The Influence of Roughness on the Properties of Electroactive Polypyrrole
Abstract
:1. Introduction
2. Roughness of the Coating
3. Tools Used to Measure Roughness of the Coating
4. Roughness Evolution at the Synthesis Stage
5. The Impact of Roughness from Application Perspective
5.1. Improved Adhesion of Coating
5.2. The Role of Roughness in the Cell-Adhesion Process
5.3. The Role of Roughness in Protein Adhesion—Antibacterial Coatings
5.4. Implication of Roughness from Drug-Release System Perspective
5.5. Wettability’s Dependence on Roughness
5.6. PPy in Microbial Electronics Applications
6. Future Development
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kahvazi Zadeh, M.; Yeganeh, M.; Tavakoli Shoushtari, M.; Esmaeilkhanian, A. Corrosion performance of polypyrrole-coated metals: A review of perspectives and recent advances. Synt. Met. 2021, 274, 116723. [Google Scholar] [CrossRef]
- Yin, Y.; Prabhakar, M.; Ebbinghaus, P.; Corrêa da Silva, C.; Rohwerder, M. Neutral inhibitor molecules entrapped into polypyrrole network for corrosion protection. Chem. Eng. J. 2022, 440, 135739–135753. [Google Scholar] [CrossRef]
- El Guerraf, A.; Ben Jadi, S.; Karadas Bakirhan, N.; Eylul Kiymaci, M.; Bazzaoui, M.; Aysil Ozkan, S.; Arbi Bazzaoui, E. Antibacterial activity and volatile organic compounds sensing property of polypyrrole-coated cellulosic paper for food packaging purpose. Polym. Bull. 2022, 79, 11543–11566. [Google Scholar] [CrossRef]
- Krukiewicz, K.; Gniazdowska, B.; Jarosz, T.; Herman, A.P.; Boncel, S.; Turczyn, R. Effect of immobilization and release of ciprofloxacin and quercetin on electrochemical properties of poly(3,4-ethylenedioxypyrrole) matrix. Synt. Met. 2019, 249, 52–62. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, G.; Xu, H.; Kang, L. PPy Doped with Different Metal Sulphate as Electrode Materials for Supercapacitors. Russ. J. Electrochem. 2017, 53, 359–365. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, J.; Miao, Z.; Qian, H.; Zha, Z. DL-Menthol Loaded Polypyrrole Nanoparticles as a Controlled Diclofenac Delivery Platform for Sensitizing Cancer Cells to Photothermal Therapy. ACS Appl. Bio Mater. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Samwang, T.; Morishita Watanabe, N.; Okamoto, Y.; Srinives, S.; Umakoshi, H. Study of Chemical Polymerization of Polypyrrole with SDS Soft Template: Physical, Chemical, and Electrical Properties. ACS Omega 2023, 8, 48946–48957. [Google Scholar] [CrossRef] [PubMed]
- Van Khoe, L.; Manh Hung, H.; Duc, L.; Xuan Luong, N.; Thi Bich Viet, N.; Thi Huong, V.; Thi Yen Oanh, D.; Quoc Trung, V. Properties and corrosion protection of polypyrrole prepared by electrochemical polymerization on aluminum. Viet J. Chem. 2024, 62, 412–420. [Google Scholar] [CrossRef]
- Cui, Z.; Coletta, C.; Dazzi, A.; Lefrançois, P.; Gervais, M.; Néron, S.; Remita, S. Radiolytic Method as a Novel Approach for the Synthesis of Nanostructured Conducting Polypyrrole. Langmuir 2014, 30, 14086–14094. [Google Scholar] [CrossRef]
- Et Taouil, A.; Mourad Mahmoud, M.; Lallemand, F.; Lallemand, S.; Gigandet, M.P.; Hihn, J.-Y. Corrosion protection by sonoelectrodeposited organic films on zinc coated steel. Ultras Sonochem. 2012, 19, 1186–1193. [Google Scholar] [CrossRef]
- Apetrei, R.M.; Carac, G.; Ramanaviciene, A.; Bahrim, G.; Tanase, C.; Ramanavicius, A. Cell-assisted synthesis of conducting polymer—polypyrrole—for the improvement of electric charge transfer through fungal cell wall. Coll. Surf. B Biointerfaces 2019, 175, 671–679. [Google Scholar] [CrossRef]
- Ansari, R. Polypyrrole Conducting Electroactive Polymers: Synthesis and Stability Studies. E-J. Chem. 2006, 3, 186–201. [Google Scholar] [CrossRef]
- Ansari Khalkhali, R. Electrochemical Synthesis and Characterization of Electroactive Conducting Polypyrrole Polymers. Russ. J. Electrochem. 2005, 41, 950–955. [Google Scholar] [CrossRef]
- Otero, T.F. Biomimetic Conducting Polymers: Synthesis, Materials, Properties, Functions, and Devices. Polym. Rev. 2013, 53, 311–351. [Google Scholar] [CrossRef]
- Krukiewicz, K.; Jarosz, T.; Zak, J.K.; Lapkowski, M.; Ruszkowski, P.; Bobkiewicz-Kozlowska, T.; Bednarczyk-Cwynar, B. Advancing the delivery of anticancer drugs: Conjugated polymer/triterpenoid composite. Acta Biomat. 2015, 19, 158–165. [Google Scholar] [CrossRef]
- Lo, M.; Diaw, A.K.D.; Gningue-Sall, D.; Aaron, J.J.; Oturan, M.A.; Chehimi, M.M. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes. Environ. Sci. Poll. Res. 2018, 25, 20012–20022. [Google Scholar] [CrossRef]
- Gutiérrez-Pineda, E.; Alcaide, F.; José Rodríguez-Presa, M.; Bolzan, A.E.; Alfredo Gervasi, C. Electrochemical Preparation and Characterization of Polypyrrole/Stainless Steel Electrodes Decorated with Gold Nanoparticles. ACS Appl. Mater Interfaces 2015, 7, 2677–2687. [Google Scholar] [CrossRef]
- Cysewska, K.; Karczewski, J.; Jasiński, P. The Influence of the Co-Dopant Dexamethasone Phosphate on the Electrodeposition Process and Drug-Release Properties of Polypyrrole-Salicylate on Iron. J. Electrochem. Soc. 2019, 166, G148–G155. [Google Scholar]
- Lei, H.; Seng, N.; Hyono, A.; Ueda, M.; Ohtsuka, T. Electrochemical synthesis of polypyrrole films on copper from phytic solution for corrosion protection. Corr. Sci. 2013, 76, 302–309. [Google Scholar] [CrossRef]
- Chebil, S.; Monod, M.O.; Fisicaro, P. Direct electrochemical synthesis and characterization of polypyrrole nano- and micro-snails. Electrochim. Acta 2014, 123, 527–534. [Google Scholar] [CrossRef]
- Borges, M.H.R.; Nagay, B.E.; Costa, R.C.; Sacramento, C.M.; Ruiz, K.G.; Landers, R.; van den Beucken, J.J.J.P.; Fortulan, C.A.; Rangel, E.C.; da Cruz, N.C.; et al. A tattoo-inspired electrosynthesized polypyrrole film: Crossing the line toward a highly adherent film for biomedical implant applications. Mat. Tod. Chem. 2022, 26, 101095–101099. [Google Scholar] [CrossRef]
- Saugo, M.; Flamini, D.O.; Brugnoni, L.I.; Saidman, S.B. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity. Mat. Sci. Eng. C 2015, 56, 95–103. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Yan, F.; Zhu, J.; Wang, J. Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life. J. Power Sour. 2011, 196, 2373–2379. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Z.; Xia, D.; Zhang, L.; Hui, R.; Zhan, J. Whelk-like Helixes of Polypyrrole Synthesized by Electropolymerization. Adv. Funct. Mater. 2007, 17, 1844–1848. [Google Scholar] [CrossRef]
- Nezhadali, A.; Rouki, Z.; Nezhadali, M. Electrochemical preparation of a molecularly imprinted polypyrrole modified pencil graphite electrode for the determination of phenothiazine in model and real biological samples. Talanta 2015, 144, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, X.; Pan, C.; Si, P.; Huang, P.; Zhou, J. Morphology-dependent electrochemical stability of electrodeposited polypyrrole/nano-ZnO composite coatings. Mat. Chem. Phys. 2022, 279, 125775–125787. [Google Scholar] [CrossRef]
- Nautiyal, A.; Qiao, M.; Edwin Cook, J.; Zhang, X.; Huang, T.-S. High performance polypyrrole coating for corrosion protection and biocidal applications. Appl. Surf. Sci. 2018, 427, 922–930. [Google Scholar] [CrossRef]
- Bocchetta, P.; Frattini, D.; Tagliente, M.; Selleri, F. Electrochemical Deposition of Polypyrrole Nanostructures for Energy Applications: A Review. Curr. Nanosci. 2020, 16, 462–477. [Google Scholar] [CrossRef]
- Sadat Eftekhari, B.; Eskandari, M.; Janmey, P.A.; Samadikuchaksaraei, A.; Gholipourmalekabadi, M. Surface Topography and Electrical Signaling: Single and Synergistic Effects on Neural Differentiation of Stem Cells. Adv. Funct. Mater. 2020, 30, 1907792. [Google Scholar] [CrossRef]
- Joo, J.; Lee, J.K.; Lee, S.Y.; Jang, K.S.; Oh, E.J.; Epstein, A.J. Physical Characterization of Electrochemically and Chemically Synthesized Polypyrroles. Macromolecules 2000, 33, 5131–5136. [Google Scholar] [CrossRef]
- Kong, H.; Yang, M.; Miao, Y.; Zhao, X. ; Yang, M.; Miao, Y.; Zhao, X. Polypyrrole as a Novel Chloride-Storage Electrode for Seawater Desalination. Energy Technol. 2019, 7, 1900835–1900842. [Google Scholar] [CrossRef]
- Mettai, B.; Mekki, A.; Merdj, F.; Bekkar Djelloul Sayah, Z.; Moustefai Soumia, K.; Safiddine, Z.; Mahmoud, R.; Mehdi Chehimi, M. In situ chemical deposition of PPy/NDSA and PPy/DBSA layers on QCM electrodes: Synthesis, structural, morphological and ammonia sensing performances study. J. Polym. Res. 2018, 25, 95–107. [Google Scholar] [CrossRef]
- Syugaev, A.V.; Lyalina, N.V.; Maratkanova, A.N.; Smirnov, D.A. Molecular architecture of highly protective coatings of electrodeposited dodecyl sulfate-doped polypyrrole. Prog. Org. Coat. 2019, 131, 427–434. [Google Scholar] [CrossRef]
- Higgins, M.J.; McGovern, S.T.; Wallace, G.G. Visualizing Dynamic Actuation of Ultrathin Polypyrrole Films. Langmuir 2009, 25, 3627–3633. [Google Scholar] [CrossRef]
- Park, J.; Bauer, S.; von der Mark, K.; Schmuki, P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007, 7, 1686–1691. [Google Scholar] [CrossRef]
- Cheung, K.M.; Bloor, D.; Stevens, G.C. The influence of unusual counterions on the electrochemistry and physical properties of polypyrrole. J. Mater. Sci. 1990, 25, 3814–3837. [Google Scholar] [CrossRef]
- Georgakopoulos-Soares, I.; Papazoglou, E.L.; Karmiris-Obratański, P.; Karkalos, N.E.; Markopoulos, A.P. Surface antibacterial properties enhanced through engineered textures and surface roughness: A review. Coll. Surf. B Bioint. 2023, 231, 113584. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, K.; Gao, T.; Qiao, Y.; Zhang, Y.; Liu, X.; Wang, W.; Ye, J. The unrecognized importance of roughness directionality to polymer wear. Wear 2021, 486–487, 204084. [Google Scholar] [CrossRef]
- Czerwinska-Główka, D.; Skonieczna, M.; Barylski, A.; Golba, S.; Przystaś, W.; Zabłocka-Godlewska, E.; Student, S.; Cwalina, B.; Krukiewicz, K. Bifunctional conducting polymer matrices with antibacterial and neuroprotective effects. Bioelectrochemistry 2022, 144, 10803–10817. [Google Scholar] [CrossRef]
- Cui, X.; Lee, V.A.; Raphael, Y.; Wiler, J.A.; Hetke, J.F.; Anderson, D.J.; Martin, D.C. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 2001, 56, 261–272. [Google Scholar] [CrossRef]
- Akkas, T.; Citak, C.; Sirkecioglu, A.; Güner, F.S. Which is more effective for protein adsorption: Surface roughness, surface wettability or swelling? Case study of polyurethane films prepared from castor oil and poly(ethylene glycol). Polym. Int. 2013, 62, 1202–1209. [Google Scholar] [CrossRef]
- Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:21920:-1:ed-1:v1:en (accessed on 13 November 2024).
- Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:25178:-1:ed-1:v1:en (accessed on 13 November 2024).
- Moreau, C.; Bigerelle, M.; Marteau, J.; Lemesle, J.; Paez, D.; Guibert, R.; Blateyron, F.; Brown, C.A. A novel methodology to assess optical profilometer stability to dis-criminate surface roughness. Surf. Topogr. Metrol. Prop. 2024, 12, 025018. [Google Scholar] [CrossRef]
- Hwang, G.; Hong, G.; Kim, H. Effect of nanoscale roughness on four different atomic force microscopy probes in aqueous solutions using adhesion force measurement. Appl. Surf. Sci. 2024, 645, 158798. [Google Scholar] [CrossRef]
- Goebbels, A.W.; Kumar, A. Non-destructive Materials Characterization by Electromagnetic Techniques. In Non-Destructive Materials Characterization and Evaluation; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2023; Volume 329. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, B.; Huang, Y.; Qin, F.; Chen, L. Surface roughness characterization of additive manufactured Ti-6Al-4 V based on laser ultra-sonic signal. Opt. Laser Technol. 2024, 177, 111070. [Google Scholar] [CrossRef]
- Meinhardt, A.; Lakner, P.; Huber, P.; Keller, T.F. Mapping the nanoscale elastic property modulations of polypyrrole thin films in liquid electrolyte with EC-AFM. Nanoscale Adv. 2024, 6, 102–111. [Google Scholar] [CrossRef]
- Liu, Y.; Vancso, G.J. Polymer Single Chain Imaging, Molecular Forces, and Nanoscale Processes by Atomic Force Microscopy: The Ultimate Proof of the Macromolecular Hypothesis. Prog. Polym. Sci. 2020, 104, 101232. [Google Scholar] [CrossRef]
- Chyasnavichyus, M.; Young, S.L.; Geryak, R.; Tsukruk, V.V. Probing elastic properties of soft materials with AFM: Data analysis for different tip geometries. Polymer 2016, 102, 317–325. [Google Scholar] [CrossRef]
- Svirskis, D.; Wright, B.E.; Travas-Sejdic, J.; Rodgers, A.; Garge, S. Development of a Controlled Release System for Risperidone Using Polypyrrole: Mechanistic Studies. Electroanalysis 2010, 22, 439–444. [Google Scholar] [CrossRef]
- Sharifiviand, A.; Ghasem Mahjani, M.; Jafarian, M. Determination of fractal rough surface of polypyrrole film: AFM and electrochemical analysis. Synt. Met. 2014, 191, 104–112. [Google Scholar] [CrossRef]
- Chappard, D.; Degasne, I.; Huré, G.; Legrand, E.; Audran, M.; Baslé, M.F. Image analysis measurements of roughness by texture and fractal analysis correlate with contact profilometry. Biomaterials 2003, 24, 1399–1407. [Google Scholar] [CrossRef]
- Mei, L.; Guan, G. Profilometry and atomic force microscopy for surface characterization. NanoTransMed 2023, 2, 69–73. [Google Scholar] [CrossRef]
- Santos, S.; Barcons, V.; Christenson, H.K.; Font, J.; Thomson, N.H. The intrinsic resolution limit in the atomic force microscope: Implications for heights of nano-scale features. PLoS ONE 2011, 6, e23821. [Google Scholar] [CrossRef]
- Guo, T.; Wang, S.M.; Dorantes-Gonzalez, D.J.; Chen, J.P.; Fu, X.; Hu, X.T. Development of a hybrid atomic force microscopic measurement system combined with white light scanning interferometry. Sensors 2012, 12, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.H.R.; Nagay, B.E.; Costa, R.C.; Gabriel, J.; Souza, S.; Mathew, M.T.; Barão, V.A.R. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Adv. Coll. Inter. Sci. 2023, 314, 102860. [Google Scholar] [CrossRef] [PubMed]
- Zeglio, E.; Rutz, A.L.; Winkler, T.E.; Malliaras, G.G.; Herland, A. Conjugated Polymers for Assessing and Controlling Biological Functions. Adv. Mater. 2019, 31, 180671. [Google Scholar] [CrossRef]
- Zheng, W.; Razal, J.M.; Spinks, G.M.; Truong, V.T.; Whitten, P.G.; Wallace, G.G. The Role of Unbound Oligomers in the Nucleation and Growth of Electrodeposited Polypyrrole and Method for Preparing High, Strength, High Conductivity Films. Langmuir 2012, 28, 10891–10897. [Google Scholar] [CrossRef]
- Marandi, M.; Kallip, S.; Sammelselg, V.; Tamm, J. AFM study of the adsorption of pyrrole and formation of the polypyrrole film on gold surface. Electrochem. Comm. 2010, 12, 854–858. [Google Scholar] [CrossRef]
- Bayat, M.; Izadan, H.; Molina, B.G.; Sánchez, M.; Santiago, S.; Semnani, D.; Dinari, M.; Guirado, G.; Estrany, F.; Alemán, C. Electrochromic Self-Electrostabilized Polypyrrole Films Doped with Surfactant and Azo Dye. Polymers 2019, 11, 1757–1775. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Travas-Sejdic, J.; Chu, S.Y.; Li, K.C.; Kilmartin, P.A. The actuation behavior and stability of p-toluene sulfonate doped polypyrrole films formed at different deposition current densities. J. Appl. Polym. Sci. 2009, 111, 876–882. [Google Scholar] [CrossRef]
- Du, X.; Hao, X.; Wang, Z.; Ma, X.; Guan, G.; Abuliti, A.; Ma, G.; Liu, S. Highly stable polypyrrole film prepared by unipolar pulse electro-polymerization method as electrode for electrochemical supercapacitor. Synt. Met. 2013, 175, 138–145. [Google Scholar] [CrossRef]
- Holze, R. Overoxidation of Intrinsically Conducting Polymers. Polymers 2022, 14, 1584. [Google Scholar] [CrossRef] [PubMed]
- Debiemme-Chouvy, C.; Tuyet Mai Tran, T. An insight into the overoxidation of polypyrrole materials. Electrochem. Comm. 2008, 10, 947–950. [Google Scholar] [CrossRef]
- Patois, T.; Lakard, B.; Monney, S.; Roizard, X.; Fievet, P. Characterization of the Surface Properties of Polypyrrole Films: Influence of Electrodeposition Parameters. Synt. Met. 2011, 161, 2498–2505. [Google Scholar] [CrossRef]
- Gandhi, M.; Spinks, G.M.; Burford, R.P.; Wallace, G.G. Film Substructure and Mechanical Properties of Electrochemically Prepared Polypyrrole. Polymer 1995, 36, 4761–4765. [Google Scholar] [CrossRef]
- Kwon Seol, S.; Tae Kim, J.; Ho Je, J.; Hwu, Y.; Margaritondo, G. Three-Dimensional (3D) Polypyrrole Microstructures with High Aspect Ratios Fabricated by Localized Electropolymerization. Macromolecules 2008, 41, 3071–3074. [Google Scholar] [CrossRef]
- Beebee, C.; Watkins, E.B.; Sapstead, R.M.; Ferreira, V.C.; Ryder, K.S.; Smith, E.L.; Hillman, A.R. Effect of electrochemical control function on the internal structure and composition of electrodeposited polypyrrole films: A neutron reflectometry study. Electrochim. Acta 2019, 295, 978–988. [Google Scholar] [CrossRef]
- Otero, T.F.; De Larreta, E. Electrochemical control of morphology adherence, appearance and growth of polypyrrole films. Synt. Met. 1988, 26, 79–88. [Google Scholar] [CrossRef]
- Turhan, M.C.; Weiser, M.; Jha, H.; Virtanen, S. Optimization of electrochemical polymerization parameters of polypyrrole on Mg–Al alloy (AZ91D) electrodes and corrosion performance. Electrochim. Acta 2011, 56, 5347–5354. [Google Scholar] [CrossRef]
- Dejeu, J.; Et Taouil, A.; Rougeot, P.; Lakard, S.; Lallemand, F.; Lakard, B. Morphological and adhesive properties of polypyrrole films synthesized by sonoelectrochemical technique. Synt. Met. 2010, 160, 2540–2545. [Google Scholar] [CrossRef]
- Paramo-Garcia, U.; Batina, N.; Ibanez, J.G. The Effect of pH on the Morphology of Electrochemically-grown Polypyrrole Films: An AFM Study. Int. J. Electrochem. Sci. 2012, 7, 12316–12325. [Google Scholar] [CrossRef]
- Paramo-García, U.; Ibanez, J.G.; Batina, N. AFM Analysis of Polypyrrole Films Synthesized in the Presence of Selected Doping Agents. Int. J. Electrochem. Sci. 2013, 8, 2656–2669. [Google Scholar] [CrossRef]
- Silk, T.; Hong, Q.; Tamm, J.; Compton, R.G. AFM studies of polypyrrole film surface morphology I. The influence of film thickness and dopant nature. Synt. Met. 1998, 93, 59–64. [Google Scholar] [CrossRef]
- Silk, T.; Hong, Q.; Tamm, J.; Compton, R.G. AFM studies of polypyrrole film surface morphology II. Roughness characterization by the fractal dimension analysis. Synt. Met. 1998, 93, 65–71. [Google Scholar] [CrossRef]
- Hackett, A.J.; Malmström, J.; Travas-Sejdic, J. Functionalization of conducting polymers for biointerface applications. Prog. Polym. Sci. 2017, 70, 18–33. [Google Scholar] [CrossRef]
- Gelmi, A.; Higgins, M.J.; Wallace, G.G. Physical surface and electromechanical properties of doped polypyrrole biomaterials. Biomaterials 2010, 31, 1974–1983. [Google Scholar] [CrossRef]
- Zhao, H.; Wallace, G.G. Polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) polymer composite. Polym. Gels Netw. 1998, 6, 233–245. [Google Scholar] [CrossRef]
- Kaynak, A. Effect of synthesis parameters on the conducting polypyrrole films. Mat. Res. Bull. 1997, 32, 271–285. [Google Scholar] [CrossRef]
- Ratautaite, V.; Boguzaite, R.; Mickeviciute, M.B.; Mikoliunaite, L.; Samukaite-Bubniene, U.; Ramanavicius, A.; Ramanaviciene, A. Evaluation of Electrochromic Properties of Polypyrrole/Poly(Methylene Blue) Layer Doped by Polysaccharides. Sensors 2022, 22, 232. [Google Scholar] [CrossRef]
- Gribkovaa, O.L.; Kabanova, V.A.; Nekrasova, A.A. Electrochemical Polymerization of Pyrrole in the Presence of Sulfoacid Polyelectrolytes. Russ. J. Electrochem. 2019, 55, 1110–1117. [Google Scholar] [CrossRef]
- Wysocka-Żołopa, M.; Winkler, K. Electrochemical synthesis and properties of conical polypyrrole structures. Electrochim. Acta 2017, 258, 1421–1434. [Google Scholar] [CrossRef]
- Mindroiu, M.; Ion, R.; Pirvu, C.; Cimpean, A. Surfactant-dependent macrophage response to polypyrrole-based coatings electrodeposited on Ti6Al7Nb alloy. Mater. Sci. Eng. C 2013, 33, 3353–3361. [Google Scholar] [CrossRef]
- Ansari Khalkhali, R.; Price, W.E.; Wallace, G.G. Quartz crystal microbalance studies of the effect of solution temperature on the ion-exchange properties of polypyrrole conducting electroactive polymers. React. Funct. Polym. 2003, 56, 141–146. [Google Scholar] [CrossRef]
- Alshammary, B.; Walsh, F.C.; Herrasti, P.; Ponce de Leon, C. Electrodeposited conductive polymers for controlled drug release: Polypyrrole. J. Solid State Electrochem. 2016, 20, 839–859. [Google Scholar] [CrossRef]
- Krukiewicz, K.; Herman, A.P.; Turczyn, R.; Szymańska, K.; Koziol, K.K.; Boncel, S.; Zak, J.K. A role of nanotube dangling pyrrole and oxygen functions in the electrochemical synthesis of polypyrrole/MWCNTs hybrid materials. Appl. Surf. Sci. 2014, 317, 794–802. [Google Scholar] [CrossRef]
- Kiefer, R.; Khadka, R.; Travas-Sejdic, J. Poly(ethylene oxide) in polypyrrole doped dodecylbenzenesulfonate: Characterisation and linear actuation. Int. J. Nanotech. 2019, 15, 689–694. [Google Scholar] [CrossRef]
- Cysewska, K.; Virtanen, S.; Jasiński, P. Electrochemical Activity and Electrical Properties of Optimized Polypyrrole Coatings on Iron. J. Electrochem. Soc. 2015, 162, E307–E313. [Google Scholar] [CrossRef]
- Siong Teh, K.; Takahashi, Y.; Yao, Z.; Lu, Y.-W. Influence of redox-induced restructuring of polypyrrole on its surface morphology and wettability. Sens. Actuators A 2009, 155, 113–119. [Google Scholar] [CrossRef]
- Qu, J.; Ouyang, L.; Kuo, C.; Marti, D.C. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. Acta Biomater. 2016, 31, 114–121. [Google Scholar] [CrossRef]
- Rajnicek, A.M.; Zhao, Z.; Moral-Vico, J.; Cruz, A.M.; McCaig, C.D.; Casañ-Pastor, N. Controlling Nerve Growth with an Electric Field Induced Indirectly in Transparent Conductive Substrate Materials. Adv. Healthcare Mater. 2018, 7, 1800473–1800484. [Google Scholar] [CrossRef]
- Svirskis, D.; Wright, B.E.; Travas-Sejdic, J.; Rodgers, A.; Garg, S. Evaluation of physical properties and performance over time of an actuating polypyrrole based drug delivery system. Sens. Actuators B 2010, 151, 97–102. [Google Scholar] [CrossRef]
- Gao, D.; Parida, K.; See Lee, P. Emerging Soft Conductors for Bioelectronic Interfaces. Adv. Funct. Mater. 2019, 30, 1907184–1907214. [Google Scholar] [CrossRef]
- Liu, Y.; Gan, Q.; Baig, S.; Smela, E. Improving PPy Adhesion by Surface Roughening. J. Phys. Chem. C 2007, 111, 11329–11338. [Google Scholar] [CrossRef]
- Kim, K.-G.; Hun Park, G.; Agumba, D.O.; Yeol Kim, S. In-situ measurement of drying and electrochemical-cycling-induced mechanical behavior and delamination of polypyrrole electrodes for energy storage applications. Surf Interf 2022, 34, 102297. [Google Scholar] [CrossRef]
- Otero, T.F.; Martinez, J.G.; Arias-Pardilla, J. Biomimetic electrochemistry from conducting polymers. A review Artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces. Electrochim. Acta 2012, 84, 112–128. [Google Scholar] [CrossRef]
- Behan, J.A.; Barrière, F. Effects of Polydopamine Incorporation on the Nanostructure and Electrochemical Performance of Electrodeposited Polypyrrole Films. C (J. Carbon Res.) 2024, 10, 20. [Google Scholar] [CrossRef]
- Marashi-Najafi, F.; Khalil-Allafi, J.; Mahdavi, S. Superior multifunctional polypyrrole anticorrosion coating modified by polydopamine decorated barium titanate nanoparticles on NiTi shape memory alloys. J. Mat. Res. Tech. 2023, 26, 6823–6841. [Google Scholar] [CrossRef]
- Kim, K.-G.; Yeol Kim, S. Increase in Interfacial Adhesion and electrochemical Charge storage Capacity of polypyrrole on Au electrodes using polyethyleneimine. Sci. Rep. 2019, 9, 2169. [Google Scholar] [CrossRef]
- Cui, X.; Martin, D.C. Fuzzy Gold Electrodes for Lowering Impedance and Improving Adhesion with Electrodeposited Conducting Polymer Films. Sens. Act. A 2003, 103, 384–394. [Google Scholar] [CrossRef]
- Jacques, A.; Saad, A.; Chehimi, M.M.; Poleunis, C.; Delcorte, A.; Delhalle, J.; Mekhalif, Z. Nitinol Modified by In Situ Generated Diazonium Salts as Adhesion Promoters for Photopolymerized Pyrrole. Chem. Select 2018, 3, 11800–11808. [Google Scholar] [CrossRef]
- Garcia-Cabezona, C.; Garcia-Hernandez, C.; Rodriguez-Mendez, M.L.; Martin-Pedrosa, F. A new strategy for corrosion protection of porous stainless steel using polypyrrole films. J. Mater. Sci. Tech. 2020, 37, 85–95. [Google Scholar] [CrossRef]
- Hiena, N.T.L.; Garciab, B.; Pailleretc, A.; Deslouis, C. Role of doping ions in the corrosion protection of iron by polypyrrole films. Electrochim. Acta 2005, 50, 1747–1755. [Google Scholar] [CrossRef]
- Li, X.; Imin, P.; Adronov, A.; Zhitomirsky, I. Effect of 5-sulfosalicylic acid and poly[2,5-bis(3-sulfonatopropoxy)-1,4-ethynylphenylene-alt-1,4-ethynylphenylene] on electrodeposition of polypyrrole–carbon nanotube films on stainless steel. Mater. Lett. 2012, 68, 24–27. [Google Scholar] [CrossRef]
- Castro-Beltran, A.; Alvarado-Beltran, C.G.; Lara-Sanchez, J.F.; de la Cruz, W.; Castillon-Barraza, F.F.; Cruz-Silva, R. Electrochemical Deposition of Polypyrrole in the Presence of Silanes as Adhesion Promoters. Polymers 2023, 15, 2354. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.; Doan-Nguyen, V. Electrochemical Delamination for Free-Standing Polypyrrole Doped with Dodecylbenzenesulfonate Films and the Effect of Substrate. J. Electroch. Soc. 2024, 171, 055503. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Wu, P.; Li, X.; Zhang, M.; Zhu, J. Polypyrrole capacitance characteristics with different doping ions and thicknesses. Phys. Chem. Chem. Phys. 2017, 19, 21165–21173. [Google Scholar] [CrossRef]
- Majhy, B.; Priyadarshinia, P.; Sen, A.K. Effect of surface energy and roughness on cell adhesion and growth—facile surface modification for enhanced cell culture. RSC Adv. 2021, 11, 15467–15476. [Google Scholar] [CrossRef]
- Inoue, Y.; Nakanishi, T.; Ishihara, K. Measurement of the Interaction Forces between Proteins and Iniferter-Based Graft-Polymerized Surfaces with an Atomic Force Microscope in Aqueous Media. Langmuir 2013, 29, 10752–10758. [Google Scholar] [CrossRef]
- Li, M.; Mondrinos, M.J.; Chen, X.; Gandhi, M.R.; Ko, F.K.; Lelkes, P.I. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J. Biomed. Mater. Res. Part A 2006, 79, 963–973. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Xu, Y.; An, H.; Li, X. Fabrication of a flexible porous polypyrrole film with a 3D micro-nanostructure and its electrochemical properties. Phys. Chem. Chem. Phys. 2023, 25, 10925–10934. [Google Scholar] [CrossRef]
- He, Y.; Dai, L.; Zhang, X.; Sun, Y.; Shi, W.; Ge, D. The Bioactive Polypyrrole/Polydopamine Nanowire Coating with Enhanced Osteogenic Differentiation Ability with Electrical Stimulation. Coatings 2020, 10, 1189. [Google Scholar] [CrossRef]
- Fonner, J.M.; Forciniti, L.; Nguyen, H.; Byrne, J.D.; Kou, Y.F.; Syeda-Nawaz, J.; Schmidt, C.E. Biocompatibility implications of polypyrrole synthesis techniques. Biomed. Mater. 2008, 3, 034124–034136. [Google Scholar] [CrossRef]
- Le, J.Y.; Schmidt, C.E. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer. J. Biomed. Mater. Res. Part A 2015, 103A, 2126–2132. [Google Scholar] [CrossRef]
- Garner, B.; Hodgson, A.J.; Wallace, G.G.; Underwood, P.A. Human endothelial cell attachment to and growth on polypyrrole-heparin is vitronectin dependent. J. Mat. Sci. Mat. Med. 1999, 10, 19–27. [Google Scholar] [CrossRef]
- Pelto, J.M.; Haimi, S.P.; Siljander, A.S.; Miettinen, S.S.; Tappura, K.M.; Higgins, M.J.; Wallace, G.G. Surface Properties and Interaction Forces of Biopolymer-Doped Conductive Polypyrrole Surfaces by Atomic Force Microscopy. Langmuir 2013, 29, 6099–6108. [Google Scholar] [CrossRef]
- Patel, T.; Skorupa, M.; Krukiewicz, K. Surface grafting of poly-L-lysine via diazonium chemistry to enhance cell adhesion to biomedical electrodes. Bioelectrochemistry 2023, 152, 108465. [Google Scholar] [CrossRef] [PubMed]
- Rikhari, B.; Saranya, K.; Kalaiyarasan, M.; Rahaman, M.; Periyasami, G.; Pandiaraj, S.; Thiruvengadam, M.; Pugalmani, S.; Rajakumar, G. Bioactive conductive polymer coated titanium to support osseointegration. Biomass Conver. Bioref. 2024, 14, 10699–10712. [Google Scholar] [CrossRef]
- Kim, S.; Jang, L.K.; Jang, M.; Lee, S.; Hardy, J.G.; Young Lee, J. Electrically Conductive Polydopamine-Polypyrrole as High Performance Biomaterials for Cell Stimulation in Vitro and Electrical Signal Recording in Vivo. ACS Appl. Mater. Interfaces 2018, 10, 33032–33042. [Google Scholar] [CrossRef] [PubMed]
- Boehler, C.; Carli, S.; Fadiga, L.; Stieglitz, T.; Asplund, M. Tutorial: Guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 2020, 15, 3557–3578. [Google Scholar] [CrossRef]
- Gomez, N.; Lee, J.Y.; Nickels, J.D.; Schmidt, C.E. Micropatterned Polypyrrole: A Combination of Electrical and Topographical Characteristics for the Stimulation of Cells. Adv. Funct. Mater. 2007, 17, 1645–1653. [Google Scholar] [CrossRef]
- da Silva Jr, F.A.G.; Queiroz, J.C.; Macedo, E.R.; Fernandes, A.W.C.; Freire, N.B.; da Costa, M.M.; de Oliveira, H.P. Antibacterial behavior of polypyrrole: The influence of morphology and additives incorporation. Mater. Sci. Eng. C 2016, 62, 317–322. [Google Scholar] [CrossRef]
- El Jaouhari, A.; El Asbahani, A.; Bouabdallaoui, M.; Aouzal, Z.; Filotás, D.; Bazzaoui, E.A.; Nagy, L.; Nagy, G.; Bazzaoui, M.; Albourin, A.; et al. Corrosion resistance and antibacterial activity of electrosynthesized polypyrrole. Synt. Met. 2017, 226, 15–24. [Google Scholar] [CrossRef]
- Krukiewicz, K.; Kazek-Kęsik, A.; Brzychczy-Włoch, M.; Łos, M.J.; Njie Ateba, C.; Mehrbod, P.; Ghavami, S.; Yufetar Shyntum, D. Review: Recent Advances in the Control of Clinically Important Biofilms. Int. J. Mol. Sci. 2022, 23, 9526. [Google Scholar] [CrossRef]
- Li, X.; Qiu, J.; Liu, X. Antibacterial Property and Biocompatibility of Polypyrrole Films Treated by Oxygen Plasma Immersion Ion Implantation. Adv. Mater. Interf. 2020, 7, 2000057. [Google Scholar] [CrossRef]
- Cheruthazhekatt, S.; Černák, M.; Slavíček, P.; Havel, J. Gas plasmas and plasma modified materials in medicine. J. Appl. Biomed. 2010, 8, 55–66. [Google Scholar] [CrossRef]
- Upadhyay, J.; Kumar, A.; Gogoi, B.; Buragohain, A.K. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process. Mat. Sci. Eng. C 2015, 54, 8–13. [Google Scholar] [CrossRef]
- Golabi, M.; Turner, A.P.F.; Jager, E.W.H. Tuning the Surface Properties of Polypyrrole Films for Modulating Bacterial Adhesion. Macromol. Chem. Phys. 2016, 217, 1128–1135. [Google Scholar] [CrossRef]
- Zhou, W.; Lu, L.; Chen, D.; Wang, Z.; Zhai, J.; Wang, R.; Tan, G.; Mao, J.; Yu, P.; Ning, C. Construction of high surface potential polypyrrole nanorods with enhanced antibacterial properties. J. Mater. Chem. B 2018, 6, 3128–3135. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Pan, K.; Dai, M.; Wei, W.; Liu, X.; Li, X. A Gallic Acid-Doped Polypyrrole Coating with Anticorrosion and Antibacterial Properties on Magnesium Alloy. ACS Appl. Bio Mater. 2022, 5, 4244–4255. [Google Scholar] [CrossRef]
- Jeong, J.O.; Kim, S.; Park, J.; Lee, S.; Park, J.-S.; Lim, Y.-M.; Young Lee, J. Biomimetic nonbiofouling polypyrrole electrodes grafted with zwitterionic polymer using gamma ray. J. Mater. Chem. B 2020, 8, 7225–7232. [Google Scholar] [CrossRef]
- Tandon, B.; Magaz, A.; Balint, R.; Blaker, J.J.; Cartmell, S.H. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv. Drug Deliv. Rev. 2018, 129, 148–168. [Google Scholar] [CrossRef]
- Krukiewicz, K.; Bednarczyk-Cwynar, B.; Turczyn, R.; Zak, J.K. EQCM verification of the concept of drug immobilization and release from conducting polymer matrix. Electrochim. Acta 2016, 212, 694–700. [Google Scholar] [CrossRef]
- Puiggali-Jou, A.; del Vallea, L.J.; Aleman, C. Drug delivery systems based on intrinsically conducting polymers. J. Control. Release 2019, 309, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, R.; Lagenaur, C.F.; Cui, X.T. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J. Control. Release 2006, 110, 531–541. [Google Scholar] [CrossRef]
- Otero, T.F.; Padilla, J. Anodic shrinking and compaction of polypyrrole blend: Electrochemical reduction under conformational relaxation kinetic control. J. Electroanal. Chem. 2004, 561, 167–171. [Google Scholar] [CrossRef]
- Freedman, M.; Tracy, S.; Cui, X. Substrate Electrode Morphology Affects Electrically Controlled Drug Release from Electrodeposited Polypyrrole Films. Phys. Chem. Comm. 2014, 1, 15–25. [Google Scholar]
- Moloney, E.; Breslin, C.B. The formation and properties of polypyrrole doped with an immobile antibiotic. J. Solid State Electrochem. 2019, 23, 2031–2042. [Google Scholar] [CrossRef]
- Antensteiner, M.; Khorrami, M.; Fallahianbijan, F.; Borhan, A.; Reza, M. Conducting Polymer Microcups for Organic Bioelectronics and Drug Delivery Applications. Adv. Mater. 2017, 29, 1702576–1702587. [Google Scholar] [CrossRef]
- Sirivisoot, S.; Pareta, R.; Webster, T.J. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 2011, 22, 085101–085116. [Google Scholar] [CrossRef]
- Zhang, B.; Molino, P.J.; Harris, A.R.; Yue, Z.; Moulton, S.E.; Wallace, G.G. Conductive and protein resistant polypyrrole films for dexamethasone delivery. J. Mater. Chem. B 2016, 4, 2570–2578. [Google Scholar] [CrossRef]
- Wub, C.; He, X.; Zhu, Y.; Weng, W.; Cheng, K.; Wang, D.; Chen, Z. Electrochemical deposition of Ppy/Dex/ECM coatings and their regulation on cellular responses through electrical controlled drug release. Coll. Surf. B Biointer. 2023, 222, 13016. [Google Scholar] [CrossRef]
- Flamini, D.O.; González, M.B.; Saidman, S.B. Portugaliae Synthesis and Characterization of Heparin-Doped Polypyrrole Coatings Using an Electrochemical Quartz Crystal Microbalance (EQCM). Electrochim. Acta 2022, 40, 47–57. [Google Scholar] [CrossRef]
- Cysewska, K.; Karczewski, J.; Jasinski, P. Influence of the electrosynthesis conditions on the spontaneous release of anti-inflammatory salicylate during degradation of polypyrrole coated iron for biodegradable cardiovascular stent. Electrochim. Acta 2019, 320, 134612. [Google Scholar] [CrossRef]
- Alshammary, B.; Casillas, N.; Cook, R.B.; Swingler, J.; Ponce de León, C.; Walsh, F.C. The importance of the film structure during self-powered ibuprofen salicylate drug release from polypyrrole electrodeposited on AZ31 Mg. J. Solid State Electrochem. 2016, 20, 3375–3382. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, Y.; Cui, X.; Huang, X.; He, Y.; Ji, S.; Shi, W.; Ge, D. Enhanced drug loading capacity of polypyrrole nanowire network for controlled drug release. Synt. Met. 2013, 163, 19–23. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Wettability of conducting polymers: From superhydrophilicity to superoleophobicity. Prog. Polym. Sci. 2014, 39, 656–682. [Google Scholar] [CrossRef]
- de Leon, A.; Advincula, R.C. Conducting Polymers with Superhydrophobic Effects as Anticorrosion Coating. In Intelligent Coatings for Corrosion Control; Tiwari, A., Rawlins, J., Hihara, L.H., Eds.; Chapter 11; Elsevier Butterworth Heinemann: Oxford, UK; Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Petitjean, J.E.; Lacroix, J.C.; Chane-Ching, K.I.; Tanguy, J.; Lacaze, P.C. Ultrafast electrosynthesis of high hydrophobic polypyrrole coating on a zinc electrode: Applications to the protection against corrosion. Chem. Mater. 2008, 20, 4447–4456. [Google Scholar] [CrossRef]
- Husson, J.; Lakard, S.; Monney, S.; Buron, C.C.; Lakard, B. Elaboration and characterization of carboxylic acid-functionalized polypyrrole films. Synt. Met. 2016, 220, 247–254. [Google Scholar] [CrossRef]
- Mekhalif, Z.; Cossement, D.; Hevesi, L.; Delhalle, D. Electropolymerization of pyrrole on silanized polycrystalline titanium substrates. J. Appl. Surf. Sci. 2008, 254, 4056–4062. [Google Scholar] [CrossRef]
- Xue, M.; Li, F.; Chen, D.; Yang, Z.; Wang, X.; Ji, J. High-Oriented Polypyrrole Nanotubes for Next-Generation Gas Sensor. Adv. Mater. 2016, 28, 8265–8270. [Google Scholar] [CrossRef]
- Mohandesnezhad, S.; Etminanfar, M.; Mahdavi, S.; Saman Safavi, M. Enhanced bioactivity of 316L stainless steel with deposition of polypyrrole/hydroxyapatite layered hybrid coating: Orthopedic applications. Surf. Interfaces 2022, 28, 101604–101615. [Google Scholar] [CrossRef]
- Young Lee, J.; Schmidt, C.E. Pyrrole-hyaluronic acid conjugates for decreasing cell binding to metals and conducting polymers. Acta Biomater. 2010, 6, 4396–4404. [Google Scholar] [CrossRef]
- Dutta, K.; Paban Kundu, P. Amphiphiles as hydrophobicity regulator: Fine tuning the surface hydrophobicity of an electropolymerized film. J. Coll. Interfaces Sci. 2013, 397, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, W.; Mulchandani, A.; Yan, Y. Reversible Conversion of Conducting Polymer Films from Superhydrophobic to Superhydrophilic. Angew. Chem. Int. Ed. 2005, 44, 6009–6012. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Kong, Z.; Xiao, G.; Teng, C.; Li, Y.; Ren, G.; Wang, S.; Zhu, Y.; Jiang, L. Polypyrrole Whelk-Like Arrays toward Robust Controlling Manipulation of Organic Droplets Underwater. Small 2017, 13, 1701938. [Google Scholar] [CrossRef]
- Wen, J.; Ding, Y.; Zhong, J.; Chen, R.; Gao, F.; Qiao, Y.; Fu, C.; Wang, J.; Shen, L.; He, H. Ice-interface assisted large-scale preparation of polypyrrole/graphene oxide films for all-solid-state supercapacitors. RSC Adv. 2020, 10, 41503–41510. [Google Scholar] [CrossRef]
- Song, J.; Liu, H.; Wan, M.; Zhu, Y.; Jiang, L. Bio-inspired isotropic and anisotropic wettability on a Janus free-standing polypyrrole film fabricated by interfacial electro-polymerization. J. Mater. Chem. A 2013, 1, 1740–1745. [Google Scholar] [CrossRef]
- Chandra Lohani, P.; Prasad Tiwari, A.; Muthurasu, A.; Pathak, I.; Babu Poudel, M.; Chhetri, K.; Dahal, B.; Acharya, D.; Hoon Ko, T.; Yong Kim, H. Phytic acid empowered two nanos “Polypyrrole tunnels and transition Metal-(Oxy)hydroxide Sheets” in a single platform for unmitigated redox water splitting. Chem. Eng. J. 2023, 463, 142280. [Google Scholar] [CrossRef]
- Shi, C.; Wu, Z.; Li, Y.; Zhang, X.; Xu, Y.; Chen, A.; Yan, C.; Shi, Y.; Wang, T.; Su, B. Superhydrophobic/Superhydrophilic Janus Evaporator for Extreme High Salt-Resistance Solar Desalination by an Integrated 3D Printing Method. ACS Appl. Mater. Interfaces 2023, 15, 23971–23979. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, R.; Wu, Y.; Lin, Z.-Q.; Xie, J.; Hao Tan, C.; Say Chey Loo, J.; Cao, B.; Zhang, J.-R.; Zhu, J.-J. Living and Conducting: Coating Individual Bacterial Cells with in situ Formed Polypyrrole. Angew. Chem. Int. Ed. 2017, 56, 10516–10520. [Google Scholar] [CrossRef]
- McCuskey, S.M.; Chatsirisupachai, J.; Zeglio, E.; Parlak, O.; Panoy, P.; Herland, A.; Bazan, G.C.; Nguyen, T.Q. Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chem. Rev. 2022, 122, 4791–4825. [Google Scholar] [CrossRef]
- Cheng, Z.; Ding, C.; Liu, H.; Zhua, Y.; Jiang, L. A facile bacterial assisted electrochemical self-assembly of polypyrrole micro-pillars: Towards underwater low adhesive superoleophobicity. Nanoscale 2014, 6, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska-Główka, D.; Krukiewicz, K. A journey in the complex interactions between electrochemistry and bacteriology: From electroactivity to electromodulation of bacterial biofilms. Bioelectrochemistry 2020, 31, 107401. [Google Scholar] [CrossRef] [PubMed]
- Roullier, C.; Reggente, M.; Gilibert, P.; Boghossian, A.A. Polypyrrole Electrodes Show Strain-Specific Enhancement of Photocurrent from Cyanobacteria. Adv. Mater. Technol. 2023, 8, 2201839. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golba, S.; Kubisztal, J. The Influence of Roughness on the Properties of Electroactive Polypyrrole. Molecules 2024, 29, 5436. https://doi.org/10.3390/molecules29225436
Golba S, Kubisztal J. The Influence of Roughness on the Properties of Electroactive Polypyrrole. Molecules. 2024; 29(22):5436. https://doi.org/10.3390/molecules29225436
Chicago/Turabian StyleGolba, Sylwia, and Julian Kubisztal. 2024. "The Influence of Roughness on the Properties of Electroactive Polypyrrole" Molecules 29, no. 22: 5436. https://doi.org/10.3390/molecules29225436
APA StyleGolba, S., & Kubisztal, J. (2024). The Influence of Roughness on the Properties of Electroactive Polypyrrole. Molecules, 29(22), 5436. https://doi.org/10.3390/molecules29225436