Sci. 2023, 18, 100394. [Google Scholar] [CrossRef]
- Kavil, J.; Anjana, P.M.; Joshy, D.; Babu, A.; Raj, G.; Periyat, P.; Rakhi, R.B. g-C3N4/CuO and g-C3N4/Co3O4 nanohybrid structures as efficient electrode materials in symmetric supercapacitors. RSC Adv. 2019, 9, 38430–38437. [Google Scholar] [CrossRef] [PubMed]
- Kalaiarasan, S.; Shanthi, C. Synthesis and characterization of G-C3N4@ZnO photo catalyst on removal of toxic pollutants. J. Ovonic Res. 2022, 18, 219–226. [Google Scholar] [CrossRef]
- Huang, H.; Liu, C.; Ou, H.; Ma, T.; Zhang, Y. Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis. Appl. Surf. Sci. 2019, 470, 1101–1110. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, X.; Wang, J.; Yang, J.; Yang, X. Synthesis of Fe2O3/g-C3N4 composite with efficient photocatalytic degradation for methyl orange. Inorg. Chem. Commun. 2023, 159, 111890. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Sun, C.; Yang, S.; Guan, Y.; He, H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B Environ. Energy 2014, 144, 885–892. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Li, J.; Zhang, G. Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Appl. Catal. B Environ. Energy 2020, 263, 117730. [Google Scholar] [CrossRef]
- Lu, M.; Li, Q.; Zhang, C.; Fan, X.; Li, L.; Dong, Y.; Chen, G.; Shi, H.J.C. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 2020, 160, 342–352. [Google Scholar] [CrossRef]
- Wang, J.; Tang, L.; Zeng, G.; Deng, Y.; Liu, Y.; Wang, L.; Zhou, Y.; Guo, Z.; Wang, J.; Zhang, C. Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl. Catal. B Environ. Energy 2017, 209, 285–294. [Google Scholar] [CrossRef]
- Ekthammathat, N.; Kidarn, S.; Phuruangrat, A.; Thongtem, S.; Thongtem, T. Hydrothermal synthesis of Ag-doped BiOI nanostructure used for photocatalysis. Res. Chem. Intermed. 2015, 42, 5559–5572. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, C.; Meng, L.; Li, Y.; Chu, H.; Wang, F.; Tao, Y.; Liu, W.; Wang, C.-C. In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: A novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination. Chem. Eng. J. 2022, 451, 138624. [Google Scholar] [CrossRef]
- Dai, W.-W.; Zhao, Z.-Y. Understanding the interfacial properties of graphene-based materials/BiOI heterostructures by DFT calculations. Appl. Surf. Sci. 2017, 406, 8–20. [Google Scholar] [CrossRef]
- Pérez-Molina, Á.; Pastrana-Martínez, L.M.; Pérez-Poyatos, L.T.; Morales-Torres, S.; Maldonado-Hódar, F.J. One-Pot Thermal Synthesis of g-C3N4/ZnO Composites for the Degradation of 5-Fluoruracil Cytostatic Drug under UV-LED Irradiation. Nanomaterials 2022, 12, 340. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80. [Google Scholar] [CrossRef]
- Vijayakumar, T.P.; Benoy, M.D.; Duraimurugan, J.; Kumar, G.S.; Mohd, S.; Maadeswaran, P.; Kumar, A.S.; Kumar, K.A.R. Hydrothermal synthesis of CuO/g-C3N4 nanosheets for visible-light driven photodegradation of methylene blue. Diam. Relat. Mater. 2021, 121, 108735. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, L.; Yang, J.; Zhou, S.; Yuan, X.; Liang, J.; Wang, H.; Wang, H.; Bu, Y.; Li, H. Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renew. Sustain. Energy Rev. 2022, 173, 113110. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Ji, J.; Li, F.; Lin, Y.C.; Qin, C.; Zhang, Z.; Shen, Y. Highly Efficient Ag3PO4/g-C3N4 Z-Scheme Photocatalyst for its Enhanced Photocatalytic Performance in Degradation of Rhodamine B and Phenol. Molecules 2021, 26, 2062. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, J.; Lin, H.; Xu, B.; Huang, B.; Chen, S. Controllable synthesis and photocatalytic activity of Ag/BiOI based on the morphology effect of BiOI substrate. Surf. Coat. Technol. 2015, 272, 213–220. [Google Scholar] [CrossRef]
- Han, D.; Li, B.; Yang, S.; Wang, X.; Gao, W.; Si, Z.; Zuo, Q.; Li, Y.; Li, Y.; Duan, Q.J.N. Engineering charge transfer characteristics in hierarchical Cu2S QDs@ ZnO Nanoneedles with p–n heterojunctions: Towards highly efficient and recyclable photocatalysts. Nanomaterials 2018, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, X.; Zhang, K.; Lu, P.; Zhang, D. Facile fabrication of sandwich-like BiOI/AgI/g-C3N4 composites for efficient photocatalytic degradation of methyl orange and reduction of Cr(VI). J. Nanoparticle Res. 2018, 20, 328. [Google Scholar] [CrossRef]
- Chang, C.; Zhu, L.; Wang, S.; Chu, X.; Yue, L. Novel Mesoporous Graphite Carbon Nitride/BiOI Heterojunction for Enhancing Photocatalytic Performance Under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2014, 6, 5083–5093. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, X.; Fang, J.; Zhu, X.; Chu, J.; Li, B. Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation. Appl. Surf. Sci. 2012, 258, 3771–3778. [Google Scholar] [CrossRef]
- Tian, N.; Zhang, Y.; Liu, C.; Yu, S.; Li, M.; Huang, H. g-C3N4/Bi4O5I2 2D–2D heterojunctional nanosheets with enhanced visible-light photocatalytic activity†. RSC Adv. 2016, 6, 10895–10903. [Google Scholar] [CrossRef]
- Sun, B.-W.; Li, H.-J.; Yu, H.-y.; Qian, D.-J.; Chen, M. In situ synthesis of polymetallic Co-doped g-C3N4 photocatalyst with increased defect sites and superior charge carrier properties. Carbon 2017, 117, 1–11. [Google Scholar] [CrossRef]
- Gholipour, M.R.; Béland, F.; Do, T.-O. Post-Calcined Carbon Nitride Nanosheets as an Efficient Photocatalyst for Hydrogen Production under Visible Light Irradiation. ACS Sustain. Chem. Eng. 2016, 5, 213–220. [Google Scholar] [CrossRef]
- Che, H.; Liu, L.; Che, G.; Dong, H.; Liu, C.; Li, C. Control of energy band, layer structure and vacancy defect of graphitic carbon nitride by intercalated hydrogen bond effect of NO3−toward improving photocatalytic performance. Chem. Eng. J. 2018, 357, 209–219. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Li, H.; Jiang, W.; Liu, C.; Che, G. A visible-light-driven 3D Z-scheme photocatalyst by loading BiOI nanosheets onto g-C3N4 microtubes for efficient degradation of tetracycline and p-chlorophenol. J. Mater. Sci. 2021, 56, 5555–5569. [Google Scholar] [CrossRef]
- Bu, Y.; Xu, J.; Li, Y.; Liu, Q.; Zhang, X. Enhanced photocatalytic activity of BiOI under visible light irradiation by the modification of MoS2. RSC Adv. 2017, 7, 42398–42406. [Google Scholar] [CrossRef]
- Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. Engl. 2020, 59, 5218–5225. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Yan, J.; Zhou, C.; Chen, B.; Li, P.; Chen, Z.; Dong, X. An alkali treating strategy for the colloidization of graphitic carbon nitride and its excellent photocatalytic performance. J. Colloid Interface Sci. 2016, 468, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Wangchen, H.; Tian, C.Z.; Like, O.; Shaojun, Y. Photocatalytic removal of tetracycline by a Z-scheme heterojunction of bismuth oxyiodide/exfoliated g-C3N4: Performance, mechanism, and degradation pathway. Mater. Today Chem. 2022, 23, 100729. [Google Scholar]
- Feng, H.; Liang, L.; Liu, Y.; Huang, Z.; Li, L. Efficient nano-regional photocatalytic heterostructure design via the manipulation of reaction site self-quenching effect. Appl. Catal. B Environ. Energy 2018, 243, 220–228. [Google Scholar] [CrossRef]
- Wei, Q.; Cheng, C.; Zhuoyun, T.; Dehua, X.; Dingren, M.; Yajing, H.; Qiyu, L.; Chun, H.; Dong, S.; Bin, H. Electron-rich/poor reaction sites enable ultrafast confining Fenton-like processes in facet-engineered BiOI membranes for water purification. Appl. Catal. B Environ. Energy 2021, 304, 120970. [Google Scholar]
- Zhong, S.; Wang, B.; Zhou, H.; Li, C.; Peng, X.; Zhang, S. Fabrication and characterization of Ag/BiOI/GO composites with enhanced photocatalytic activity. J. Alloys Compd. 2019, 806, 401–409. [Google Scholar] [CrossRef]
- Yu, C.; Yu, J.C.; Fan, C.; Wen, H.; Hu, S. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation. Mater. Sci. Eng. B 2009, 166, 213–219. [Google Scholar] [CrossRef]
- Chang, C.; Zhu, L.; Fu, Y.; Chu, X. Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation. Chem. Eng. J. 2013, 233, 305–314. [Google Scholar] [CrossRef]
- Feng, Z.; Zeng, L.; Zhang, Q.; Ge, S.; Zhao, X.; Lin, H.; He, Y. In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. J. Environ. Sci. 2020, 87, 149–162. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Miao, C.; Xia, F.; Wang, Y.; Wang, Y.; Liu, C.; Che, G. g-C3N4/BiOI S-scheme heterojunction: A 2D/2D model platform for visible-light-driven photocatalytic CO2 reduction and pollutant degradation. J. Environ. Chem. Eng. 2022, 10, 108201. [Google Scholar] [CrossRef]
- Dong, G.; Wang, Y.; Lei, H.; Tian, G.; Qi, S.; Wu, D. Hierarchical mesoporous titania nanoshell encapsulated on polyimide nanofiber as flexible, highly reactive, energy saving and recyclable photocatalyst for water purification. J. Clean. Prod. 2020, 253, 120021. [Google Scholar] [CrossRef]
- Shi, H.; Yu, Y.; Zhang, Y.; Feng, X.; Zhao, X.; Tan, H.; Khan, S.U.; Li, Y.; Wang, E. Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl. Catal. B Environ. Energy 2017, 221, 280–289. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A.R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757–770. [Google Scholar] [CrossRef]
- Gong, Y.; Yu, H.; Chen, S.; Quan, X. Constructing metal-free polyimide/g-C3N4 with high photocatalytic activity under visible light irradiation. RSC Adv. 2015, 5, 83225–83231. [Google Scholar] [CrossRef]
- Li, X.; Raza, S.; Liu, C. Directly electrospinning synthesized Z-scheme heterojunction TiO2@Ag@Cu2O nanofibers with enhanced photocatalytic degradation activity under solar light irradiation. J. Environ. Chem. Eng. 2021, 9, 106133. [Google Scholar]
- Luna-Sanguino, G.; Ruíz-Delgado, A.; Duran-Valle, C.; Malato, S.; Faraldos, M.; Bahamonde, A. Impact of water matrix and oxidant agent on the solar assisted photodegradation of a complex mix of pesticides over titania-reduced graphene oxide nanocomposites. Catal. Today 2021, 380, 114–124. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Tran, Q.B.; Ly, Q.V.; Thanh Hai, L.; Le, D.T.; Tran, M.B.; Ho, T.T.T.; Nguyen, X.C.; Shokouhimehr, M.; Vo, D.-V.N.; et al. Enhanced Visible Photocatalytic Degradation of Diclofen over N-doped TiO2 assisted with H2O2: A Kinetic and Pathway Study. Arab. J. Chem. 2020, 13, 8361–8371. [Google Scholar] [CrossRef]
- Li, X.; Wang, B.; Shu, X.; Wang, D.; Xu, G.; Zhang, X.; Lv, J.; Wu, Y. An amorphous MoSx modified g-C3N4 composite for efficient photocatalytic hydrogen evolution under visible light†. RSC Adv. 2019, 9, 15900–15909. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. Construction of Heterostructured g-C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405–14414. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Liu, X.; Fu, J.; Li, J.; Liu, Y.; Wang, H.; Li, S. Synthesis of a novel flower-like Bi4Ti3O12/AgI Z-type heterojunction for efficient photocatalytic removal of tetracycline antibiotic and RhB. J. Water Process Eng. 2024, 67, 106262. [Google Scholar] [CrossRef]
- Alsalme, A.; Hassan, M.M.; Eltawil, M.A.; Amin, A.E.; Soltan, A.; Messih, M.F.A.; Ahmed, M.A. Rational sonochemical engineering of Ag2CrO4/g-C3N4 heterojunction for eradicating Rh B dye under full broad spectrum. Heliyon 2024, 10, e31221. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, W.; Dong, M.; Xing, Y.; Zhang, Q. Facile synthesize of CdS QDs decorated Bi2MoO6/Bi2Mo3O12 heterojunction photocatalysts and enhanced performance of visible light removal of organic pollutants. Environ. Technol. 2020, 42, 3581–3594. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Altaf, M.; Shahid, M.; Zeyad, M.T. In situ solid-state fabrication of Z-Scheme BiVO4/g-C3N4 heterojunction photocatalyst with highly efficient-light visible activity and their antibacterial properties against bacterial pathogens. J. Mol. Struct. 2023, 1300, 137222. [Google Scholar] [CrossRef]
- Gao, M.; Li, W.; Su, X.; Li, Z.; Ding, X.; Du, X.; Ren, Y.; Zhang, H.; Feng, J.; Wei, T. A regenerable Cu2O/BiOBr S-scheme heterojunction photocatalysts for efficient photocatalytic degradation of mixed organic pollutants. Sep. Purif. Technol. 2023, 313, 123447. [Google Scholar] [CrossRef]
- Wang, M.; Li, C.; Liu, B.; Qin, W.; Xie, Y. Facile Synthesis of Nano-Flower β-Bi2O3/TiO2 Heterojunction as Photocatalyst for Degradation Rh B. Molecules 2023, 28, 882. [Google Scholar] [CrossRef]
- Gang, R.; Xu, L.; Xia, Y.; Cai, J.; Zhang, L.; Wang, S.; Li, R. Fabrication of MoS2 QDs/ZnO nanosheet 0D/2D heterojunction photocatalysts for organic dyes and gaseous heavy metal removal. J. Colloid Interface Sci. 2020, 579, 853–861. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, N.; Wang, H.; Zhang, X.; Li, J.; Liu, X.; Duan, J.; Hou, B. Constructing S-scheme heterojunction of octahedral flower-like ZnIn2S4/Bi2WO6 nanocone with enhanced photocatalytic activity. J. Electroanal. Chem. 2022, 915, 116360. [Google Scholar]
- Wu, Y.; Yin, Y.; Su, X.; Yi, G.; Oderinde, O.; Shi, S.; Zeng, H.; Xing, B.; Zhang, C.; Zhang, Y. Excellent performance of BiOI/AgEuW2O8 S-Scheme heterojunction for photocatalytic degradation of contaminants under visible light: Experimental and computational studies. J. Phys. Chem. Solids 2024, 192, 112092. [Google Scholar] [CrossRef]
- Muhammad Khalid, H.; Khalid, N.R.; Muhammad, T.; Imen, K.; Hussein, A. Fabrication of CuO/MoO3 p-n heterojunction for enhanced dyes degradation and hydrogen production from water splitting. Int. J. Hydrog. Energy 2021, 47, 15491–15504. [Google Scholar]
- Yu, Y.; Chen, F.; Jin, X.; Min, J.; Duan, H.; Li, J.; Wu, Z.; Cao, B. Oxygen Vacancies-Rich S-Cheme BiOBr/CdS Heterojunction with Synergetic Effect for Highly Efficient Light Emitting Diode-Driven Pollutants Degradation. Nanomaterials 2023, 13, 830. [Google Scholar] [CrossRef]
- Van, K.N.; Huu, H.T.; Nguyen Thi, V.N.; Le Thi, T.L.; Truong, D.H.; Truong, T.T.; Dao, N.N.; Vo, V.; Tran, D.L.; Vasseghian, Y. Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere 2021, 289, 133120. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Lin, C.; Li, M.; Zhu, N.; Meng, J.; Zhao, J. CuWO4/CuS heterojunction photocatalyst for the application of visible-light-driven photodegradation of dye pollutions. J. Alloys Compd. 2021, 893, 162181. [Google Scholar] [CrossRef]
- Zhu, L.; Luo, J.; Dong, G.; Lu, Y.; Lai, Y.; Liu, J.; Chen, G.; Zhang, Y. Enhanced photocatalytic degradation of organic contaminants over a CuO/g-C3N4 p–n heterojunction under visible light irradiation. RSC Adv. 2021, 11, 33373–33379. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Akhtar, S.; Mahmood, F.; Urooj, S.; Siddique, A.B.; Irfan, M.I.; Naeem-ul-Hassan, M.; Sher, M.; Alhoshani, A.; Rauf, A.; et al. Fagonia arabica extract-stabilized gold nanoparticles as a highly selective colorimetric nanoprobe for Cd2+ detection and as a potential photocatalytic and antibacterial agent. Surf. Interfaces 2024, 51, 104556. [Google Scholar] [CrossRef]
Sample | Amount | Application | Concentration and Usage | Power Source | Time | Efficiency | Ref. |
---|---|---|---|---|---|---|---|
Bi4Ti3O12/AgI heterojunction | 20 mg | Rh B degradation | 20 mg/L 60 mL | _ | 60 min | 92.5% | Liu et al. [60] |
Ag2CrO4/g-C3N4heterojunction | 50 mg | Rh B degradation | 2 × 10−5 M 100 mL | Xe lamp 300 W | 120 min | 94% | Alsalme et al. [61] |
Bi2MoO6/Bi2Mo3O12 heterojunction | 30 mg | Rh B degradation | 10 mg/L 30 mL | Xe lamp 300 W | 30 min | 95% | Wang et al. [62] |
BiVO4/g-C3N4 heterojunction | 180 mg | Rh B degradation | 10 mg/L 180 mL | Xe lamp 500 W | 75 min | 98% | Khan et al. [63] |
Cu2O/BiOBr heterojunction | 50 mg | Rh B degradation | 100 mg/L 100 mL | Xe lamp 300 W | 50 min | 82.33% | Gao et al. [64] |
β-Bi2O3/TiO2 heterojunction | 50 mg | Rh B degradation | 20 mg/L 60 mL | Xe lamp 300 W | 60 min | 99.6% | Wang et al. [65] |
MoS2/ZnO heterojunction | 25 mg | Rh B degradation | 10 mg/L 50 mL | Xe lamp 200 W | 50 min | 95% | Gang et al. [66] |
ZnIn2S4/Bi2WO6 heterojunction | 10 mg | Rh B degradation | 10 mg/L 50 mL | Xe lamp 300 W | 40 min | 93.49 | Liu et al. [67] |
BiOI/AgEuW2O8 heterojunction | 60 mg | Rh B degradation | 30 mg/L 100 mL | Xe lamp 300 W | 180 min | 91.77% | Wu et al. [68] |
CuO/MoO3 heterojunction | 15 mg | Rh B degradation | 8 mg/L 60 mL | Xe lamp 400 W | 120 min | 99% | Hussain et al. [69] |
BiOBr/CdS heterojunction | 20 mg | Rh B degradation | 10 mg/L 40 mL | LED light 5 W | 60 min | 97% | Yu et al. [70] |
SnO2/g-C3N4 composite | 100 mg | Rh B degradation | 30 mg/L 200 mL | LED light 30 W | 150 min | 99.42% | Van et al. [71] |
CuWO4/CuS heterojunction | 40 mg | Rh B degradation | 15 mg/L 100 mL | Xe lamp 300 W | 90 min | 93.2% | Cui et al. [72] |
CuO/g-C3N4 heterojunction | 100 mg | Rh B degradation | 5 mg/L 100 mL | Xe lamp 300 W | 30 min | 88.9% | Zhu et al. [73] |
g-C3N4 (mg) | BiOI (mg) | Symbols of g-C3N4/BiOI |
---|---|---|
100 | 25 | g-C3N4/BiOI-25 |
100 | 35 | g-C3N4/BiOI-35 |
100 | 45 | g-C3N4/BiOI-45 |
100 | 55 | g-C3N4/BiOI-55 |
100 | 65 | g-C3N4/BiOI-65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Wu, T.; Li, K.; Huang, P.; Li, W.; Zhuo, Y.; Liu, K.; Yang, Z.; Han, D. Photocatalytic Enhancement and Recyclability in Visible-Light-Responsive 2D/2D g-C3N4/BiOI p-n Heterojunctions via a Z-Scheme Charge Transfer Mechanism. Molecules 2024, 29, 5418. https://doi.org/10.3390/molecules29225418
Yang S, Wu T, Li K, Huang P, Li W, Zhuo Y, Liu K, Yang Z, Han D. Photocatalytic Enhancement and Recyclability in Visible-Light-Responsive 2D/2D g-C3N4/BiOI p-n Heterojunctions via a Z-Scheme Charge Transfer Mechanism. Molecules. 2024; 29(22):5418. https://doi.org/10.3390/molecules29225418
Chicago/Turabian StyleYang, Shuo, Tianna Wu, Kaiyue Li, Ping Huang, Wenhui Li, Yuquan Zhuo, Keyan Liu, Ziwen Yang, and Donglai Han. 2024. "Photocatalytic Enhancement and Recyclability in Visible-Light-Responsive 2D/2D g-C3N4/BiOI p-n Heterojunctions via a Z-Scheme Charge Transfer Mechanism" Molecules 29, no. 22: 5418. https://doi.org/10.3390/molecules29225418
APA StyleYang, S., Wu, T., Li, K., Huang, P., Li, W., Zhuo, Y., Liu, K., Yang, Z., & Han, D. (2024). Photocatalytic Enhancement and Recyclability in Visible-Light-Responsive 2D/2D g-C3N4/BiOI p-n Heterojunctions via a Z-Scheme Charge Transfer Mechanism. Molecules, 29(22), 5418. https://doi.org/10.3390/molecules29225418