Gold-Catalyzed Propargylic Substitution Followed by Cycloisomerization in Ionic Liquid: Environmentally Friendly Synthesis of Polysubstituted Furans from Propargylic Alcohols and 1,3-Dicarbonyl Compounds
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for Gold(III)-Catalyzed Propargylic Substitution Reaction Followed by Cycloisomerization for Synthesis of Polysubstituted Furans 3 from Propargylic Alcohol 1 with 1,3-Dicarbonyl Compounds 2
3.3. General Procedure for Catalyst Recycling in the Gold-Catalyzed Propargylic Substitution Followed by Cycloisomerization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez, M.; Capson, T.L.; Guzman, H.M.; González, J.; Ortega-Barría, E.; Quiñoá, E.; Riguera, R. Leptolide, a New Furanocembranolide Diterpene from Leptogorgia alba. J. Nat. Prod. 2005, 68, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.A., III. Dual Kinase Inhibition in the Treatment of Breast Cancer: Initial Experience with the EGFR/ErbB-2 Inhibitor Lapatinib. Oncologist 2004, 9, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Munro, T.A.; Duncan, K.K.; Xu, W.; Wang, Y.; Liu-Chen, L.-Y.; Carlezon, W.A., Jr.; Cohen, B.M.; Be’guin, C. Standard Protecting Groups Create Potent and Selective k Opioids: Salvinorin B Alkoxymethyl Ethers. Bioorg. Med. Chem. 2008, 16, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Riley, A.P.; Groer, C.E.; Young, D.; Ewald, A.W.; Kivell, B.M.; Prisinzano, T.E. Synthesis and k-Opioid Receptor Activity of Furan-Substituted Salvinorin A Analogues. J. Med. Chem. 2014, 57, 10464–10475. [Google Scholar] [CrossRef] [PubMed]
- Lipshutz, B.H. Five-Membered Heteroaromatic Rings as Intermediates in Organic Synthesis. Chem. Rev. 1986, 86, 795–819. [Google Scholar] [CrossRef]
- Makarov, A.S.; Uchuskin, M.G.; Trushkov, I.V. Furan Oxidation Reactions in the Total Synthesis of Natural Products. Synthesis 2018, 50, 3059–3086. [Google Scholar]
- Brown, R.C.D. Developments of Furan Syntheses. Angew. Chem. Int. Ed. 2005, 44, 850–852. [Google Scholar] [CrossRef]
- Gluevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition Metal-Mediated Synthesis of Monocyclic Aromatic Heterocycles. Chem. Rev. 2013, 113, 3084–3213. [Google Scholar] [CrossRef]
- Duc, D.X. Recent Progress in the Synthesis of Furan. Mini Rev. Org. Chem. 2019, 16, 422–452. [Google Scholar] [CrossRef]
- Gujarathi, S.; Zheng, G. AgSbF6-Catalyzed Efficient Propargylation/Cycloisomerization Tandem Reaction for the Synthesis of Fully Substituted Furans and New Insights into the Reaction Mechanism. Tetrahedron 2015, 71, 6183–6188. [Google Scholar] [CrossRef]
- Chatterjee, P.N.; Roy, S. Alkylation of 1,3-Dicarbonyl Compounds with Benzylic and Propargylic Alcohols Using Ir-Sn Bimetallic Catalyst: Synthesis of Fully Decorated Furans and Pyrroles. Tetrahedron Lett. 2011, 67, 4569–4577. [Google Scholar] [CrossRef]
- Georgy, M.; Boucard, V.; Campagne, J.-M. Gold(III)-Catalyzed Nucleophilic Substitution of Propargylic Alcohols. J. Am. Chem. Soc. 2005, 127, 14180–14181. [Google Scholar] [CrossRef] [PubMed]
- Arcadi, A.; Alfonsi, M.; Chiarini, M.; Marinelli, F. Sequential Gold-Catalyzed Reactions of 1-Phenylprop-2-yn-1-ol with 1,3-Dicarbonyl Compounds. J. Organomet. Chem. 2009, 694, 576–582. [Google Scholar] [CrossRef]
- Morita, N.; Uchida, S.; Chiaki, H.; Ishii, N.; Tanikawa, K.; Tanaka, K., III; Hashimoto, Y.; Tamura, O. Gold(III)-Catalyzed Propargylic Substitution Reaction Followed by Cycloisomerization for Synthesis of Poly-Substituted Furans from N-Tosylpropargyl Amines with 1,3-Dicarbonyl Compounds. Molecules 2024, 29, 378. [Google Scholar] [CrossRef]
- Minkler, S.R.K.; Lipshutz, B.H.; Krause, N. Gold Catalysis in Micellar Systems. Angew. Chem. Int. Ed. 2011, 50, 7820–7823. [Google Scholar] [CrossRef]
- Minkler, S.R.K.; Isley, N.A.; Lippincott, D.J.; Krause, N. Leveraging the Micellar Effect: Gold-Catalyzed Dehydrative Cyclizations in Water at Room Temperature. Org. Lett. 2014, 16, 724–726. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Z.; Shu, X.; Duan, X.; Liang, Y. Bu4N[AuCl4]-Catalyzed Synthesis of Highly Substituted Furans from 2-(1-Alkynyl)-2-alken-1-ones in Ionic Liquid: An Air-Stable and Recyclable Catalytic System. Synlett 2006, 1962–1964. [Google Scholar] [CrossRef]
- Aksɩn, Ö.; Krause, N. Gold-Catalyzed Synthesis of 2,5-Dihydrofurans in Ionic Liquids. Adv. Synth. Catal. 2008, 350, 1106–1112. [Google Scholar] [CrossRef]
- Ambrogio, I.; Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. Gold-Catalyzed Synthesis of 2-Substituted, 2,3-Disubstituted and 1,2,3-Trisubstituted Indoles in [bmim]BF4. Synlett 2007, 1775–1779. [Google Scholar] [CrossRef]
- Corma, A.; Domínguez, I.; Ródenas, T.; Sabater, M.J. Stabilization and Recovery of Gold Catalysts in the Cyclopropanation of Alkenes within Ionic Liquid. J. Catal. 2008, 259, 26–35. [Google Scholar] [CrossRef]
- Neaţu, F.; Pârvulescu, V.I.; Michelet, V.; Gênet, J.-P.; Goguet, A.; Hardacre, C. Gold Imidazolium-based Ionic Liquids, Efficient Catalysts for Cycloisomerization of γ-Acetylenic Carboxylic Acids. New J. Chem. 2009, 33, 102–106. [Google Scholar] [CrossRef]
- Moreau, X.; Hours, A.; Fensterbank, L.; Goddard, J.-P.; Malacria, M.; Thorimbert, S. Use of Ionic Liquids in the Platinum- and Gold-Catalyzed Cycloisomerization of Enyne Systems. J. Organomet. Chem. 2009, 694, 561–565. [Google Scholar] [CrossRef]
- Cui, D.-M.; Ke, Y.-N.; Zhuang, D.-W.; Wang, Q.; Zhang, C. Gold-Catalyzed Hydrative Cyclization of 1,6-Diynes in Ionic Liquid Media. Tetrahedron Lett. 2010, 51, 980–982. [Google Scholar] [CrossRef]
- Lempke, L.; Fischer, T.; Bell, J.; Kraus, W.; Rurack, K.; Krause, N. Gold-Catalyzed Allene Cycloisomerization for Pyrrole Synthesis: Towards Highly Fluorinated BODIPY Dyes. Org. Biomol. Chem. 2015, 13, 3787–3791. [Google Scholar] [CrossRef]
- Lempke, L.; Sak, H.; Kubicki, M.; Krause, N. Gold-Catalyzed Cycloisomerization of Trifluoromethylated Allenols: Sustainability and Mechanistic Studies. Org. Chem. Front. 2016, 3, 1514–1519. [Google Scholar] [CrossRef]
- Baron, M.; Biffis, A. Gold(I) Complexes in Ionic Liquids: An Efficient Catalytic System for the C-H Functionalization of Arenes and Heteroarenes under Mild Conditions. Eur. J. Org. Chem. 2019, 3687–3693. [Google Scholar] [CrossRef]
- Morita, N.; Mashiko, R.; Hakuta, D.; Eguchi, D.; Hashimoto, Y.; Okamoto, I.; Tamura, O. Gold-Catalyzed Dimeric Cyclization of Isoeugenol and Related 1-Phenylpropenes in Ionic Liquid: Environmentally Friendly and Stereoselective Synthesis of 1,2,3-Trisubstituted 2,3-Dihydro-1H-Indanes. Synthesis 2016, 48, 1927–1933. [Google Scholar] [CrossRef]
- Morita, N.; Ikeda, K.; Chiaki, H.; Araki, R.; Tanaka, K., III; Hashimoto, Y.; Tamura, O. Gold-Catalyzed Formal [3+2] Cycloaddition of p-Quinones and 1-Phenylpropenes in an Ionic Liquid: Environmentally Friendly and Stereoselective Synthesis of 2,3-Benzofuran Neolignans. Heterocycles 2021, 103, 714–722. [Google Scholar]
- Morita, N.; Chiaki, H.; Ikeda, K.; Tanaka, K., III; Hashimoto, Y.; Tamura, O. Gold-Catalyzed Formal (3+2) Cycloaddition in an Ionic Liquid: Environmentally Friendly and Stereoselective Synthesis of Polysubstituted Indanes from Benzylic Alcohols and 1-Phenylpropenes. Synlett 2023, 34, 1068–1074. [Google Scholar] [CrossRef]
- Morita, N.; Chiaki, H.; Tanaka, K., III; Hashimoto, Y.; Tamura, O.; Krause, N. Sustainable Chemical Synthesis of 2,3-Dihydrobenzofurans/1,2,3-Trisubstituted Indanes in Water by Using a Permethylated b-Cyclodextrin-Tagged N-Heterocyclic Carbene-Gold-Catalyst. Synlett 2023, 34, 1425–1432. [Google Scholar] [CrossRef]
- Lee, J.W.; Shin, J.Y.; Chun, Y.S.; Jang, H.B.; Song, C.E.; Lee, S.-G. Toward Understanding the Origin of Positive Effects of Ionic Liquids on Catalysis: Formation of More reactive Catalysts and Stabilization of Reactive Intermediates and Transition States in Ionic Liquids. Acc. Chem. Res. 2010, 43, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, W.; Xiao, J. Heck Reaction in Ionic Liquids and the in Situ Identification of N-Heterocyclic Carbene Complexes of Palladium. Organometallics 2000, 19, 1123–1127. [Google Scholar] [CrossRef]
- McGuinness, D.S.; Cavell, K.J.; Yates, B.F. Unprecedented C-H Bond Oxidative Addition of the Imidazolium Cation to Pt0: A Combined Density Functional Analysis and Experimental Study. Chem. Commun. 2001, 4, 355–356. [Google Scholar] [CrossRef]
- Kozar, L.G.; Clark, R.D.; Heathcock, C.H. Synthesis of Bicyclo[2.2.2]octenes and Bicyclo[3.2.2]nonenes by π-Cyclization. J. Org. Chem. 1977, 42, 1386–1389. [Google Scholar] [CrossRef]
- Wierschke, S.G.; Chandrasekhar, J.; Jorgensen, W.L. Magnitude and Origin of the β-Silicon Effect on Carbenium Ions. J. Am. Chem. Soc. 1985, 107, 1496–1500. [Google Scholar] [CrossRef]
- CCDC-2386574 Contains the Supplementary Crystallographic Data for Compound 3″aa. The Cambridge Crystallographic Data Centre. Available online: http://www.ccdc.cam.ac.uk/structures (accessed on 24 September 2024).
- Rodriguez, A.; Moran, W.J. Furan Synthesis through AuCl3-Catalysed Cycloisomerisation of β-alkynyl β-ketoesters. Tetrahedron Lett. 2011, 52, 2605–2607. [Google Scholar] [CrossRef]
- Komiya, S.; Kochi, J.K. Reversible Linkage Isomerisms of β-Diketonato Ligands. Oxygen-Bonded Carbon-Bonded Structure in Gold(III) Acetylacetoneate Complexes Induced by Phosphines. J. Am. Chem. Soc. 1977, 99, 3695–3704. [Google Scholar] [CrossRef]
- Zharkova, G.I.; Baidina, I.A.; Igumenov, I.K. X-Ray Diffraction Study of Volatile Complexes of Dimethylgold(III) Derived from Symmetrical β-Diketones. J. Struc. Chem. 2006, 47, 1117–1126. [Google Scholar] [CrossRef]
- Murakami, M.; Inouye, M.; Suginome, M.; Ito, Y. Reactions of (Triphenylphosphine)gold(I) Enolates and Homoenolates. Bull. Chem. Soc. Jpn. 1988, 61, 3649–3652. [Google Scholar] [CrossRef]
- Yao, X.; Li, C.-J. Highly Efficient Addition of Activated Methylene Compounds to Alkenes Catalyzed by Gold and Silver. J. Am. Chem. Soc. 2004, 126, 6884–6885. [Google Scholar] [CrossRef]
- Nguyen, R.-V.; Yao, X.-Q.; Bohle, D.B.; Li, C.-J. Gold- and Silver-Catalyzed Highly Regioselective Addition of Active Methylenes to Dienes, Triene, and Cyclic Enol Ethers. Org. Lett. 2005, 7, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.-Y.; Che, C.-M. Highly Efficient Au(I)-Catalyzed Intramolecular Addition of β-Ketoamide to Unactivated Akenes. J. Am. Chem. Soc. 2007, 129, 5828–5829. [Google Scholar] [CrossRef] [PubMed]
- Dénès, F.; Pérez-Luna, A.; Chemla, F. Addition of Metal Enolate Derivatives to Unactivated Carbon-Carbon Multiple Bonds. Chem. Rev. 2010, 110, 2366–2447. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, M.-N.; Ren, Z.-H.; Li, J.; Guan, Z.-H. Synthesis of Tetrasubstituted NH Pyrroles and Polysubstituted Furans via an Addition and Cyclization Strategy. Synthesis 2012, 44, 532–540. [Google Scholar] [CrossRef]
- Masuyama, Y.; Hayashi, M.; Suzuki, N. SnCl2-Catalyzed Propargylic Substitution of Propargylic Alcohols with Carbon and Nitrogen Nucleophiles. Eur. J. Org. Chem. 2013, 2914–2921. [Google Scholar] [CrossRef]
Entry | Cat. Au (mol%) | X eq. | Temp. | Time | 3aa Yield |
---|---|---|---|---|---|
1 | AuBr3 (5) | 1 | r.t. | 3 days | 36% |
2 | AuBr3 (5)/AgOTf (15) | 1 | r.t. | 2 days | 72% |
3 | AuBr3 (5)/AgOTf (15) | 1 | 100 °C | 30 min | 48% |
4 | AuBr3 (5)/AgOTf (15) | 1 | 60 °C | 30 min | 84% |
5 | AuBr3 (5)/AgOTf (15) | 3 | 60 °C | 30 h | 71% |
6 | AuCl (5) | 1 | r.t. | 3 days | 30% |
7 | AuCl (5)/AgOTf (5) | 1 | r.t. | 3 days | 46% |
Entry | Catalysts | Time | 3aa Yield |
---|---|---|---|
1 | AuBr3 (5)/AgOTf (15) | 30 min | 84% |
2 | AuBr3 (5)/AgNTf2 (15) | 1 day | 57% |
3 | AuBr3 (5)/AgBF4 (15) | 2 days | 47% |
4 | AuBr3 (5)/AgSbF6 (15) | 2 days | n.d. |
Entry | Solvent | Temp. (Time) | 3aa Yield |
---|---|---|---|
1 | [EMIM][NTf2] | 60 °C (30 min) | 84% |
2 | [EMIM][CH3CO2] | r.t. (1 h) to 100 °C (1 day) | no reaction |
3 | [EMIM][Me2PO4] | r.t. (1 h) to 100 °C (1 day) | no reaction |
4 | [EMIM][HSO4] | r.t. (1 h) to 100 °C (1 day) | trace |
5 | [EMIM][MeSO4] | r.t. (1 h) to 100 °C (1 day) | trace |
6 | [EMIM][OTf] | r.t. (1 h) to 100 °C (1 day) | trace |
7 | ClCH2CH2Cl | 60 °C (3 h) | 49% |
Run | Time | 3fa Yield |
---|---|---|
1 | 10 min | Quant. |
2 | 3 h | 90% |
3 | 17 h | 89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiaki, H.; Hashimoto, Y.; Morita, N. Gold-Catalyzed Propargylic Substitution Followed by Cycloisomerization in Ionic Liquid: Environmentally Friendly Synthesis of Polysubstituted Furans from Propargylic Alcohols and 1,3-Dicarbonyl Compounds. Molecules 2024, 29, 5441. https://doi.org/10.3390/molecules29225441
Chiaki H, Hashimoto Y, Morita N. Gold-Catalyzed Propargylic Substitution Followed by Cycloisomerization in Ionic Liquid: Environmentally Friendly Synthesis of Polysubstituted Furans from Propargylic Alcohols and 1,3-Dicarbonyl Compounds. Molecules. 2024; 29(22):5441. https://doi.org/10.3390/molecules29225441
Chicago/Turabian StyleChiaki, Hitomi, Yoshimitsu Hashimoto, and Nobuyoshi Morita. 2024. "Gold-Catalyzed Propargylic Substitution Followed by Cycloisomerization in Ionic Liquid: Environmentally Friendly Synthesis of Polysubstituted Furans from Propargylic Alcohols and 1,3-Dicarbonyl Compounds" Molecules 29, no. 22: 5441. https://doi.org/10.3390/molecules29225441
APA StyleChiaki, H., Hashimoto, Y., & Morita, N. (2024). Gold-Catalyzed Propargylic Substitution Followed by Cycloisomerization in Ionic Liquid: Environmentally Friendly Synthesis of Polysubstituted Furans from Propargylic Alcohols and 1,3-Dicarbonyl Compounds. Molecules, 29(22), 5441. https://doi.org/10.3390/molecules29225441