Comparison of the Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and 7 Other Antimicrobial Agents Tested Against Swine Isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Antimicrobial Compounds
4.3. MIC Measurements
4.4. MPC Measurements
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brockmeier, S.L.; Halbur, P.G.; Thacker, E.L. Porcine Respiratory Disease Complex. In Polymicrobial Diseases; Brogden, K.A., Guthmiller, J.M., Eds.; ASM Press: Washington, DC, USA, 2002. [Google Scholar]
- Done, S.H. Environmental factors affecting the severity of pneumonia in pigs. Vet. Rec. 1991, 128, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmerman, J.J.; Rotto, H.F.; Yoder, T.K.; Wang, C.; Yeske, P.E.; Mowrer, C.L.; Haley, C.A. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar] [CrossRef]
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. Vet. Anim. Sci. 2019, 7, 100058. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, J.M.; Bergevin, M.D.; Churchill, K.; Dawkins, K.; Deb, B.; Dunn, J.; Hu, D.; Moody, C.; O’Connor, A.M.; O’Sullivan, T.L.; et al. A systematic review of the efficacy of antibiotics for the prevention of swine respiratory disease. Anim. Health Res. Rev. 2019, 20, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Sykes, J.E.; Blondeau, J.M. Pradofloxacin: A novel veterinary fluoroquinolone for treatment of bacterial infections in cats. Vet. J. 2014, 201, 207–214. [Google Scholar] [CrossRef]
- Silley, P.; Stephan, B.; Greife, H.A.; Pridmore, A. Comparative activity of pradofloxacin against anaerobic bacteria isolated from dogs and cats. J. Antimicrob. Chemother. 2007, 60, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Strahilevitz, J.; Hooper, D.C. Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: Direct testing of the paradigm by using WCK-1734, a new fluoroquinolone, and ciprofloxacin. Antimicrob. Agents Chemother. 2005, 49, 1949–1956. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; M100; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2021. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Available online: www.eucast.org (accessed on 3 January 2022).
- Wang, G.; Wilson, T.J.; Jiang, Q.; Taylor, D.E. Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 2001, 45, 727–733. [Google Scholar] [CrossRef]
- Coculescu, B.I. Antimicrobial resistance induced by genetic changes. J. Med. Life 2009, 2, 114–123. [Google Scholar]
- Feldman, W. Concentrations of bacteria in cerebrospinal fluid of patients with bacterial meningitis. J. Pediatr. 1976, 88, 549–552. [Google Scholar] [CrossRef]
- Lebastard, M.; Beurlet-Lafarge, S.; Gomes, E.; Le Boedec, K. Association between quantitative bacterial culture of bronchoalveolar lavage fluid and antibiotic requirement in dogs with lower respiratory tract signs. J. Vet. Intern. Med. 2022, 36, 1444–1453. [Google Scholar] [CrossRef] [PubMed]
- Kass, E.H. Asymptomatic infections of the urinary tract. Trans. Assoc. Am. Physicians 1956, 69, 56–64. [Google Scholar]
- Coulthard, M.G. Defining urinary tract infection by bacterial colony counts: A case for 100,000 colonies/mL as the best threshold. Pediatr. Nephrol. 2019, 34, 1639–1649. [Google Scholar] [CrossRef]
- Sen, R.K.; Murthy, N.; Gill, S.S.; Nagi, O.N. Bacterial load in tissues and its predictive value for infection in open fractures. J. Orthop. Surg. 2000, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M.; Fitch, S.D. Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis. PLoS ONE 2019, 14, e0210154. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, H.; Wang, Y.; Wang, H.; Hu, J.; Zhang, G. Pharmacodynamic Parameters of Pharmacokinetic/Pharmacodynamic (PK/PD) Integration Models. Front. Vet. Sci. 2022, 9, 860472. [Google Scholar] [CrossRef]
- Ahmad, I.; Huang, L.; Hao, H.; Sanders, P.; Yuan, Z. Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction. BioMed Res. Int. 2016, 2016, 5465678. [Google Scholar] [CrossRef] [PubMed]
- Ijiri, M.; Ishikawa, S.; Hobo, S. Distribution of enrofloxacin within the bronchoalveolar region of healthy pigs. J. Vet. Med. Sci. 2023, 85, 296–300. [Google Scholar] [CrossRef]
- Benchaoui, H.A.; Nowakowski, M.; Sherington, J.; Rowan, T.G.; Sunderland, S.J. Pharmacokinetics and lung tissue concentrations of tulathromycin in swine. J. Vet. Pharmacol. Ther. 2004, 27, 203–210. [Google Scholar] [CrossRef]
- Liu, J.; Fung, K.F.; Chen, Z.; Zeng, Z.; Zhang, J. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae. Antimicrob. Agents Chemother. 2003, 47, 820–823. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Y.; Li, Z.; Wang, Y.; Liu, B.; Zhao, Z.; Zhou, B.; Wang, G. Tissue distribution of marbofloxacin in pigs after a single intramuscular injection. J. Vet. Sci. 2017, 18, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Liu, Q.; Yang, B.; Khaliq, H.; Cao, J.; He, Q. PK-PD Analysis of Marbofloxacin against Streptococcus suis in Pigs. Front. Pharmacol. 2017, 8, 856. [Google Scholar] [CrossRef] [PubMed]
- Messenger, K.M.; Papich, M.G.; Blikslager, A.T. Distribution of enrofloxacin and its active metabolite, using an in vivo ultrafiltration sampling technique after the injection of enrofloxacin to pigs. J. Vet. Pharmacol. Ther. 2012, 35, 452–459. [Google Scholar] [CrossRef]
- Sun, D.; Mi, K.; Hao, H.; Xie, S.; Chen, D.; Huang, L. Optimal regimens based on PK/PD cutoff evaluation of ceftiofur against Actinobacillus pleuropneumoniae in swine. BMC Vet. Res. 2020, 16, 366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, L.; Liu, Y.; Liu, J.; Li, X. Pharmacokinetics of tilmicosin in healthy pigs and in pigs experimentally infected with Haemophilus parasuis. J. Vet. Sci. 2017, 18, 431–437. [Google Scholar] [CrossRef]
- Somogyi, Z.; Mag, P.; Simon, R.; Kerek, Á.; Szabó, P.; Albert, E.; Biksi, I.; Jerzsele, Á. Pharmacokinetics and Pharmacodynamics of Florfenicol in Plasma and Synovial Fluid of Pigs at a Dose of 30 mg/kg(bw) Following Intramuscular Administration. Antibiotics 2023, 12, 758. [Google Scholar] [CrossRef]
- Elazab, S.T.; Abass, M.E. Pharmacokinetics and bioavailability of tildipirosin in goats using HPLC. Jpn. J. Vet. Res. 2020, 68, 5–12. [Google Scholar] [CrossRef]
- Somogyi, Z.; Mag, P.; Kovács, D.; Kerek, Á.; Szabó, P.; Makrai, L.; Jerzsele, Á. Synovial and Systemic Pharmacokinetics of Florfenicol and PK/PD Integration against Streptococcus suis in Pigs. Pharmaceutics 2022, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Park, H.C.; Jeong, K.; Jang, Y.H.; Kim, D.G.; Kang, J.; Lee, K.J. Pharmacokinetic and Pharmacodynamic Evaluation of Marbofloxacin in Pig against Korean Local Isolates of Actinobacillus pleuropneumoniae. BioMed Res. Int. 2017, 2017, 2469826. [Google Scholar] [CrossRef]
- Rose, M.; Menge, M.; Bohland, C.; Zschiesche, E.; Wilhelm, C.; Kilp, S.; Metz, W.; Allan, M.; Röpke, R.; Nürnberger, M. Pharmacokinetics of tildipirosin in porcine plasma, lung tissue, and bronchial fluid and effects of test conditions on in vitro activity against reference strains and field isolates of Actinobacillus pleuropneumoniae. J. Vet. Pharmacol. Ther. 2013, 36, 140–153. [Google Scholar] [CrossRef]
- Mi, K.; Pu, S.; Hou, Y.; Sun, L.; Zhou, K.; Ma, W.; Xu, X.; Huo, M.; Liu, Z.; Xie, C.; et al. Optimization and Validation of Dosage Regimen for Ceftiofur against Pasteurella multocida in Swine by Physiological Based Pharmacokinetic-Pharmacodynamic Model. Int. J. Mol. Sci. 2022, 23, 3722. [Google Scholar] [CrossRef] [PubMed]
- Boeters, M.; Garcia-Morante, B.; van Schaik, G.; Segalés, J.; Rushton, J.; Steeneveld, W. The economic impact of endemic respiratory disease in pigs and related interventions—A systematic review. Porc. Health Manag. 2023, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Meeuwse, D.W.; Kausche, F.M.; Hallberg, J.W.; Lawrence, B.W.; Dame, K.J. Effectiveness of a single intramuscular dose of ceftiofur hydrochloride for the treatment of naturally occuring bacterial swine respiratory disease. JSHAP 2002, 10, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhu, Q.; Yang, S.; Zhao, Y.; Cui, L.; Zhuang, F.; Qiu, Y.; Cao, J. Comparison of pharmacokinetics of tilmicosin in healthy pigs and pigs experimentally infected with Actinobacillus pleuropneumoniae. N. Z. Vet. J. 2019, 67, 257–263. [Google Scholar] [CrossRef]
- O’Connor, A.M.; Totton, S.C.; Shane, D. A systematic review and network meta-analysis of injectable antibiotic treatment options for naturally occurring swine respiratory disease. J. Swine Health Prod. 2019, 27, 133–149. [Google Scholar] [CrossRef]
- Xu, L.; Wang, H.; Yang, X.; Lu, L. Integrated pharmacokinetics/pharmacodynamics parameters-based dosing guidelines of enrofloxacin in grass carp Ctenopharyngodon idella to minimize selection of drug resistance. BMC Vet. Res. 2013, 9, 126. [Google Scholar] [CrossRef]
- Cui, J.; Liu, Y.; Wang, R.; Tong, W.; Drlica, K.; Zhao, X. The mutant selection window in rabbits infected with Staphylococcus Aureus. J. Infect. Dis. 2006, 194, 1601–1608. [Google Scholar] [CrossRef]
- Olofsson, S.K.; Marcusson, L.L.; Komp Lindgren, P.; Hughes, D.; Cars, O. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: Relation between drug exposure and mutant prevention concentration. J. Antimicrob. Chemother. 2006, 57, 1116–1121. [Google Scholar] [CrossRef]
- Vilalta, C.; Giboin, H.; Schneider, M.; El Garch, F.; Fraile, L. Pharmacokinetic/pharmacodynamic evaluation of marbofloxacin in the treatment of Haemophilus parasuis and Actinobacillus pleuropneumoniae infections in nursery and fattener pigs using Monte Carlo simulations. J. Vet. Pharmacol. Ther. 2014, 37, 542–549. [Google Scholar] [CrossRef]
- Frisch, A.W.; Tripp, J.T.; Barrett, C.D., Jr.; Pidgeon, B.E. The specific polysaccharide content of pneumonic lungs. J. Exp. Med. 1942, 76, 505–510. [Google Scholar] [CrossRef]
- Bingen, E.; Lambert-Zechovsky, N.; Mariani-Kurkdjian, P.; Doit, C.; Aujard, Y.; Fournerie, F.; Mathieu, H. Bacterial counts in cerebrospinal fluid of children with meningitis. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Fagon, J.; Chastre, J.; Trouillet, J.L.; Domart, Y.; Dombret, M.C.; Bornet, M.; Gibert, C. Characterization of distal bronchial microflora during acute exacerbation of chronic bronchitis. Use of the protected specimen brush technique in 54 mechanically ventilated patients. Am. Rev. Respir. Dis. 1990, 142, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Low, D.E. Antimicrobial drug use and resistance among respiratory pathogens in the community. Clin. Infect. Dis. 2001, 33, S206–S213. [Google Scholar] [CrossRef] [PubMed]
- McVey, D.S.; Kuszak, J. Bacterial isolates from the lungs of beef calves with bronchopneumonia associated with acute bovine respiratory disease. In Proceedings of the Conference on Research Workers in Animal Diseases (CRWAD), Chicago, IL, USA, 4–5 December 2010. [Google Scholar]
- Chen, Y.; Ji, X.; Zhang, S.; Wang, W.; Zhang, H.; Ding, H. Pharmacokinetic/pharmacodynamic integration of tilmicosin against Pasteurella multocida in a piglet tissue cage model. Front. Vet. Sci. 2023, 10, 1260990. [Google Scholar] [CrossRef]
- Martinez, J.L.; Baquero, F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother. 2000, 44, 1771–1777. [Google Scholar] [CrossRef]
- Schentag, J.J.; Gilliland, K.K.; Paladino, J.A. What have we learned from pharmacokinetic and pharmacodynamic theories? Clin. Infect. Dis. 2001, 32, S39–S46. [Google Scholar] [CrossRef]
- Toutain, P.L.; Pelligand, L.; Lees, P.; Bousquet-Mélou, A.; Ferran, A.A.; Turnidge, J.D. The pharmacokinetic/pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: Recent advances and critical appraisal. J. Vet. Pharmacol. Ther. 2021, 44, 172–200. [Google Scholar] [CrossRef]
- Krajewska, J.; Tyski, S.; Laudy, A.E. Mutant Prevention Concentration, Frequency of Spontaneous Mutant Selection, and Mutant Selection Window-a New Approach to the In Vitro Determination of the Antimicrobial Potency of Compounds. Antimicrob. Agents Chemother. 2023, 67, e0137322. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibililty Tests for Bacteria Isolated from Animals. Approved Standard, 4th ed.; VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Blondeau, J.M.; Zhao, X.; Hansen, G.T.; Drlica, K. Mutant prevention concentrations (MPC) of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 433–438. [Google Scholar] [CrossRef]
Drug | Bacteriostatic(S)/ Bactericidal(C) | MIC/MPC Distribution Values (µg/mL) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.016 | 0.031 | 0.063 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | ≥32 | ||||
MIC | MIC Breakpoint | MIC50/90/100 | |||||||||||||
Ceftiofur | C | 19 | 9 | 1 | _ | _ | _ | _ | _ | _ | _ | _ | _ | ≤2 | ≤0.016/0.031/0.063 |
Enrofloxacin | C | 2 | 23 | 3 | _ | 1 | _ | _ | _ | _ | _ | _ | ≤0.25 | 0.031/0.031/0.25 | |
Florfenicol | S | _ | _ | _ | 1 | 26 | 2 | _ | _ | _ | _ | _ | _ | ≤2 | 0.25/0.25/0.5 |
Marbofloxacin | C | 3 | 25 | _ | 1 | _ | _ | _ | _ | _ | _ | _ | _ | N/A | 0.031/0.031/0.125 |
Pradofloxacin | C | 29 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ≤0.125 *** | ≤0.016/≤0.016/≤0.016 |
Tilmicosin | S | _ | _ | _ | _ | _ | _ | _ | 1 | 16 | 11 | 1 | ≤16 | 4/8/≥32 | |
Tulathromycin | S | _ | _ | _ | _ | _ | _ | _ | 1 | 12 | 15 | 1 * | _ | ≤64 | 8/8/≥16 |
MPC | MPC50/90/100 | ||||||||||||||
Ceftiofur | 2 | 7 | 19 | 1 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.063/0.063/0.125 | |
Enrofloxacin | _ | _ | 10 | 3 | 6 | 7 | 3 | _ | _ | _ | _ | _ | _ | 0.25/0.5/1 | |
Florfenicol | _ | _ | _ | _ | _ | _ | 1 | 28 | _ | _ | _ | _ | _ | 2/2/2 | |
Marbofloxacin | _ | 3 | 17 | 5 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | 0.063/0.25/1 | |
Pradofloxacin | 12 | 13 | 1 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.031/0.063/0.125 | |
Tilmicosin | _ | _ | _ | _ | _ | _ | _ | _ | 3 ** | 1 | 19 | 6 | _ | 16/≥32/≥32 | |
Tulathromycin | _ | _ | _ | _ | _ | _ | _ | _ | 7 | 5 | 9 | 8 | _ | 16/≥32/≥32 |
Drug | Bacteriostatic(S)/ Bactericidal(C) | MIC/MPC Distribution Values (µg/mL) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.016 | 0.031 | 0.063 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | ≥32 | ||||
MIC | MIC Breakpoint | MIC50/90/100 | |||||||||||||
Ceftiofur | C | 41 | ≤2 | ≤0.016/≤0.016/≤0.016 | |||||||||||
Enrofloxacin | C | 41 | ≤0.25 | ≤0.016/≤0.016/≤0.016 | |||||||||||
Florfenicol | S | 18 | 23 | ≤2 | 0.5/0.5/0.5 | ||||||||||
Marbofloxacin | C | 41 | NA | ≤0.016/≤0.016/≤0.016 | |||||||||||
Pradofloxacin | C | 38 | 3 | ≤0.125 | ≤0.016/≤0.016/0.031 | ||||||||||
Tildipirosin | S | 1 | 1 | 5 | 14 | 10 | 10 | ≤4 | 0.5/2/2 | ||||||
Tilmicosin | S | 2 | 2 | 20 | 15 | 2 | ≤16 | 2/4/8 | |||||||
Tulathromycin | S | 8 | 24 | 9 | ≤16 | 0.25/0.5/0.5 | |||||||||
MPC | MPC50/90/100 | ||||||||||||||
Ceftiofur | 3 | 8 | 5 | 12 | 12 | 1 | 0.125/0.25/0.5 | ||||||||
Enrofloxacin | 4 | 11 | 15 | 11 | 0.063/0.125/0.125 | ||||||||||
Florfenicol | 3 | 37 | 1 | 1/1/2 | |||||||||||
Marbofloxacin | 4 | 10 | 13 | 12 | 2 | 0.063/0.125/0.25 | |||||||||
Pradofloxacin | 22 | 18 | 1 | ≤0.016/0.031/0.063 | |||||||||||
Tildipirosin | 2 | 8 | 28 | 3 | 4/4/8 | ||||||||||
Tilmicosin | 2 | 8 | 20 | 7 | 4 | 8/16/≥32 | |||||||||
Tulathromycin | 10 | 27 | 2 | 2 | 1/1/4 |
Compound | Cmax | Tissuemax | AUC24 | Cmax/MIC90 | Cmax/MPC90 | AUC24/MIC90 | AUC24/MPC90 | T > MIC90 | T > MPC90 | % Protein Binding * (µg/mL) | Concentration (C) or Time (T) Dependent |
---|---|---|---|---|---|---|---|---|---|---|---|
A. pleuropneumoniae | |||||||||||
Ceftiofur | 23.3 | 5.8 | 358 | 751.6 | 369.8 | 11,548.4 | 5682.5 | >24 h | >24 h | >90 | T > MIC |
Enrofloxacin | 1.1 | 4.6 | 47.86 | 35.48 | 2.2 | 1543.9 | 95.7 | >24 h | >24 h | 31 | AUC/MIC, Cmax/MIC |
Florfenicol | 4.5 | 2.94 | 64.9 | 18 | 2.1 | 259.6 | 32.5 | >24 h | ~10 h | ~15 | T > MIC |
Marbofloxacin | 1.6 | NA | 31.17 | 48.4 | 6.4 | 1005.5 | 124.7 | >24 h | >24 h | <10 | AUC/MIC, Cmax/MIC |
Pradofloxacin | 2.64 | 0.81 | 17.2 | 165 | 41.9 | 1075 | 273 | >24 h | >24 h | 33 | AUC/MIC, Cmax/MIC |
Tildipirosin | 0.767 | 14.77 | 21 a | 30 | AUC/MIC | ||||||
Tilmicosin | 1.67 | NA | 34.86 | 0.03 | 0.008 | 4.4 | 2.6 | 0 | 0 | ~15 | T > MIC |
Tulathromycin | 0.6 | 3.2 | 122 | 0.07 | 0.019 | 15.3 | 3.8 | 0 | 0 | ~40 | T > MIC |
P. multocida | |||||||||||
Ceftiofur | 23.3 | 5.8 | 358 | 1456.3 | 93.2 | 22375 | 1432 | >24 h | >24 h | ||
Enrofloxacin | 1.1 | 4.6 | 47.86 | 68.75 | 8.8 | 2991.3 | 382.9 | >24 h | >24 h | ||
Florfenicol | 4.5 | 2.94 | 64.9 | 9 | 4.5 | 129.8 | 64.9 | >24 h | ~20 h | ||
Marbofloxacin | 1.6 | NA | 31.17 | 100 | 12.8 | 1948.1 | 249.4 | >24 h | >24 h | ||
Pradofloxacin | 2.64 | 0.81 | 17.2 | 165 | 85.2 | 1075 | 554.8 | >24 h | >24 h | ||
Tildipirosin | 0.767 | 14.77 | 21 | 0.38 | 0.19 | 10.5 | 5.25 | 0 | 0 | ||
Tilmicosin | 1.67 | NA | 34.86 | 0.21 | 0.1 | 8.7 | 2.4 | 0 | 0 | ||
Tulathromycin | 0.6 | 3.2 | 122 | 1.2 | 0.6 | 244 | 122 | ~9 h | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blondeau, J.M.; Fitch, S.D. Comparison of the Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and 7 Other Antimicrobial Agents Tested Against Swine Isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida. Molecules 2024, 29, 5448. https://doi.org/10.3390/molecules29225448
Blondeau JM, Fitch SD. Comparison of the Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and 7 Other Antimicrobial Agents Tested Against Swine Isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida. Molecules. 2024; 29(22):5448. https://doi.org/10.3390/molecules29225448
Chicago/Turabian StyleBlondeau, Joseph M., and Shantelle D. Fitch. 2024. "Comparison of the Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and 7 Other Antimicrobial Agents Tested Against Swine Isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida" Molecules 29, no. 22: 5448. https://doi.org/10.3390/molecules29225448
APA StyleBlondeau, J. M., & Fitch, S. D. (2024). Comparison of the Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and 7 Other Antimicrobial Agents Tested Against Swine Isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida. Molecules, 29(22), 5448. https://doi.org/10.3390/molecules29225448