Effect of Various Thermal Processing Methods on the Sensory, Textural, and Physicochemical Characteristics of Foal Meat
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Physicochemical Properties
2.3. Color Parameters and the Level of Heme Pigments
2.4. Texture Parameters
2.5. Sensory Properties
3. Materials and Methods
3.1. Experimental Design
3.2. Cooking Procedure
3.3. Analytical Methods
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistical Yearbook of Agriculture; Statistics Poland: Warsaw, Poland, 2023.
- Znamirowska, A. Slaughter Value and Quality of Horsemeat and Fat in Cool and Cold Storage as Well as Toxic-Compounds Accumulation Levels Depending on Horse Age; Wydawnictwo Uniwersytetu Rzeszowskiego: Rzeszów, Poland, 2005; Chapter 4. (In Polish) [Google Scholar]
- Lorenzo, J.M.; Pateiro, M. Influence of type of muscles on nutritional value of foal meat. Meat Sci. 2013, 93, 630–638. [Google Scholar] [CrossRef] [PubMed]
- López-Pedrouso, M.; Lorenzo, J.M.; Cittadini, A.; Sarries, M.V.; Gagaoua, M.; Franco, D. A proteomic approach to identify biomarkers of foal meat quality: A focus on tenderness, color and intramuscular fat traits. Food Chem. 2023, 405, 134805. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.S.; Imran, A.; Hussain, M.B. Nutritional composition of meat. In Meat Science and Nutrition; IntechOpen: London, UK, 2018; Chapter 4. [Google Scholar] [CrossRef]
- Del Bo’, C.; Simonetti, P.; Gardana, C.; Riso, P.; Lucchini, G.; Ciappellano, S. Horse meat consumption affects iron status, lipid profile and fatty acid composition of red blood cells in healthy volunteers. Int. J. Food. Sci. Nutr. 2013, 64, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Lorenzo, J.M. Effect of muscle and intensity of finishing diet on meat quality of foals slaughtered at 15 months. Meat Sci. 2014, 96, 327–334. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sarriés, M.V.; Tateo, A.; Polidori, P.; Franco, D.; Lanza, M. Carcass characteristics, meat quality and nutritional value of horsemeat: A review. Meat Sci. 2014, 96, 1478–1488. [Google Scholar] [CrossRef]
- Kathuria, D.; Dhiman, A.K.; Attri, S. Sous vide, a culinary technique for improving quality of food products: A review. Trends Food Sci. Technol. 2022, 119, 57–68. [Google Scholar] [CrossRef]
- Michalak-Majewska, M.; Stanikowski, P.; Gustaw, W.; Sławińska, A.; Radzki, W.; Skrzypczak, K.; Jabłońska-Ryś, E. Sous-vide cooking technology—Innovative heat treatment method of food. Żywn. Nauka Technol. Jakość 2018, 25, 34–44. (In Polish) [Google Scholar] [CrossRef]
- Polak, E.; Markowska, J. Effect of sous-vide cooking under different temperature and time conditions on the performance, texture and organoleptic quality of the sous-vide cooked turkey breast. Postępy Nauki Technol. Prz. Rol.-Spoż. 2019, 74, 32–47. (In Polish) [Google Scholar]
- Yıkmış, S.; Aksu, H.; Çöl, B.G.; Demirçakmak, I.L. Evaluation of sous-vide technology in gastronomy. Int. J. Agric. Sci. 2018, 4, 226–229. [Google Scholar] [CrossRef]
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef]
- Bıyıklıa, M.; Akoğlu, A.; Kurhan, Ş.; Akoğlu, İ.T. Effect of different sous vide cooking temperature-time combinations on the physicochemical, microbiological, and sensory properties of turkey cutlet”. Int. J. Gastron. Food. Sci. 2020, 20, 100204. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, B.; Oh, E.; Kim, Y.S.; Choiz, Y.M. Combined effects of sous-vide cooking conditions on meat and sensory quality characteristics of chicken breast meat. Poult. Sci. 2020, 99, 3286–3291. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Rudy, M.; Stanisławczyk, R.; Duma-Kocan, P. Effect of traditional cooking and sous vide heat treatment, cold storage time and muscle on physicochemical and sensory properties of beef meat. Molecules 2022, 27, 7307. [Google Scholar] [CrossRef] [PubMed]
- Nyati, H. An evaluation of the effect of storage and processing temperatures on the microbiological status of sous vide extended shelf-life products. Food Control 2000, 11, 471–476. [Google Scholar] [CrossRef]
- Szerman, N.; Gonzalez, C.B.; Sancho, A.M.; Grigioni, G.; Carduza, F.; Vaudagna, S.R. Effect of whey protein concentrate and sodium chloride addition plus tumbling procedures on technological parameters, physical properties and visual appearance of sous vide cooked beef. Meat Sci. 2007, 76, 463–473. [Google Scholar] [CrossRef]
- Chwastowska-Siwiecka, I. The application of sous-vide technology in poultry meat processing. Przemysł Spożywczy 2023, 4, 15–23. (In Polish) [Google Scholar] [CrossRef]
- Jeong, K.; Hyeonbin, O.; Shin, S.Y.; Kim, Y.S. Effects of sous-vide method at different temperatures, time and vacuum degrees on the quality, structural, and microbiological properties of pork ham. Meat Sci. 2018, 143, 1–7. [Google Scholar] [CrossRef]
- Silva, F.A.P.; Ferreira, V.C.S.; Madruga, M.S.; Estévez, M. Effect of the cooking method (grilling, roasting, frying and sous-vide) on the oxidation of thiols, tryptophan, alkaline amino acids and protein cross-linking in jerky chicken. J. Food Sci. Technol. 2016, 53, 3137–3146. [Google Scholar] [CrossRef]
- Ruiz, J.; Calvarro, J.; Sánchez del Pulgar, J.; Roldan, M. Science and technology for new culinary techniques. J. Culin. Sci. Technol. 2013, 11, 66–79. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Q.; Zhang, Y.; Yang, X.; Mao, Y.; Luo, X.; Hopkins, D.L.; Niu, L.; Liang, R. Sous vide cooking improved the physicochemical parameters of hot-boned bovine semimembranosus muscles. Meat Sci. 2023, 206, 109326. [Google Scholar] [CrossRef]
- Roldán, M.; Antequera, T.; Martín, A.; Mayoral, A.I.; Ruiz, J. Effect of different temperature–time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.E.; Kim, J.H.; Ahn, S.J.; Lee, C.H. Changes in meat quality characteristics of the sous-vide cooked chicken breast during refrigerated storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Xue, D.; Zhang, Z.; Shan, K.; Ke, W.; Zhang, M.; Zhao, D.; Nian, Y.; Xu, X.; Zhou, G.; et al. Effect of sous-vide cooking on the quality and digestion characteristics of braised pork. Food Chem. 2022, 375, 131683. [Google Scholar] [CrossRef] [PubMed]
- Vaudagna, S.R.; Sanchez, G.; Neira, M.S.; Insani, E.M.; Picallo, A.B.; Gallinger, M.M.; Lasta, J.A. Sous vide cooked beef muscles: Effects of low temperature-long time (LT-LT) treatments on their quality characteristics and storage stability. Int. J. Food Sci. Technol. 2002, 37, 425–441. [Google Scholar] [CrossRef]
- Sánchez del Pulgar, J.; Gázquez, A.; Ruiz-Carrascal, J. Physico-chemical, textural and structural characteristics of sous-vide cooked pork cheeks as affected by vacuum, cooking temperature, and cooking time. Meat Sci. 2012, 90, 828–835. [Google Scholar] [CrossRef]
- Juárez, M.; Failla, S.; Ficco, A.; Peña, F.; Avilés, C.; Polvillo, O. Buffalo meat composition as affected by different cooking methods. Food Bioprod. Process. 2010, 88, 145–148. [Google Scholar] [CrossRef]
- Sujiwo, J.; Lee, S.; Kim, D.; Lee, H.J.; Oh, S.; Jung, Y.; Jang, A. Physicochemical features and volatile organic compounds of horse loin subjected to sous-vide cooking. Foods 2024, 13, 280. [Google Scholar] [CrossRef]
- Głuchowski, A.; Czarniecka-Skubina, E.; Buła, M. The use of the sous-vide method in the preparation of poultry at home and in catering—Protection of nutrition value whether high energy consumption. Sustainability 2020, 12, 7606. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Fuciños, C.; Purriños, L.; Franco, D. Intramuscular fatty acid composition of „Galician Mountain” foals breed. Effect of sex, slaughtered age and livestock production system. Meat Sci. 2010, 86, 825–831. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sarriés, M.V.; Franco, D. Sex effect on meat quality and carcass traits of foals slaughtered at 15 months of age. Animal 2013, 7, 1199–1207. [Google Scholar] [CrossRef]
- Alfaia, C.P.M.; Alves, S.P.; Lopes, A.F.; Fernandes, M.F.E.; Costa, A.S.H.; Fontes, C.M.G.A.; Castro, M.L.F.; Bessa, R.J.B.; Prates, J.A.M. Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Sci. 2010, 84, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Influence of thermal treatment on formation of volatile compounds, cooking loss and lipid oxidation in foal meat. Food Sci. Technol. 2014, 58, 439–445. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Havat, K.; Liu, P.; Jia, C.; Xia, S.; Xiao, Z.; Tian, H.; Niu, Y. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem. 2011, 124, 203–209. [Google Scholar] [CrossRef]
- Stanisławczyk, R.; Żurek, J.; Rudy, M.; Gil, M.; Krajewska, A.; Dziki, D. Effect of time and temperature in sous-vide heat treatment on selected physicochemical properties of horsemeat. Processes 2023, 11, 3126. [Google Scholar] [CrossRef]
- Haghighi, H.; Belmonte, A.M.; Masino, F.; Minelli, G.; Lo Fiego, D.P.; Pulvirenti, A. Effect of time and temperature on physicochemical and microbiological properties of sous vide chicken breast fillets. Appl. Sci. 2021, 11, 3189. [Google Scholar] [CrossRef]
- Cheng, Q.; Sun, D.W. Factors affecting the water holding capacity of red meat products: A review of recent research advances. Crit. Rev. Food Sci. Nutr. 2008, 48, 137–159. [Google Scholar] [CrossRef]
- Thathsarani, A.P.K.; Alahakoon, A.U.; Liyanage, R. Current status and future trends of sous vide processing in meat industry; A review. Trends Food Sci. Technol. 2022, 129, 353–363. [Google Scholar] [CrossRef]
- Karpińska-Tymoszczyk, M.; Draszanowska, A.; Danowska-Oziewicz, M.; Kurp, L. The effect of low-temperature thermal processing on the quality of chicken breast fillets. Food Sci. Technol. Int. 2020, 26, 563–573. [Google Scholar] [CrossRef]
- Sanchez del Pulgar, J.; Roldan, M.; Ruiz-Carrascal, J. Volatile compounds profile of SV cooked pork cheeks as affected by cooking conditions (vacuum packaging, temperature and time). Molecules 2013, 18, 12538–12547. [Google Scholar] [CrossRef]
- García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Effect of cooking method on mechanical properties, color and structure of beef muscle (M. pectoralis). J. Food Eng. 2007, 80, 813–821. [Google Scholar] [CrossRef]
- Suman, S.P.; Nair, M.N.; Joseph, P.; Hunt, M.C. Factors influencing internal color of cooked meats. Meat Sci. 2016, 120, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.R.; Naveena, B.M.; Muthukumar, M.; Vaithiyanathan, S. Colour, myoglobin denaturation and storage stability of raw and cooked mutton chops at different and point cooking temperature. J. Food Sci. Technol. 2014, 51, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.; Gunvig, A.; Tørngren, M.A.; Aaslyng, M.D.; Knøchel, S.; Christensen, M. Sensory characteristics of meat cooked for prolonged times at low temperature. Meat Sci. 2012, 90, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.; Ertbjerg, P.; Aaslyng, M.D.; Christensen, M. Effect of prolonged heat treatment from 48 °C to 63 °C on toughness, cooking loss and color of pork. Meat Sci. 2011, 88, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Henriott, M.L.; Herrera, N.J.; Ribeiro, F.A.; Hart, K.B.; Bland, N.A.; Eskridge, K.; Calkins, C.R. Impact of myoglobin oxygenation state prior to frozen storage on color stability of thawed beef steaks through retail display. Meat Sci. 2020, 170, 108232. [Google Scholar] [CrossRef]
- Stanisławczyk, R.; Żurek, J.; Rudy, M.; Gil, M.; Krajewska, A.; Dziki, D. Horse meat subjected to sous-vide cooking: Texture changes and sensory acceptability. Processes 2024, 12, 1577. [Google Scholar] [CrossRef]
- Tornberg, E. Effects of heat on meat proteins—Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Kerdpiboon, S.; Suraphantapisit, N.; Pongpaew, P.; Srikalong, P. Properties changes of chicken breast during sous-vide cooking and acceptance for elderly. Chiang Mai Univ. J. Nat. Sci. 2019, 18, 156–166. [Google Scholar] [CrossRef]
- Yang, F.; Lee, C.H.; Jeon, M.Y.; Cho, W.Y.; Seo, H.G. The physicochemical and sensory properties of whey-fed pork loin after salting, dry aging, and sous vide cooking. J. Chem. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Ji, D.S.; Kim, J.H.; Yoon, D.K.; Kim, J.H.; Lee, H.J.; Cho, W.Y.; Lee, C.H. Effect of different storage-temperature combinations on Longissimus dorsi quality upon sous-vide processing of frozen/thawed pork. Food Sci. Anim. Resour. 2019, 39, 240–254. [Google Scholar] [CrossRef]
- Council Regulation. No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Union L 2009, 303, 1–30. [Google Scholar]
- PN-ISO 1442; Meat and Meat Products—Determination of Moisture Content (Reference Method). Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-A-04018: 1975/Az3; Agricultural Food Products. In Determination of Nitrogen by the Kjeldahl Method and Expressing as Protein. Polish Committee for Standardization: Warsaw, Poland, 2002.
- PN-ISO 1444; Meat and Meat Products—Determination of Free Fat Content. Polish Committee for Standardization: Warsaw, Poland, 2000.
- Pikul, J.; Leszczyński, D.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Nam, K.C.; Ahn, D.U. Effects of ascorbic acid and antioxidants on the colour of irradiated ground beef. J. Food Sci. 2003, 68, 1686–1690. [Google Scholar] [CrossRef]
- Duma-Kocan, P.; Rudy, M.; Gil, M.; Stanisławczyk, R.; Żurek, J.; Zaguła, G. The impact of a pulsed light stream on the quality and durability of the cold-stored longissimus dorsal muscle of pigs. Int. J. Environ. Res. Public Health 2023, 20, 4063. [Google Scholar] [CrossRef] [PubMed]
- Krzywicki, K. The determination of heam pigments in meat. Meat Sci. 1982, 7, 29–36. [Google Scholar] [CrossRef]
- Stanisławczyk, R.; Rudy, M.; Gil, M. The influence of frozen storage and selected substances on the quality of horse meat. Meat Sci. 2019, 155, 74–78. [Google Scholar] [CrossRef]
- ISO 8586: 2023; Sensory Analysis—Selection and Training of Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 8587; Sensory Analysis. Methodology, International Organization for Standardization (ISO). International Organization for Standardization: Geneva, Switzerland, 2006.
Specification | Type of Thermal Processing | p-Value | |||||
---|---|---|---|---|---|---|---|
Cooking * 85 °C | Cooking ** 100 °C/1.5 h | Sous-Vide Method 55 °C | Sous-Vide Method 65 °C | ||||
4 h | 24 h | 4 h | 24 h | ||||
Fat (%) | 6.85 a ± 0.77 | 6.65 a ± 0.19 | 3.60 b ± 0.33 | 4.40 b ± 0.07 | 4.95 b ± 0.58 | 4.93 b ± 0.55 | 0.003 |
Water (%) | 70.60 a ± 0.28 | 70.85 a ± 0.14 | 73.85 b ± 0.16 | 73.76 b ± 0.35 | 73.50 b ± 0.41 | 73.10 b ± 0.20 | 0.030 |
Protein (%) | 20.86 ± 0.98 | 20.95 ± 0.07 | 19.90 ± 0.49 | 19.95 ± 0.07 | 20.05 ± 0.98 | 20.20 ± 0.55 | 0.250 |
Specification | Type of Thermal Treatment | ||||||
---|---|---|---|---|---|---|---|
Cooking * 85 °C | Cooking ** 100 °C/1.5 h | Sous-Vide Method 55 °C | Sous-Vide Method 65 °C | p-Value | |||
4 h | 24 h | 4 h | 24 h | ||||
TBARS [mg MDA/kg] | 0.88 b ± 0.01 | 1.04 a ± 0.01 | 0.87 b ± 0.01 | 0.89 b ± 0.01 | 0.88 b ± 0.01 | 0.92 b ± 0.01 | 0.030 |
Oxidation–reduction potential [mV] | 392.20 ± 6.99 | 356.20 ± 7.24 | 360.00 ± 8.76 | 339.50 ± 7.55 | 357.20 ± 8.20 | 357.30 ± 6.76 | 0.370 |
Water activity | 0.995 ± 0.01 | 0.998 ± 0.02 | 0.997 ± 0.02 | 0.990 ± 0.01 | 0.994 ± 0.02 | 0.997 ± 0.02 | 0.290 |
Weight loss [%] | 41.19 a ± 1.23 | 39.04 a ± 1.09 | 12.95 b ± 0.67 | 18.04 b ± 0.88 | 20.18 b ± 0.87 | 32.72 a ± 1.02 | 0.002 |
Specification | Type of Thermal Treatment | ||||||
---|---|---|---|---|---|---|---|
Cooking * 85 °C | Cooking ** 100 °C/1.5 h | Sous-Vide Method 55 °C | Sous-Vide Method 65 °C | p-Value | |||
4 h | 24 h | 4 h | 24 h | ||||
L* | 47.93 a ± 1.64 | 46.51 a ± 1.81 | 52.06 b ± 1.53 | 51.88 b ± 0.97 | 54.22 b ± 1.51 | 53.92 b ± 1.16 | 0.020 |
a* | 11.53 a ± 0.08 | 10.65 a ± 0.51 | 26.32 b ± 1.51 | 23.25 b ± 0.70 | 18.02 c ± 0.26 | 14.34 c ± 0.81 | 0.003 |
b* | 12.70 ± 0.04 | 13.23 ± 1.29 | 13.69 ± 0.42 | 12.51 ± 0.23 | 13.88 ± 0.29 | 13.20 ± 0.51 | 0.500 |
Mb [%] | 49.49 a ± 0.24 | 48.44 a ± 1.19 | 35.23 b ± 1.68 | 38.57 b ± 1.17 | 42.25 a ± 0.09 | 47.83 a ± 0.28 | 0.010 |
MMb [%] | 29.84 ± 0.99 | 29.67 ± 3.69 | 38.23 ± 2.02 | 37.64 ± 4.16 | 28.57 ± 0.22 | 27.09 ± 0.94 | 0.350 |
Mb•O2 [%] | 20.65 ± 0.74 | 21.88 ± 4.39 | 26.52 ± 1.44 | 26.48 ± 3.00 | 21.17 ± 0.15 | 22.06 ± 0.66 | 0.270 |
OZB [mg/g] | 585.36 a ± 2.06 | 528.36 a ± 10.22 | 305.25 b ± 4.92 | 410 c ± 1.25 | 310.69 b ± 0.50 | 416.38 c ± 4.85 | 0.0001 |
Specification | Type of Thermal Treatment | ||||||
---|---|---|---|---|---|---|---|
Cooking * 85 °C | Cooking ** 100 °C/1.5 h | Sous-Vide Method 55 °C | Sous-Vide Method 65 °C | p-Value | |||
4 h | 24 h | 4 h | 24 h | ||||
Shear force [N/cm2] | 77.82 a ± 5.99 | 74.55 a ± 7.40 | 61.05 b ± 6.26 | 52.86 c ± 5.92 | 58.20 b ± 6.26 | 48.39 c ± 7.42 | 0.001 |
Hardness 1 [N] | 113.37 a ± 14.55 | 112.0 a ± 13.10 | 106.58 b ± 9.57 | 102.44 c ± 12.10 | 105.59 b ± 9.02 | 101.27 c ± 9.39 | 0.015 |
Hardness 2 [N] | 94.14 a ± 7.99 | 93.94 a ± 8.29 | 89.10 b ± 8.08 | 83.77 c ± 9.93 | 87.49 b ± 7.90 | 80.87 c ± 9.44 | 0.023 |
Stiffness 5 [N] | 21.55 a ± 0.35 | 26.86 a ± 0.51 | 18.26 b ± 0.37 | 9.94 c ± 0.38 | 15.42 b ± 0.48 | 8.19 c ± 0.37 | 0.0001 |
Stiffness 8 [N] | 57.88 a ± 2.82 | 56.37 a ± 1.92 | 53.99 b ± 2.31 | 45.53 c ± 2.88 | 51.41 b ± 2.14 | 42.89 c ± 2.31 | 0.034 |
Adhesiveness [mJ] | 0.13 ± 0.01 | 0.10 ± 0.01 | 0.25 ± 0.02 | 0.22 ± 0.02 | 0.21 ± 0.03 | 0.20 ± 0.01 | 0.700 |
Cohesiveness | 0.47 ± 0.05 | 0.52 ± 0.02 | 0.42 ± 0.01 | 0.41 ± 0.05 | 0.38 ± 0.03 | 0.41 ± 0.01 | 0.590 |
Springiness [mm] | 5.12 ± 0.15 | 5.08 ± 0.14 | 4.82 ± 0.15 | 4.60 ± 0.10 | 4.50 ± 0.15 | 4.43 ± 0.19 | 0.280 |
Resilience | 0.18 ± 0.03 | 0.15 ± 0.01 | 0.14 ± 0.02 | 0.13 ± 0.03 | 0.19 ± 0.03 | 0.13 ± 0.03 | 0.460 |
Chewiness [mJ] | 295.23 a ± 8.65 | 267.13 a ± 8.70 | 183.0 b ± 8.09 | 152.43 b ± 5.56 | 185.80 b ± 9.01 | 176.30 b ± 7.69 | 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanisławczyk, R.; Żurek, J.; Rudy, M.; Gil, M.; Krajewska, A.; Dziki, D. Effect of Various Thermal Processing Methods on the Sensory, Textural, and Physicochemical Characteristics of Foal Meat. Molecules 2024, 29, 5464. https://doi.org/10.3390/molecules29225464
Stanisławczyk R, Żurek J, Rudy M, Gil M, Krajewska A, Dziki D. Effect of Various Thermal Processing Methods on the Sensory, Textural, and Physicochemical Characteristics of Foal Meat. Molecules. 2024; 29(22):5464. https://doi.org/10.3390/molecules29225464
Chicago/Turabian StyleStanisławczyk, Renata, Jagoda Żurek, Mariusz Rudy, Marian Gil, Anna Krajewska, and Dariusz Dziki. 2024. "Effect of Various Thermal Processing Methods on the Sensory, Textural, and Physicochemical Characteristics of Foal Meat" Molecules 29, no. 22: 5464. https://doi.org/10.3390/molecules29225464
APA StyleStanisławczyk, R., Żurek, J., Rudy, M., Gil, M., Krajewska, A., & Dziki, D. (2024). Effect of Various Thermal Processing Methods on the Sensory, Textural, and Physicochemical Characteristics of Foal Meat. Molecules, 29(22), 5464. https://doi.org/10.3390/molecules29225464