Synthesis and Enhanced Electrocatalytic Activity of Platinum and Palladium-Based Nanoflowers Supported on Reduced Graphene Oxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Palladium and Platinum-Based Catalysts Supported on Reduced Graphene Oxide
2.2. Electrochemical Performance of Prepared Platinum and Palladium-Based Catalyst
3. Experimental Section
3.1. Chemicals and Materials
3.2. Preparation of Palladium and Platinum-Based Catalysts Supported on Reduced Graphene Oxide
3.3. Electrochemical Performance of Prepared Platinum and Palladium-Based Catalyst
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sazali, N.; Salleh, W.N.W.; Jamaludin, A.S.; Razali, M.N.M. New perspectives on fuel cell technology: A brief review. Membranes 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Mekhilef, S.; Saidur, R.; Safari, A. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 2012, 16, 981–989. [Google Scholar] [CrossRef]
- Han, M.; Kani, K.; Na, J.; Kim, J.; Bando, Y.; Ahamad, T.; Alshehri, S.M.; Yamauchi, Y. Retrospect and prospect: Nanoarchitectonics of platinum-group-metal-based materials. Adv. Funct. Mater. 2023, 33, 2301831. [Google Scholar] [CrossRef]
- Zhao, X.; Sasaki, K. Advanced Pt-based core–shell electrocatalysts for fuel cell cathodes. Acc. Chem. Res. 2022, 55, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Sajid, A.; Pervaiz, E.; Ali, H.; Noor, T.; Baig, M.M. A perspective on development of fuel cell materials: Electrodes and electrolyte. Int. J. Energy Res. 2022, 46, 6953–6988. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, F.; You, H.; Li, Z.; Zou, B.; Du, Y. Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coord. Chem. Rev. 2022, 450, 214244. [Google Scholar] [CrossRef]
- Xu, Q.; Niu, Y.; Li, J.; Yang, Z.; Gao, J.; Ding, L.; Ni, H.; Zhu, P.; Liu, Y.; Tang, Y.; et al. Recent progress of quantum dots for energy storage applications. Carb. Neutrality 2022, 1, 13. [Google Scholar] [CrossRef]
- Farrag, M.; Ali, G.A.M. Hydrogen generation of single alloy Pd/Pt quantum dots over Co3O4 nanoparticles via the hydrolysis of sodium borohydride at room temperature. Sci. Rep. 2022, 12, 17040. [Google Scholar] [CrossRef]
- Ye, M.; Gong, J.; Lai, Y.; Lin, C.; Lin, Z. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 2012, 134, 15720–15723. [Google Scholar] [CrossRef]
- Doan, H.; Morais, T.; Borchtchoukova, N.; Wijsboom, Y.; Sharabi, R.; Chatenet, M.; Finkelshtain, G. Bimetallic Pt or Pd-based carbon supported nanoparticles are more stable than their monometallic counterparts for application in membraneless alkaline fuel cell anodes. Appl. Catal. B 2022, 301, 120811. [Google Scholar] [CrossRef]
- Huang, S.; Lu, S.; Hu, H.; Xu, F.; Li, H.; Duan, F.; Zhu, H.; Gu, H.; Du, M. Hyper-dendritic PdZn nanocrystals as highly stable and efficient bifunctional electrocatalysts towards oxygen reduction and ethanol oxidation. Chem. Eng. J. 2021, 420, 130503. [Google Scholar] [CrossRef]
- Liu, C.; Cai, X.; Wang, J.; Liu, J.; Riese, A.; Chen, Z.; Sun, X.; Wang, S.-D. One-step synthesis of AuPd alloy nanoparticles on graphene as a stable catalyst for ethanol electro-oxidation. Int. J. Hydrogen Energy 2016, 41, 13476–13484. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, X.; Qian, N.; Li, J.; Shen, S.; Wu, X.; Tan, X.; Zhang, H.; Yang, D. A universal synthesis strategy of Pd-based trimetallic nanowires for efficient alcohol electrooxidation. Nanoscale 2024, 16, 3685–3692. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Zhou, L.; Chen, D.; Yan, S.; Su, N.; Zhang, Y. Facile construction of core-shell AuPd nanochain networks in one-pot for ethanol oxidation. Int. J. Hydrogen Energy 2024, 69, 619–625. [Google Scholar] [CrossRef]
- Li, S.; Jin, H.; Wang, Y. Recent progress on the synthesis of metal alloy nanowires as electrocatalysts. Nanoscale 2023, 15, 2488–2515. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, J.; Li, T.; Zhang, T.; Arbiol, J.; Yan, S.; Wang, Y.; Li, H.; Cabot, A. Pd2Ga nanorods as highly active bifunctional catalysts for electrosynthesis of acetic acid coupled with hydrogen production. Chem. Eng. J. 2022, 446, 136878. [Google Scholar] [CrossRef]
- Zhao, Y.; Sarhan, R.M.; Eljarrat, A.; Kochovski, Z.; Koch, C.; Schmidt, B.; Koopman, W.; Lu, Y. Surface-Functionalized Au–Pd nanorods with enhanced photothermal conversion and catalytic performance. ACS Appl. Mater. Interfaces 2022, 14, 17259–17272. [Google Scholar] [CrossRef]
- Sun, Y.-B.; Ni, M.; Chi, C.; Yang, D.-R.; Chen, X.-L.; Qi, Q.; Li, J.; Xia, X.-H. Plasmon driven super-high HER activity of electronic structure and lattice strain engineered single atomic layer Pd@ Au nanorods. Chem. Eng. J. 2023, 467, 143387. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Q.; Ren, Q.; Yang, Q.; Zhao, D.; Feng, Y.; Chen, H.; Wang, Y. Facile synthesis of Pd and PdPtNi trimetallic nanosheets as enhanced oxygen reduction electrocatalysts. Small 2022, 18, 2103665. [Google Scholar] [CrossRef]
- Ando, S.; Yamamoto, E.; Kobayashi, M.; Kumatani, A.; Osada, M. Facile Synthesis of Pd Nanosheets and Implications for Superior Catalytic Activity. ACS Nano 2024, 18, 461–469. [Google Scholar] [CrossRef]
- Huang, X.; Xu, B.; Feng, J.; Hu, S.; Dou, W.; Yang, T.; Zhan, C.; Liu, S.; Ji, Y.; Li, Y.; et al. Continuous Phase Regulation of a Pd–Te Hexagonal Nanoplate Library. J. Am. Chem. Soc. 2023, 145, 28010–28021. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Jeong, S.; Ye, X.; Li, C.W. Surface-limited galvanic replacement reactions of Pd, Pt, and Au onto Ag core nanoparticles through redox potential tuning. Chem. Mater. 2022, 34, 1897–1904. [Google Scholar] [CrossRef]
- Li, Z.; Xie, Z.; Zhang, Y.; Mu, X.; Xie, J.; Yin, H.-J.; Zhang, Y.-W.; Ophus, C.; Zhou, J. Probing the atomically diffuse interfaces in Pd@ Pt core-shell nanoparticles in three dimensions. Nat. Commun. 2023, 14, 2934. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; An, Z.; Ma, Z.; Li, N.; Han, Y.; Yang, G.; Jiang, Q.; Chen, Q.; Chu, W.; Wang, S.; et al. 3D Porous graphene-like carbons encaged single-atom-based Pt for ultralow loading and high-performance fuel cells. ACS Catal. 2023, 13, 1856–1862. [Google Scholar] [CrossRef]
- Gong, Y.; Lv, F.; Lu, Y.; Yu, Y.; Niu, J.; Lang, J.; Deng, Y.; Cao, X.; Gu, H. In Situ surface-derivation of AgPdMo/MoS2 nanowires for synergistic hydrogen evolution catalysis in alkaline solution. Nanoscale 2020, 12, 6472–6479. [Google Scholar] [CrossRef]
- Hakkeem, H.M.A.; Babu, A.; Shilpa, N.; Venugopal, A.A.; Mohamed, A.P.; Kurungot, S.; Pillai, S. Tailored synthesis of ultra-stable Au@ Pd nanoflowers with enhanced catalytic properties using cellulose nanocrystals. Carbohyd. Polym. 2022, 292, 119723. [Google Scholar] [CrossRef]
- Xie, R.; Lu, S.; Deng, Y.; Mei, S.; Cao, X.; Zhou, L.; Lan, C.; Gu, H. Facile synthesis of sea-urchin-like Pt and Pt/Au nanodendrites and their enhanced electrocatalytic properties. Inorg. Chem. 2019, 58, 5375–5379. [Google Scholar] [CrossRef]
- Lee, S.J.; Jang, H.; Lee, D.N. Recent advances in nanoflowers: Compositional and structural diversification for potential applications. Nanoscale Adv. 2023, 5, 5165–5213. [Google Scholar] [CrossRef]
- Xie, R.; Qin, F.; Zhou, L.; Chen, D.; Liu, J.; Shen, J.; Yan, S. Supported palladium nanocubes reduced by graphene oxide and surface-cleaned for enhanced electrocatalytic activity. J. Alloys Compd. 2024, 994, 174697. [Google Scholar] [CrossRef]
- Gautam, S.; Hadley, A.M.K.; Gates, B.D. Controlled Growth of Platinum Nanoparticles during Electrodeposition Using Halide Ion Containing Additives. J. Electrochem. Soc. 2022, 169, 112508. [Google Scholar] [CrossRef]
- Qiu, P.; Lian, S.; Yang, G.; Yang, S. Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Res. 2017, 10, 1064–1077. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhang, K.; Wang, X.; Wang, C.; Li, Z.; Gao, F.; Du, Y. Rapid synthesis of Palladium-Platinum-Nickel ultrathin porous nanosheets with high catalytic performance for alcohol electrooxidation. J. Colloid Interface Sci. 2023, 650, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Yan, W.; Wei, C.; Xiao, Z.; Jin, Z.; Liu, X.; Ren, J.; Chen, Y.; Li, X. Controlled Preparation and Anti-Sulfate Electrocatalysis of Self-Assembled Multidimensional PtZn Quasi-Cubic Nanodendrites. Adv. Mater. Interfaces 2022, 9, 2101944. [Google Scholar] [CrossRef]
- Zi, X.; Wang, R.; Liu, L.; Dai, H.; Zhang, G.; He, H. Cetyltrimethylammonium bromide assisted preparation and characterization of pd nanoparticles with spherical, worm-like, and network-like morphologies. Chin. J. Catal 2011, 32, 827–835. [Google Scholar] [CrossRef]
- Gogoi, R.; Nath, R.; Borah, G. CTAB-assisted synthesis of reduced graphene oxide supported Pd nanoparticles (Pd@ rGO) as a sustainable heterogeneous catalyst for C-2 arylation of indoles with arylboronic acids. J. Organomet. Chem. 2024, 1017, 123261. [Google Scholar] [CrossRef]
- Shen, L.; Tu, F.; Shang, Z.; Ma, M.; Xia, Y.; Zhao, Z.; Zhao, L.; Wang, Z.; Shao, G. Surfactant-assisted synthesis of platinum nanoparticle catalysts for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2022, 47, 15001–15011. [Google Scholar] [CrossRef]
- Xie, R.; Pan, Y.; Gu, H. Synthesis of Pt dendritic nanocubes with enhanced catalytic properties. RSC Adv. 2015, 5, 16497–16500. [Google Scholar] [CrossRef]
- Chang, L.; Cao, Y.; Peng, W.; Li, C.; Fan, G.; Song, X.; Shi, X. Efficiently removing cetyl trimethyl ammonium bromide from wastewater by graphene oxide. Surf. Interface Anal. 2020, 52, 611–619. [Google Scholar] [CrossRef]
- Konda, S.K.; Chen, A. Palladium based nanomaterials for enhanced hydrogen spillover and storage. Mater. Today 2016, 19, 100–108. [Google Scholar] [CrossRef]
- Pham, V.H.; Dang, T.T.; Singh, K.; Hur, S.H.; Shin, E.W.; Kim, J.S.; Lee, M.A.; Baeck, S.H.; Chung, J.S. A catalytic and efficient route for reduction of graphene oxide by hydrogen spillover. J. Mater. Chem. 2013, 1, 1070–1077. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Abdelrazeq, H.; Khraisheh, M.; AlMomani, F.; Hameed, B.H.; Hassan, M.K.; Al-Ghouti, M.A.; Selvaraj, R. Spectral and structural properties of high-quality reduced graphene oxide produced via a simple approach using tetraethylenepentamine. Nanomaterials 2022, 12, 1240. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhu, L.; Jin, S.; Jiang, L.; Zou, Y. Raman spectroscopy analysis of graphene oxide-enhanced textiles. J. Raman Spectrosc. 2021, 52, 843–848. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Viswanath, P.; Rao, V.K.; Suzuki, S.; Yoshimura, M. New insight into the characterization of graphene oxide and reduced graphene oxide monolayer flakes on Si-based substrates by optical microscopy and raman spectroscopy. J. Phys. Chem. C 2021, 125, 7791–7798. [Google Scholar] [CrossRef]
- Lee, A.Y.; Yang, K.; Anh, N.D.; Park, C.; Lee, S.M.; Lee, T.G.; Jeong, M.S. Raman study of D* band in graphene oxide and its correlation with reduction. Appl. Surf. Sci. 2021, 536, 147990. [Google Scholar] [CrossRef]
- Kaniyoor, A.; Ramaprabhu, S. A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012, 2, 032183. [Google Scholar] [CrossRef]
- Minitha, C.R.; Rajendrakumar, R.T. Synthesis and characterization of reduced graphene oxide. Adv. Mater. Res. 2013, 678, 56–60. [Google Scholar] [CrossRef]
- Khan, M.F.; Cazzato, G.; Saleemi, H.A.; Macadangdang, R.R., Jr.; Aftab, M.N.; Ismail, M.; Khalid, H.; Ali, S.; Bakhtiar, S.U.H.; Ismail, A.; et al. Sonophotocatalytic degradation of organic pollutant under visible light over Pt decorated CeO2: Role of ultrasonic waves for unprecedented degradation. J. Mol. Struct. 2022, 1247, 131397. [Google Scholar] [CrossRef]
- Yang, J.; Shi, C.; Liu, F.; Zhu, E.; Wei, D.; Ren, Y.; Chen, R.; Xu, M. High-index facets Pt concave nanocubes with small interface angles induced by N-defective sites in the integrated electrode for methanol oxidation. J. Power Sources 2024, 612, 234787. [Google Scholar] [CrossRef]
- Qiao, M.; Wei, Y.; Dong, Y.-J.; Wang, J.-X.; Chen, J.-F. A Universal Approach for Controllable Synthesis of Homogeneously Alloyed PtM Nanoflowers toward Enhanced Methanol Oxidation. Small 2024, 20, 2307283. [Google Scholar] [CrossRef]
- Baran, N.Y.; Baran, T.; Çalışkan, M. Production of Pd nanoparticles embedded on micro-sized chitosan/graphitic carbon nitride hybrid spheres for treatment of environmental pollutants in aqueous medium. Ceram. Int. 2021, 47, 27736–27747. [Google Scholar] [CrossRef]
- Makin, A.M.; Nsengiyumva, W.; Bizuneh, G.G.; Xu, Z.; Zhang, G. Stabilizing agents assisted construction of monometallic self-supporting Palladium NCs with ultrafine nanostructures and rich surface area for highly efficient direct ethanol fuel cell. J. Electroanal. Chem. 2023, 933, 117297. [Google Scholar] [CrossRef]
- Kumar, G.; Das, S.K.; Nayak, C.; Dey, R.S. Pd “kills two birds with one stone” for the synthesis of catalyst: Dual active sites of Pd triggers the kinetics of O2 electrocatalysis. Small 2024, 20, 2307110. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.-G.; Zhang, G.-H.; Lin, Y.; Yu, X.-X.; Ren, W.-Z.; Wu, Y.-K.; Pan, N.; Wang, X.-P. A green and mild approach of synthesis of highly-conductive graphene film by zn reduction of exfoliated graphite oxide. J. Chem. Phys. 2012, 25, 494. [Google Scholar] [CrossRef]
- Galvão, F.M.F.; Cabral, R.L.B.; Santos, E.V.; Santos, J.E.L.; Santos, T.F.; Zille, A.; Mattos, A.L.A.; Souza, D.F.S.; Nascimento, J.H.O. Comparative Study of the Synthesis and Characterization of Reduced Graphene Oxide (RGO) Using an Eco-Friendly Reducing Agent. J. Electron. Mater. 2023, 52, 7239–7255. [Google Scholar] [CrossRef]
- Huang, H.-H.; De Silva, K.K.H.; Kumara, G.R.A.; Yoshimura, M. Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 2018, 8, 6849. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Xie, R.; Zhang, S.; Chen, D.; Yan, S.; Zhou, L.; Wang, J. Synthesis and Enhanced Electrocatalytic Activity of Platinum and Palladium-Based Nanoflowers Supported on Reduced Graphene Oxide. Molecules 2024, 29, 5462. https://doi.org/10.3390/molecules29225462
Shen J, Xie R, Zhang S, Chen D, Yan S, Zhou L, Wang J. Synthesis and Enhanced Electrocatalytic Activity of Platinum and Palladium-Based Nanoflowers Supported on Reduced Graphene Oxide. Molecules. 2024; 29(22):5462. https://doi.org/10.3390/molecules29225462
Chicago/Turabian StyleShen, Jiefa, Ruigang Xie, Sai Zhang, Daixiang Chen, Shenghu Yan, Lingli Zhou, and Jiayin Wang. 2024. "Synthesis and Enhanced Electrocatalytic Activity of Platinum and Palladium-Based Nanoflowers Supported on Reduced Graphene Oxide" Molecules 29, no. 22: 5462. https://doi.org/10.3390/molecules29225462
APA StyleShen, J., Xie, R., Zhang, S., Chen, D., Yan, S., Zhou, L., & Wang, J. (2024). Synthesis and Enhanced Electrocatalytic Activity of Platinum and Palladium-Based Nanoflowers Supported on Reduced Graphene Oxide. Molecules, 29(22), 5462. https://doi.org/10.3390/molecules29225462