Oxidative Imbalance in Psoriasis with an Emphasis on Psoriatic Arthritis: Therapeutic Antioxidant Targets
Abstract
:1. Introduction
2. Mechanisms of Oxidative Stress in Psoriatic Arthritis (PsA)
3. Dysfunction of Antioxidant Enzymes
4. The Role of Antioxidant Enzyme Dysregulation in the Pathogenesis of Psoriatic Arthritis (PsA)
5. Biomarkers of Oxidative Stress in PsA
6. The Impact of Therapy on Oxidative Stress
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vereecken, P. Psoriasis—Recent Advances in Diagnosis and Treatment: Recent Advances in Diagnosis and Treatment; BoD—Books on Demand. 2024. Available online: https://www.intechopen.com/books/1002665 (accessed on 2 October 2024).
- Gladman, D.D.; Brockbank, J. Psoriatic Arthritis. Expert Opin. Investig. Drugs 2000, 9, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Azuaga, A.B.; Ramírez, J.; Cañete, J.D. Psoriatic Arthritis: Pathogenesis and Targeted Therapies. Int. J. Mol. Sci. 2023, 24, 4901. [Google Scholar] [CrossRef] [PubMed]
- Cannavò, S.P.; Riso, G.; Casciaro, M.; Di Salvo, E.; Gangemi, S. Oxidative Stress Involvement in Psoriasis: A Systematic Review. Free Radic. Res 2019, 53, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Blagov, A.; Sukhorukov, V.; Guo, S.; Zhang, D.; Eremin, I.; Orekhov, A. The Role of Oxidative Stress in the Induction and Development of Psoriasis. Front. Biosci. 2023, 28, 118. [Google Scholar] [CrossRef]
- Dobrică, E.-C.; Cozma, M.-A.; Găman, M.-A.; Voiculescu, V.-M.; Găman, A.M. The Involvement of Oxidative Stress in Psoriasis: A Systematic Review. Antioxidants 2022, 11, 282. [Google Scholar] [CrossRef]
- Medovic, M.V.; Jakovljevic, V.L.; Zivkovic, V.I.; Jeremic, N.S.; Jeremic, J.N.; Bolevich, S.B.; Nikolic, A.B.R.; Milicic, V.M.; Srejovic, I.M. Psoriasis between Autoimmunity and Oxidative Stress: Changes Induced by Different Therapeutic Approaches. Oxid. Med. Cell Longev. 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Renaudin, X. Reactive Oxygen Species and DNA Damage Response in Cancer. Int. Rev. Cell Mol. Biol. 2021, 139–161. [Google Scholar] [CrossRef]
- Yu, W.; Tu, Y.; Long, Z.; Liu, J.; Kong, D.; Peng, J.; Wu, H.; Zheng, G.; Zhao, J.; Chen, Y.; et al. Reactive Oxygen Species Bridge the Gap Between Chronic Inflammation and Tumor Development. Oxid. Med. Cell Longev. 2022, 2022, 1–22. [Google Scholar] [CrossRef]
- Preiser, J. Oxidative Stress. J. Parenter. Enter. Nutr. 2012, 36, 147–154. [Google Scholar] [CrossRef]
- Suematsu, N.; Tsutsui, H.; Wen, J.; Kang, D.; Ikeuchi, M.; Ide, T.; Hayashidani, S.; Shiomi, T.; Kubota, T.; Hamasaki, N.; et al. Oxidative Stress Mediates Tumor Necrosis Factor-α–Induced Mitochondrial DNA Damage and Dysfunction in Cardiac Myocytes. Circulation 2003, 107, 1418–1423. [Google Scholar] [CrossRef]
- Didion, S. Cellular and Oxidative Mechanisms Associated with Interleukin-6 Signaling in the Vasculature. Int. J. Mol. Sci. 2017, 18, 2563. [Google Scholar] [CrossRef] [PubMed]
- Tavassolifar, M.J.; Vodjgani, M.; Salehi, Z.; Izad, M. The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis. 2020, 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.E.; Bruckner, P.; Pujol, J.-P.L. The Role of Reactive Oxygen Species in Homeostasis and Degradation of Cartilage. Osteoarthr. Cartil. 2003, 11, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Sakata, S.; Kunimatsu, R.; Tanimoto, K. Protective Effect of Ergothioneine Against Oxidative Stress-Induced Chondrocyte Death. Antioxidants 2024, 13, 800. [Google Scholar] [CrossRef]
- Skutnik-Radziszewska, A.; Maciejczyk, M.; Fejfer, K.; Krahel, J.; Flisiak, I.; Kołodziej, U.; Zalewska, A. Salivary Antioxidants and Oxidative Stress in Psoriatic Patients: Can Salivary Total Oxidant Status and Oxidative Status Index Be a Plaque Psoriasis Biomarker? Oxid. Med. Cell Longev. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Skoie, I.M.; Dalen, I.; Omdal, R.; Jonsson, G. Malondialdehyde and Advanced Oxidation Protein Products Are Not Increased in Psoriasis: A Controlled Study. Arch. Dermatol. Res. 2019, 311, 299–308. [Google Scholar] [CrossRef]
- Kızılyel, O.; Akdeniz, N.; Metin, M.S.; Elmas, Ö.F. Investigation of Oxidant and Antioxidant Levels in Patients with Psoriasis. Turk. J. Med. Sci. 2019, 49, 1085–1088. [Google Scholar] [CrossRef]
- Asha, K.; Singal, A.; Sharma, S.B.; Arora, V.K.; Aggarwal, A. Dyslipidaemia & Oxidative Stress in Patients of Psoriasis: Emerging Cardiovascular Risk Factors. Indian J. Med. Res. 2017, 146, 708. [Google Scholar] [CrossRef]
- Houshang, N.; Reza, K.; Masoud, S.; Ali, E.; Mansour, R.; Vaisi-Raygani, A. Antioxidant Status in Patients with Psoriasis. Cell Biochem. Funct. 2013, 32, 268–273. [Google Scholar] [CrossRef]
- Nakamura, H.; Takada, K. Reactive Oxygen Species in Cancer: Current Findings and Future Directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef]
- Lin, X.; Huang, T. Oxidative Stress in Psoriasis and Potential Therapeutic Use of Antioxidants. Free Radic. Res. 2016, 50, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.; Nfonsam, V.; Calienes, F.; Sligh, J.E.; Jandova, J. Modulation of ROS Levels in Fibroblasts by Altering Mitochondria Regulates the Process of Wound Healing. Arch. Dermatol. Res. 2016, 308, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.-I.; Park, J.-H.; Choi, J.-Y.; Piao, M.; Suh, M.-S.; Lee, J.-B.; Yun, S.-J.; Lee, S.-C. Keratinocytes-Derived Reactive Oxygen Species Play an Active Role to Induce Type 2 Inflammation of the Skin: A Pathogenic Role of Reactive Oxygen Species at the Early Phase of Atopic Dermatitis. Ann. Dermatol. 2021, 33, 26. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, D.; Cao, X.; Ye, Q.; Wang, Q.; Zhang, M.; Xiao, C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Magnani, F.; Mattevi, A. Structure and Mechanisms of ROS Generation by NADPH Oxidases. Curr. Opin. Struct. Biol. 2019, 59, 91–97. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Miao, H.; Yu, X.-Y.; Guo, Y.; Su, W.; Liu, F.; Cao, G.; Zhao, Y.-Y. Oxidative Stress and Inflammation Are Mediated via Aryl Hydrocarbon Receptor Signalling in Idiopathic Membranous Nephropathy. Free Radic. Biol. Med. 2023, 207, 89–106. [Google Scholar] [CrossRef]
- Mussbacher, M.; Salzmann, M.; Brostjan, C.; Hoesel, B.; Schoergenhofer, C.; Datler, H.; Hohensinner, P.; Basílio, J.; Petzelbauer, P.; Assinger, A.; et al. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front. Immunol. 2019, 10, 85. [Google Scholar] [CrossRef]
- Vatner, S.F.; Zhang, J.; Oydanich, M.; Berkman, T.; Naftalovich, R.; Vatner, D.E. Healthful Aging Mediated by Inhibition of Oxidative Stress. Ageing Res. Rev. 2020, 64, 101194. [Google Scholar] [CrossRef]
- Diep, S.; Maddukuri, M.; Yamauchi, S.; Geshow, G.; Delk, N.A. Interleukin-1 and Nuclear Factor Kappa B Signaling Promote Breast Cancer Progression and Treatment Resistance. Cells 2022, 11, 1673. [Google Scholar] [CrossRef]
- Zhong, Y.; Liang, B.; Zhang, X.; Li, J.; Zeng, D.; Huang, T.; Wu, J. NF-κB Affected the Serum Levels of TNF-α and IL-1β via Activation of the MAPK/NF-κB Signaling Pathway in Rat Model of Acute Pulmonary Microthromboembolism. Pulm. Circ. 2024, 14, e12357. [Google Scholar] [CrossRef] [PubMed]
- Brasier, A.R. The Nuclear Factor- B-Interleukin-6 Signalling Pathway Mediating Vascular Inflammation. Cardiovasc. Res. 2010, 86, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xing, C.; Zhang, C.; Lv, X.; Liu, G.; Chen, F.; Hou, Z.; Zhang, D. Promotion of IL-17/NF-κB Signaling in Autoimmune Thyroid Diseases. Exp. Ther. Med. 2022, 25. [Google Scholar] [CrossRef] [PubMed]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Oxidative Stress and Inflammation in Osteoarthritis Pathogenesis: Role of Polyphenols. Biomed. Pharmacother. 2020, 129, 110452. [Google Scholar] [CrossRef]
- Belasco, J.; Wei, N. Psoriatic Arthritis: What Is Happening at the Joint? Rheumatol. Ther. 2019, 6, 305–315. [Google Scholar] [CrossRef]
- Johnson, J.; Jaggers, R.M.; Gopalkrishna, S.; Dahdah, A.; Murphy, A.J.; Hanssen, N.M.J.; Nagareddy, P.R. Oxidative Stress in Neutrophils: Implications for Diabetic Cardiovascular Complications. Antioxid. Redox Signal. 2021, 36, 652–666. [Google Scholar] [CrossRef]
- Castaneda, O.A.; Lee, S.-C.; Ho, C.-T.; Huang, T.-C. Macrophages in Oxidative Stress and Models to Evaluate the Antioxidant Function of Dietary Natural Compounds. J. Food Drug Anal. 2016, 25, 111–118. [Google Scholar] [CrossRef]
- Abji, F.; Rasti, M.; Gómez-Aristizábal, A.; Muytjens, C.; Saifeddine, M.; Mihara, K.; Motahhari, M.; Gandhi, R.; Viswanathan, S.; Hollenberg, M.D.; et al. Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis. Front. Immunol. 2021, 11, 629726. [Google Scholar] [CrossRef]
- Rose, B.J.; Kooyman, D.L. A Tale of Two Joints: The Role of Matrix Metalloproteases in Cartilage Biology. Dis. Mark. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Lu, Y.; Wahl, L.M. Oxidative Stress Augments the Production of Matrix Metalloproteinase-1, Cyclooxygenase-2, and Prostaglandin E2 through Enhancement of NF-κB Activity in Lipopolysaccharide-Activated Human Primary Monocytes. J. Immunol. 2005, 175, 5423–5429. [Google Scholar] [CrossRef] [PubMed]
- González-Zamora, J.; Hernandez, M.; Recalde, S.; Bezunartea, J.; Montoliu, A.; Bilbao-Malavé, V.; Llorente-González, S.; García-Layana, A.; Fernández-Robredo, P. Matrix Metalloproteinase 13 Is Associated with Age-Related Choroidal Neovascularization. Antioxidants 2023, 12, 884. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative Stress Mitigation by Antioxidants—An Overview on Their Chemistry and Influences on Health Status. Eur. J. Med. Chem. 2020, 209, 112891. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Rauf, A.; Fahad, F.I.; Emran, T.B.; Mitra, S.; Olatunde, A.; Shariati, M.A.; Rebezov, M.; Rengasamy, K.R.R.; Mubarak, M.S. Superoxide Dismutase: An Updated Review on Its Health Benefits and Industrial Applications. Crit. Rev. Food Sci. Nutr. 2021, 62, 7282–7300. [Google Scholar] [CrossRef]
- Gabr, S.A.; Al-Ghadir, A.H. Role of Cellular Oxidative Stress and Cytochrome c in the Pathogenesis of Psoriasis. Arch. Dermatol. Res. 2012, 304, 451–457. [Google Scholar] [CrossRef]
- Kadam, D.P.; Suryakar, A.N.; Ankush, R.D.; Kadam, C.Y.; Deshpande, K.H. Role of Oxidative Stress in Various Stages of Psoriasis. Indian J. Clin. Biochem. 2010, 25, 388–392. [Google Scholar] [CrossRef]
- Karaman, A.; Aliağaoğlu, C.; Pirim, İ. Sister Chromatid Exchange Analysis in Patients with Psoriasis. Exp. Dermatol. 2008, 17, 524–529. [Google Scholar] [CrossRef]
- Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell Longev. 2019, 2019, 1–19. [Google Scholar] [CrossRef]
- Wójcik, P.; Gęgotek, A.; Wroński, A.; Jastrząb, A.; Żebrowska, A.; Skrzydlewska, E. Effect of Redox Imbalance on Protein Modifications in Lymphocytes of Psoriatic Patients. J. Biochem. 2019, 167, 323–331. [Google Scholar] [CrossRef]
- Esmaeili, B.; Mansouri, P.; Doustimotlagh, A.H.; Izad, M. Redox Imbalance and IL-17 Responses in Memory CD4+ T Cells from Patients with Psoriasis. Scand. J. Immunol. 2018, 89, e12730. [Google Scholar] [CrossRef]
- Pujari, V.M.; Ireddy, S.; Itagi, I.; Kumar H, S. The Serum Levels of Malondialdehyde, Vitamin E and Erythrocyte Catalase Activity in Psoriasis Patients. J. Clin. Diagn. Res. 2014, 8, CC14. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, A.; Drewa, G.; Krzyzyńska-Maliniowska, E.; Czajkowski, R.; Protas-Drozd, F.; Mila-Kierzenkowska, C.; Rozwodowska, M.; Sopońska, M.; Czarnecka-Zaba, E. Oxidant-Antioxidant Balance in Patients with Psoriasis. Med. Sci. Monit. 2007, 13, CR30-33. [Google Scholar] [PubMed]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef]
- Hatai, B.; Ganguly, A.; Bandopadhyay, S.; Banerjee, S.; Hatai, J. Impact of glutathione peroxidase activity (gpx) as oxidative-stress marker and its role on inflammation with osteoarthritis patients. J. Adv. Res. 2017, 5, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Zedan, H.; Abdel-Motaleb, A.A.; Kassem, N.M.A.; Hafeez, H.A.A.; Hussein, M.R.A. Low Glutathione Peroxidase Activity Levels in Patients with Vitiligo. J. Cutan. Med. Surg. 2015, 19, 144–148. [Google Scholar] [CrossRef]
- Yildirim, M.; Inaloz, H.; Baysal, V.; Delibas, N. The Role of Oxidants and Antioxidants in Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 34–36. [Google Scholar] [CrossRef]
- Akbulak, O.; Karadag, A.S.; Akdeniz, N.; Ozkanli, S.; Ozlu, E.; Zemheri, E.; Oguztuzun, S. Evaluation of Oxidative Stress via Protein Expression of Glutathione S-Transferase and Cytochrome P450 (CYP450) Isoenzymes in Psoriasis Vulgaris Patients Treated with Methotrexate. Cutan. Ocul. Toxicol. 2017, 37, 180–185. [Google Scholar] [CrossRef]
- Coaccioli, S.; Panaccione, A.; Biondi, R.; Sabatini, C.; Landucci, P.; Del Giorno, R.; Fantera, M.; Mondo, A.M.; Di Cato, L.; Paladini, A.; et al. Evaluation of Oxidative Stress in Rheumatoid and Psoriatic Arthritis and Psoriasis. Clin. Ter. 2009, 160, 467–472. [Google Scholar]
- Sorokin, A.V.; Remaley, A.T.; Mehta, N.N. Oxidized Lipids and Lipoprotein Dysfunction in Psoriasis. J. Psoriasis Psoriatic Arthritis 2020, 5, 139–146. [Google Scholar] [CrossRef]
- Péter, I.; Jagicza, A.; Ajtay, Z.; Kiss, I.; Németh, B. A Psoriasis és az Oxidatív Stressz. Orv. Hetil. 2016, 157, 1781–1785. [Google Scholar] [CrossRef]
- Shakoei, S.; Nakhjavani, M.; Mirmiranpoor, H.; Motlagh, M.A.; Azizpour, A.; Abedini, R. The Serum Level of Oxidative Stress and Antioxidant Markers in Patients with Psoriasis: A Cross-Sectional Study. J. Clin. Aesthet. Dermatol. 2021, 14, 38–41. [Google Scholar] [PubMed]
- Bakić, M.; Klisić, A.; Kocić, G.; Kocić, H.; Karanikolić, V. Oxidative Stress and Metabolic Biomarkers in Patients with Psoriasis. J. Med. Biochem. 2023, 43, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2021, 209, 114477. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Sinha, A.A. Oxidative Stress and Autoimmune Skin Disease. Eur. J. Dermatol. 2013, 23, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Aktürk, A.Ş.; Özdoğan, H.K.; Bayramgürler, D.; Çekmen, M.B.; Bilen, N.; Kıran, R. Nitric Oxide and Malondialdehyde Levels in Plasma and Tissue of Psoriasis Patients. J. Eur. Acad. Dermatol. Venereol. 2011, 26, 833–837. [Google Scholar] [CrossRef]
- Górnicki, A.; Gutsze, A. Erythrocyte Membrane Fluidity Changes in Psoriasis: An EPR Study. J. Dermatol. Sci. 2001, 27, 27–30. [Google Scholar] [CrossRef]
- Makavos, G.; Ikonomidis, I.; Andreadou, I.; Varoudi, M.; Kapniari, I.; Loukeri, E.; Theodoropoulos, K.; Pavlidis, G.; Triantafyllidi, H.; Thymis, J.; et al. Effects of Interleukin 17A Inhibition on Myocardial Deformation and Vascular Function in Psoriasis. Can. J. Cardiol. 2019, 36, 100–111. [Google Scholar] [CrossRef]
- Šteňová, E.; Bakošová, M.; Lauková, L.; Celec, P.; Vlková, B. Biological Anti-TNF-α Therapy and Markers of Oxidative and Carbonyl Stress in Patients with Rheumatoid Arthritis. Oxid. Med. Cell Longev. 2021, 2021, 5575479. [Google Scholar] [CrossRef]
- Hirao, M.; Yamasaki, N.; Oze, H.; Ebina, K.; Nampei, A.; Kawato, Y.; Shi, K.; Yoshikawa, H.; Nishimoto, N.; Hashimoto, J. Serum Level of Oxidative Stress Marker Is Dramatically Low in Patients with Rheumatoid Arthritis Treated with Tocilizumab. Rheumatol. Int. 2011, 32, 4041–4045. [Google Scholar] [CrossRef]
- Maurelli, M.; Gisondi, P.; Girolomoni, G. Advanced Glycation End Products and Psoriasis. Vaccines 2023, 11, 617. [Google Scholar] [CrossRef]
- Papagrigoraki, A.; Giglio, M.; Cosma, C.; Maurelli, M.; Girolomoni, G.; Lapolla, A. Advanced Glycation End Products Are Increased in the Skin and Blood of Patients with Severe Psoriasis. Acta Derm.-Venereol. 2017, 97, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Yazici, C.; Köse, K.; Utaş, S.; Tanrikulu, E.; Taşlidere, N. A Novel Approach in Psoriasis: First Usage of Known Protein Oxidation Markers to Prove Oxidative Stress. Arch. Dermatol. Res. 2016, 308, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Relhan, V.; Gupta, S.K.; Dayal, S.; Pandey, R.; Lal, H. Blood Thiols and Malondialdehyde Levels in Psoriasis. J. Dermatol. 2002, 29, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Ma, Y.; Mu, Z. Association of Total Oxidant Status, Total Antioxidant Status, and Malondialdehyde and Catalase Levels with Psoriasis: A Systematic Review and Meta-Analysis. Clin. Rheumatol. 2019, 38, 2659–2671. [Google Scholar] [CrossRef]
- Priya, R.; Kumar, U.; Saran, A.; Kumari, R.; Kishore, A. Oxidative Stress in Psoriasis. Biomed. Res. 2014, 25, 6206. [Google Scholar]
- Ambrożewicz, E.; Wójcik, P.; Wroński, A.; Łuczaj, W.; Jastrząb, A.; Žarković, N.; Skrzydlewska, E. Pathophysiological Alterations of Redox Signaling and Endocannabinoid System in Granulocytes and Plasma of Psoriatic Patients. Cells 2018, 7, 159. [Google Scholar] [CrossRef]
- Kirmit, A.; Kader, S.; Aksoy, M.; Bal, C.; Nural, C.; Aslan, O. Trace Elements and Oxidative Stress Status in Patients with Psoriasis. Adv. Dermatol. Allergol. 2020, 37, 333–339. [Google Scholar] [CrossRef]
- Oszukowska, M.; Kozłowska, M.; Kaszuba, A. Paraoxonase-1 and Other Factors Related to Oxidative Stress in Psoriasis. Adv. Dermatol. Allergol. 2020, 37, 92–96. [Google Scholar] [CrossRef]
- Salman, A.; Ergun, T.; Yazici, V.; Yavuz, D.; Seckin-Gencosmanoglu, D.; Ozen, G.; Direskeneli, H.; Inanc, N. Advanced Glycation End Products, a Potential Link Between Psoriasis and Cardiovascular Disease: A Case–Control Study. Indian J. Dermatol. 2019, 64, 201. [Google Scholar] [CrossRef]
- Haberka, M.; Bańska-Kisiel, K.; Bergler-Czop, B.; Biedroń, M.; Brzezińska-Wcisło, L.; Okopień, B.; Gąsior, Z. A Mild-to-Moderate Psoriasis Is Associated with Oxidative Stress, Subclinical Atherosclerosis and Endothelial Dysfunction: Cardiovascular Risk in a Mild-to-Moderate Psoriasis. Pol. Intern. Med. 2018, 128, 434–439. [Google Scholar] [CrossRef]
- Sürücü, H.A.; Aksoy, N.; Ozgöztas, O.; Sezen, H.; Yesilova, Y.; Turan, E. Prolidase Activity in Chronic Plaque Psoriasis Patients. Adv. Dermatol. Allergol. 2015, 2, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Uzun, L.; Kutlu, R.; Ataseven, A.; Aydemir, F.H.Y. Total Oxidant Capacity, Total Antioxidant Capacity, Ischemic Modified Albumin, microRNA Levels, and Their Relationship with Psoriasis Area and Severity Index. Indian J. Dermatol.Venereol. Leprol. 2022, 89, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Bacchetti, T.; Campanati, A.; Simonetti, O.; Liberati, G.; Offidani, A. Correlation between Lipoprotein(a) and Lipid Peroxidation in Psoriasis: Role of the Enzyme Paraoxonase-1. Br. J. Dermatol. 2011, 166, 204–207. [Google Scholar] [CrossRef]
- Paksoy, T.; Ustaoğlu, G.; Yaman, D.; Arıöz, Ö.; Demirci, M.; Ünlü, Ö.; Avcı, E.; Polat, M. The Link Between Total Antioxidant Status, Total Oxidant Status, Arylesterase Activity, and Subgingival Microbiota in Psoriasis Patients. Int. J. Dermatol. 2022, 61, 1487–1496. [Google Scholar] [CrossRef]
- Guarneri, F.; Bertino, L.; Pioggia, G.; Casciaro, M.; Gangemi, S. Therapies with Antioxidant Potential in Psoriasis, Vitiligo, and Lichen Planus. Antioxidants 2021, 10, 1087. [Google Scholar] [CrossRef]
- Hu, J.; Bian, Q.; Ma, X.; Xu, Y.; Gao, J. A Double-Edged Sword: ROS Related Therapies in the Treatment of Psoriasis. Asian J. Pharm. Sci. 2022, 17, 798–816. [Google Scholar] [CrossRef]
- Gupta, A.; Jain, P.; Nagori, K.; Adnan, M.; Ajazuddin, N. Treatment Strategies for Psoriasis Using Flavonoids from Traditional Chinese Medicine. Pharmacol. Res. Mod. Chin. Med. 2024, 12, 100463. [Google Scholar] [CrossRef]
- Mease, P.J.; Kivitz, A.J.; Burch, F.X.; Siegel, E.L.; Cohen, S.B.; Ory, P.; Salonen, D.; Rubenstein, J.; Sharp, J.T.; Tsuji, W. Etanercept Treatment of Psoriatic Arthritis: Safety, Efficacy, and Effect on Disease Progression. Arthritis Rheumatol. 2004, 50, 2264–2272. [Google Scholar] [CrossRef]
- D’Angelo, S.; Cantini, F.; Ramonda, R.; Cantarini, L.; Carletto, A.; Chimenti, M.S.; Sedie, A.D.; Foti, R.; Gerli, R.; Lomater, C.; et al. Effectiveness of Adalimumab for the Treatment of Psoriatic Arthritis: An Italian Real-Life Retrospective Study. Front. Pharmacol. 2019, 10, 1497. [Google Scholar] [CrossRef]
- Papoutsaki, M.; Osório, F.; Morais, P.; Torres, T.; Magina, S.; Chimenti, S.; Costanzo, A. Infliximab in Psoriasis and Psoriatic Arthritis. BioDrugs 2013, 27, 13–23. [Google Scholar] [CrossRef]
- Blair, H.A. Secukinumab: A Review in Psoriatic Arthritis. Drugs 2021, 81, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, Y.; Takahashi, M.; Ichikawa, T.; Torikai, E.; Nagano, A. Reduction of Oxidative Stress Marker Levels by Anti-TNF-Alpha Antibody, Infliximab, in Patients with Rheumatoid Arthritis. Clin. Exp. Rheumatol. 2008, 26, 73–80. [Google Scholar] [PubMed]
- Mattos, B.R.; Bonacio, G.F.; Vitorino, T.R.; Garcia, V.T.; Amaral, J.H.; Dellalibera-Joviliano, R.; Franca, S.C.; Tanus-Santos, J.E.; Rizzi, E. TNF-α Inhibition Decreases MMP-2 Activity, Reactive Oxygen Species Formation and Improves Hypertensive Vascular Hypertrophy Independent of Its Effects on Blood Pressure. Biochem. Pharmacol. 2020, 180, 114121. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, G. Oxidative Stress and Antioxidant Therapy in Cardiovascular Diseases—Clinical Challenge. J. Clin. Med. 2022, 11, 3784. [Google Scholar] [CrossRef]
- Campanati, A.; Orciani, M.; Gorbi, S.; Regoli, F.; Di Primio, R.; Offidani, A. Effect of Biologic Therapies Targeting Tumour Necrosis Factor-α on Cutaneous Mesenchymal Stem Cells in Psoriasis. Br. J. Dermatol. 2012, 167, 68–76. [Google Scholar] [CrossRef]
- Medovic, M.V.; Milicic, V.M.; Nikolic, A.B.R.; Ristic, G.J.; Medovic, R.H.; Nikolic, M.R.; Stojanovic, A.Z.; Bolevich, S.B.; Bondarchuk, N.G.; Gorbunov, A.A.; et al. Effects of Different Therapeutic Approaches on Redox Balance in Psoriatic Patients. Biomedicines 2024, 12, 587. [Google Scholar] [CrossRef]
- Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant Therapy: Current Status and Future Prospects. Curr. Med. Chem. 2011, 18, 3871–3888. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, L.; Huang, Z.; Li, B.; Nice, E.C.; Xu, J.; Huang, C. Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants 2022, 11, 1128. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef]
- Wong, A.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. [Corrigendum] Efficacy of Nutritional Treatment in Patients with Psoriasis: A Case Report. Exp. Ther. Med. 2019, 19, 1136. [Google Scholar] [CrossRef]
- Al-Katib, S.R.; Al-Wakeel, H.A.; Al-Rawaf, R.F. Role of Vitamin c as Antioxidant in Psoriasis Patients Treated with NB-UVB Phototherapy. Indian J. Public Health Res. Dev. 2018, 9, 375. [Google Scholar] [CrossRef]
- Jin, G.-H.; Liu, Y.; Jin, S.-Z.; Liu, X.-D.; Liu, S.-Z. UVB Induced Oxidative Stress in Human Keratinocytes and Protective Effect of Antioxidant Agents. Radiat. Environ. Biophys. 2007, 46, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kharaeva, Z.; Gostova, E.; De Luca, C.; Raskovic, D.; Korkina, L. Clinical and Biochemical Effects of Coenzyme Q10, Vitamin E, and Selenium Supplementation to Psoriasis Patients. Nutrition 2008, 25, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzad, H.; Aghdashi, M.A.; Jafarabadi, M.A.; Alipour, B. Effects of Coenzyme Q10 Supplementation on Inflammatory Cytokines (TNF-α, IL-6) and Oxidative Stress in Rheumatoid Arthritis Patients: A Randomized Controlled Trial. Arch. Med. Res. 2015, 46, 527–533. [Google Scholar] [CrossRef]
- Al-Oudah, G.A.; Sahib, A.S.; Al-Hattab, M.K.; Al-Ameedee, A.A. Effect of CoQ10 Administration to Psoriatic Iraqi Patients on Biological Therapy Upon Severity Index (PASI) and Quality of Life Index (DLQI) Before and After Therapy. J. Popul. Ther. Clin. Pharmacol. 2022, 29, e52–e60. [Google Scholar] [CrossRef]
- Wen, J.; Wang, X.; Pei, H.; Xie, C.; Qiu, N.; Li, S.; Wang, W.; Cheng, X.; Chen, L. Anti-Psoriatic Effects of Honokiol through the Inhibition of NF-κB and VEGFR-2 in Animal Model of K14-VEGF Transgenic Mouse. J. Pharmacol. Sci. 2015, 128, 116–124. [Google Scholar] [CrossRef]
- Derakhshan, N. NFκB Inhibitors as a Potential Novel Hypothesized Treatment for Psoriasis. Sao Paulo Med. J. 2011, 129, 433–434. [Google Scholar] [CrossRef]
- Xu, F.; Xu, J.; Xiong, X.; Deng, Y. Salidroside Inhibits MAPK, NF-κB, and STAT3 Pathways in Psoriasis-Associated Oxidative Stress via SIRT1 Activation. Redox Rep. 2019, 24, 70–74. [Google Scholar] [CrossRef]
- Ma, C.; Gu, C.; Lian, P.; Wazir, J.; Lu, R.; Ruan, B.; Wei, L.; Li, L.; Pu, W.; Peng, Z.; et al. Sulforaphane Alleviates Psoriasis by Enhancing Antioxidant Defense Through KEAP1-NRF2 Pathway Activation and Attenuating Inflammatory Signaling. Cell Death Dis. 2023, 14, 768. [Google Scholar] [CrossRef]
- Purohit, R.; Bhaskar, N.; Jehu, T.; Macias, K.C.; Chalise, S.; Bhanusali, N. Patient-Reported Outcomes of Curcumin Supplementation in Rheumatoid Arthritis and Psoriatic Arthritis: A Cross-Sectional Survey. Rheumatol. Int. 2024. [Google Scholar] [CrossRef]
- Di Nardo, V.; Gianfaldoni, S.; Tchernev, G.; Wollina, U.; Barygina, V.; Lotti, J.; Daaboul, F.; Lotti, T. Use of Curcumin in Psoriasis. Open Access Maced. J. Med. Sci. 2018, 6, 218–220. [Google Scholar] [CrossRef]
- Marko, M.; Pawliczak, R. Resveratrol and Its Derivatives in Inflammatory Skin Disorders—Atopic Dermatitis and Psoriasis: A Review. Antioxidants 2023, 12, 1954. [Google Scholar] [CrossRef] [PubMed]
- Frasheri, L.; Schielein, M.C.; Tizek, L.; Mikschl, P.; Biedermann, T.; Zink, A. Great Green Tea Ingredient? A Narrative Literature Review on Epigallocatechin Gallate and Its Biophysical Properties for Topical Use in Dermatology. Phytother. Res. 2020, 34, 2170–2179. [Google Scholar] [CrossRef] [PubMed]
- Chamcheu, J.C.; Siddiqui, I.A.; Adhami, V.M.; Esnault, S.; Bharali, D.J.; Babatunde, A.S.; Adame, S.; Massey, R.J.; Wood, G.S.; Longley, B.J.; et al. Chitosan-Based Nanoformulated (–)-Epigallocatechin-3-Gallate (EGCG) Modulates Human Keratinocyte-Induced Responses and Alleviates Imiquimod-Induced Murine Psoriasiform Dermatitis. Int. J. Nanomed. 2018, 13, 4189–4206. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, K.; Yarlagadda, S.; Sengupta, S. Recent Advances in the Synthesis of Diarylheptanoids. Chem. Asian J. 2024, 19, e202400380. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Li, Y.-R.; Lai, K.-H.; Cheng, W.-J.; Lin, S.-C.; Wang, Y.-H.; Chen, P.-J.; Yang, S.-H.; Lin, C.-C.; Hwang, T.-L. Aqueous Extract of Kan-Lu-Hsiao-Tu-Tan Ameliorates Collagen-Induced Arthritis in Mice by Inhibiting Oxidative Stress and Inflammatory Responses. Life 2020, 10, 313. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Cheng, W.-J.; Lin, C.-Y.; Lai, K.-H.; Ju, S.-C.; Lee, C.; Yang, S.-H.; Hwang, T.-L. Kan-Lu-Hsiao-Tu-Tan, a Traditional Chinese Medicine Formula, Inhibits Human Neutrophil Activation and Ameliorates Imiquimod-Induced Psoriasis-like Skin Inflammation. J. Ethnopharmacol. 2019, 246, 112246. [Google Scholar] [CrossRef]
- Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I.S.; Doble, M. Inhibition of the Enzymes in the Leukotriene and Prostaglandin Pathways in Inflammation by 3-Aryl Isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar] [CrossRef]
- Sun, J.; Han, J.; Zhao, Y.; Zhu, Q.; Hu, J. Curcumin Induces Apoptosis in Tumor Necrosis Factor-Alpha-Treated HaCaT Cells. Int. Immunopharmacol. 2012, 13, 170–174. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Liu, L.; Sun, X.; Zhou, Y.; Chen, S.; Lu, Y.; Cai, X.; Hu, M.; Yan, G.; et al. Efficacy and Safety of Curcumin in Psoriasis: Preclinical and Clinical Evidence and Possible Mechanisms. Front. Pharmacol. 2022, 13, 903160. [Google Scholar] [CrossRef]
- Skyvalidas, D.Ν.; Mavropoulos, A.; Tsiogkas, S.; Dardiotis, E.; Liaskos, C.; Mamuris, Z.; Roussaki-Schulze, A.; Sakkas, L.I.; Zafiriou, E.; Bogdanos, D.P. Curcumin Mediates Attenuation of Pro-Inflammatory Interferon γ and Interleukin 17 Cytokine Responses in Psoriatic Disease, Strengthening Its Role as a Dietary Immunosuppressant. Nutr. Res. 2020, 75, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Serwin, A.B.; Wasowicz, W.; Chodynicka, B. Selenium Supplementation, Soluble Tumor Necrosis Factor-α Receptor Type 1, and C-Reactive Protein during Psoriasis Therapy with Narrowband Ultraviolet B. Nutrition 2006, 22, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Salinthone, S.; Kerns, A.R.; Tsang, V.; Carr, D.W. α-Tocopherol (Vitamin E) Stimulates Cyclic AMP Production in Human Peripheral Mononuclear Cells and Alters Immune Function. Mol. Immunol. 2013, 53, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, M.J.; Vahabi-Amlashi, S.; Nematy, M.; Shaelaei, N.; Mohajeri, S.A.R.; Tafazzoli, Z. Association of Serum Lipid Profiles and Dietary Intakes of Vitamin E and Fiber with Psoriasis Severity. Caspian J. Intern. Med. 2021, 12, 606–612. [Google Scholar] [CrossRef]
- Katsimbri, P.; Korakas, E.; Kountouri, A.; Ikonomidis, I.; Tsougos, E.; Vlachos, D.; Papadavid, E.; Raptis, A.; Lambadiari, V. The Effect of Antioxidant and Anti-Inflammatory Capacity of Diet on Psoriasis and Psoriatic Arthritis Phenotype: Nutrition as Therapeutic Tool? Antioxidants 2021, 10, 157. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef]
- Kjær, T.N.; Thorsen, K.; Jessen, N.; Stenderup, K.; Pedersen, S.B. Resveratrol Ameliorates Imiquimod-Induced Psoriasis-like Skin Inflammation in Mice. PLoS ONE 2015, 10, e0126599. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, C.; Feng, F.; Hu, X.; Zhao, N.; Zhao, J.; Di, T.; Meng, Y.; Yang, D.; Zhu, H.; et al. Resveratrol Ameliorates Imiquimod-Induced Psoriasis-like Mouse Model via Reducing Macrophage Infiltration and Inhibiting Glycolysis. J. Inflamm. Res. 2023, 16, 3823–3836. [Google Scholar] [CrossRef]
- Chen, H.; Lu, C.; Liu, H.; Wang, M.; Zhao, H.; Yan, Y.; Han, L. Quercetin Ameliorates Imiquimod-Induced Psoriasis-like Skin Inflammation in Mice via the NF-κB Pathway. Int. Immunopharmacol. 2017, 48, 110–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, S.; Liu, L.; Shen, H.; Liu, E.; Pan, L.; Gao, N.; Chen, R.; Huang, Y. Cyclodextrin-Coordinated Liposome-in-Gel for Transcutaneous Quercetin Delivery for Psoriasis Treatment. ACS Appl. Mater. Interfaces 2023, 15, 40228–40240. [Google Scholar] [CrossRef]
- Goyal, A.; Agrawal, N. Quercetin: A Potential Candidate for the Treatment of Arthritis. Curr. Mol. Med. 2021, 22, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Haleagrahara, N.; Miranda-Hernandez, S.; Alim, M.A.; Hayes, L.; Bird, G.; Ketheesan, N. Therapeutic Effect of Quercetin in Collagen-Induced Arthritis. Biomed. Pharmacother. 2017, 90, 38–46. [Google Scholar] [CrossRef]
- Carr, A.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Garbicz, J.; Całyniuk, B.; Górski, M.; Buczkowska, M.; Piecuch, M.; Kulik, A.; Rozentryt, P. Nutritional Therapy in Persons Suffering from Psoriasis. Nutrients 2021, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, Z.; Xuan, J.; Yang, L.; Zhao, T.; Peng, W. Anti-Psoriatic Activity of Black, Green and White Tea Extracts from Southeastern China. Molecules 2024, 29, 1279. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Liu, Z.; Cao, Z.; Shi, Y.; Yang, N.; Cao, G.; Zhang, C.; Sun, R.; Zhang, C. Topical Astilbin Ameliorates Imiquimod-Induced Psoriasis-like Skin Lesions in SKH-1 Mice via Suppression Dendritic cell-Th17 Inflammation Axis. J. Cell. Mol. Med. 2022, 26, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, Q.; Tan, X.; Meng, L.; Wei, G.; Liu, Y.; Zhang, C. Astilbin Decreases Proliferation and Improves Differentiation in HaCaT Keratinocytes. Biomed. Pharmacother. 2017, 93, 713–720. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H. Astilbin Reduces ROS Accumulation and VEGF Expression Through Nrf2 in Psoriasis-like Skin Disease. Biol. Res. 2019, 52, 49. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, J.; Hong, Y.; Zhou, R.; Zhou, D.; Sun, L.; Qin, W.; Wang, T. Relationship Between the Serum Total Bilirubin and Inflammation in Patients with Psoriasis Vulgaris. J. Clin. Lab. Anal. 2016, 30, 768–775. [Google Scholar] [CrossRef]
- Keum, H.; Kim, T.W.; Kim, Y.; Seo, C.; Son, Y.; Kim, J.; Kim, D.; Jung, W.; Whang, C.-H.; Jon, S. Bilirubin Nanomedicine Alleviates Psoriatic Skin Inflammation by Reducing Oxidative Stress and Suppressing Pathogenic Signaling. J. Control. Release 2020, 325, 359–369. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, H.; Kang, S.; Lee, J.; Park, J.; Jon, S. Bilirubin Nanoparticles as a Nanomedicine for Anti-Inflammation Therapy. Angew. Chem. 2016, 55, 7460–7463. [Google Scholar] [CrossRef] [PubMed]
- Radha, M.H.; Laxmipriya, N.P. Evaluation of Biological Properties and Clinical Effectiveness of Aloe Vera: A Systematic Review. J. Tradit. Med. Complement. Ther. 2014, 5, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Leng, H.; Pu, L.; Xu, L.; Shi, X.; Ji, J.; Chen, K. Effects of Aloe Polysaccharide, a Polysaccharide Extracted from Aloe vera, on TNF-α-induced HaCaT Cell Proliferation and the Underlying Mechanism in Psoriasis. Mol. Med. Rep. 2018, 18, 3537–3543. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Perlak, M.; Szpadel, K.; Jabłońska, I.; Pizon, M.; Woźniak, M. Promising Strategies in Plant-Derived Treatments of Psoriasis-Update of In Vitro, In Vivo, and Clinical Trials Studies. Molecules 2022, 27, 591. [Google Scholar] [CrossRef]
- Zeng, J.; Lei, L.; Zeng, Q.; Yao, Y.; Wu, Y.; Li, Q.; Gao, L.; Du, H.; Xie, Y.; Huang, J.; et al. Ozone Therapy Attenuates NF-κB-Mediated Local Inflammatory Response and Activation of Th17 Cells in Treatment for Psoriasis. Int. J. Biol. Sci. 2020, 16, 1833–1845. [Google Scholar] [CrossRef]
- Gao, L.; Dou, J.; Zhang, B.; Zeng, J.; Cheng, Q.; Lei, L.; Tan, L.; Zeng, Q.; Ding, S.; Guo, A.; et al. Ozone Therapy Promotes the Differentiation of Basal Keratinocytes via Increasing Tp63-mediated Transcription of KRT10 to Improve Psoriasis. J. Cell. Mol. Med. 2020, 24, 4819–4829. [Google Scholar] [CrossRef]
Antioxidant/Biomarker | Result in Patients | References |
---|---|---|
MDA | Increased | [16,19,52,66,74,75,76] |
No differences | [17,18] | |
SOD | Decreased | [20,47,52,76] |
Increased | [77] | |
CAT | Decreased | [50,51,75,78] |
GPx | Decreased | [77] |
Uric acid | Decreased | [79] |
AGE | Increased | [16,80] |
AOPP | Increased | [16,73,81] |
No differences | [17] | |
TAS (total antioxidant status) | Decreased | [75,82] |
TAC (total antioxidant capacity) | Decreased | [76,83] |
LOOH (lipid hydroperoxides) | Increased | [16,73,84] |
Total oxidant status (TOS) | Increased | [16,18,75,82,85] |
Oxidative Stress Index (OSI) | Increased | [16,82] |
Therapeutic Agent | Mechanism of Action | Therapeutic Effect | References |
---|---|---|---|
Curcumin | Inhibits NF-κB and MAPK pathways, reducing the production of pro-inflammatory cytokines (IL-6 and TNF-α). | Reduction of inflammation, decrease in oxidative stress, and improvement in psoriasis and PsA symptoms. | [88,111,120,121,122] |
Coenzyme Q10, vitamin E, selenium | Increases activity of SOD and CAT and decreases oxidative stress. | Improvement of redox balance and accelerated clinical recovery. | [104,106,123,124,125,126] |
Resveratrol | Neutralizes ROS, inhibits NF-κB pathways, stimulates autophagy, and suppresses macrophage infiltration. | Reduction of oxidative stress and enhancement of immune response. | [28,127,128,129] |
Quercetin | Decreases ROS production and inhibits NF-κB activity. | Reduction of oxidative stress and improvement of keratinocyte function. | [130,131,132,133] |
Vitamin C | Neutralizes H2O2 and hydroxyl radicals (OH·). | Improvement of antioxidant enzyme function and reduction of lipid peroxidation. | [125,134,135] |
Green tea extract (catechins) | Neutralization of ROS and stimulation of antioxidant enzyme activity. | Reduction of inflammation and oxidative stress. | [126,136] |
Astilbin | Increases Nrf2 accumulation, activates antioxidant-related proteins, and reduces IL-17-dependent T lymphocytes’ accumulation. | Reduction of oxidative stress and improvement in clinical outcomes. | [137,138,139] |
Bilirubin | High biocompatibility, skin penetration, and neutralizes ROS. | Reduction of ROS accumulation and improvement of skin condition in psoriasis. | [87,140,141,142] |
Aloe vera | Inhibits NF-κB, MAPK, and PI3K signaling pathways, along with reducing iNOS, IL-6, and IL-1β synthesis in macrophages, or lowering prostaglandin E2 levels through COX inhibition. | Reduction of oxidative stress and enhancement of skin lesion healing. | [143,144,145] |
Ozone therapy | Inhibits the NF-κB pathway. | Reduction of symptoms in skin lesions and joint inflammation. | [146,147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilski, R.; Kupczyk, D.; Woźniak, A. Oxidative Imbalance in Psoriasis with an Emphasis on Psoriatic Arthritis: Therapeutic Antioxidant Targets. Molecules 2024, 29, 5460. https://doi.org/10.3390/molecules29225460
Bilski R, Kupczyk D, Woźniak A. Oxidative Imbalance in Psoriasis with an Emphasis on Psoriatic Arthritis: Therapeutic Antioxidant Targets. Molecules. 2024; 29(22):5460. https://doi.org/10.3390/molecules29225460
Chicago/Turabian StyleBilski, Rafał, Daria Kupczyk, and Alina Woźniak. 2024. "Oxidative Imbalance in Psoriasis with an Emphasis on Psoriatic Arthritis: Therapeutic Antioxidant Targets" Molecules 29, no. 22: 5460. https://doi.org/10.3390/molecules29225460
APA StyleBilski, R., Kupczyk, D., & Woźniak, A. (2024). Oxidative Imbalance in Psoriasis with an Emphasis on Psoriatic Arthritis: Therapeutic Antioxidant Targets. Molecules, 29(22), 5460. https://doi.org/10.3390/molecules29225460