Generation of Acid Sites in Nanostructured KIT-6 Using Different Methods to Obtain Efficient Acidic Catalysts for Glycerol Acetalization to Solketal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.1.1. X-Ray Diffraction Measurements (XRDs)
2.1.2. Transmission Electron Microscopy (TEM)
2.1.3. Low Temperature Adsorption/Desorption Measurements
2.1.4. The Content and Density of Hydroxyl and Sulfonic Groups
2.1.5. FT-IR Spectroscopy
2.1.6. X-Ray Photoelectron Spectroscopy (XPS)
2.1.7. UV-Vis Spectroscopy
2.1.8. Acetalization of Glycerol with Acetone
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of KIT-6 Materials
3.3. KIT-6 Modification with NH4F Solution
3.4. Grafting of -SO3H Groups onto KIT-6 Materials
3.5. Characterization
3.6. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, P.; He, M.; Teng, W.; Li, F.; Qiu, X.; Li, K.; Wang, H. Ordered mesoporous materials for water pollution treatment: Adsorption and catalysis. Green Energy Environ. 2024, 9, 1239–1256. [Google Scholar] [CrossRef]
- Gangadhar, J.; Tirumuruhan, B.; Sujith, R. Applications and Future Trends in Mesoporous Materials. In Advanced Functional Porous Materials; Engineering Materials; Uthaman, A., Thomas, S., Li, T., Maria, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 235–258. [Google Scholar] [CrossRef]
- Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita., H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale 2020, 12, 11333–11363. [Google Scholar] [CrossRef] [PubMed]
- Tabero, A.; Jankowska, A.; Ostrowski, A.; Janiszewska, E.; Kowalska-Kuś, J.; Held, A.; Kowalak, S. Encapsulation of Imidazole into Ce-Modified Mesoporous KIT-6 for High Anhydrous Proton Conductivity. Molecules 2024, 29, 3239. [Google Scholar] [CrossRef]
- Held, A.; Janiszewska, E.; Czerepińska, J.; Kowalska-Kuś, J. The design, synthesis and catalytic performance of vanadium-incorporated mesoporous silica with 3D mesoporous structure for propene epoxidation. RSC Adv. 2020, 10, 10144–10154. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Lin, Y.; Wu, S.; Wu, M.; Yang, C. Construction of bifunctional 3-D ordered mesoporous catalyst for oxidative desulfurization. Sep. Purif. Technol. 2021, 264, 118434. [Google Scholar] [CrossRef]
- Kishor, R.; Ghoshal, A.K. N1-(3-Trimethoxysilylpropyl)diethylenetriamine grafted KIT-6 for CO2/N2 selective separation. RSC Adv. 2016, 6, 898–909. [Google Scholar] [CrossRef]
- Soten, I.; Ozin, G.A. New directions in self-assembly: Materials synthesis over ‘all’ length scales. Curr. Opin. Colloid Interface Sci. 1999, 4, 325–337. [Google Scholar] [CrossRef]
- Prabhu, A.; Kumaresan, L.; Palanichamy, M.; Murugesan, V. Synthesis and characterization of aluminium incorporated mesoporous KIT-6: Efficient catalyst for acylation of phenol. Appl. Catal. A Gen. 2009, 360, 59–65. [Google Scholar] [CrossRef]
- Wang, W.; Qi, R.; Shan, W.; Wang, X.; Jia, Q.; Zhao, J.; Zhang, C.; Ru, H. Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process. Micropor. Mesopor. Mat. 2014, 194, 167–173. [Google Scholar] [CrossRef]
- Soni, K.; Rana, B.S.; Sinha, A.K.; Bhaumik, A.; Nandi, M.; Kumar, M.; Dhar, G.M. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Appl. Catal. B Environ. 2009, 90, 55–63. [Google Scholar] [CrossRef]
- Ramanathan, A.; Subramaniam, B. Metal-Incorporated Mesoporous Silicates: Tunable Catalytic Properties and Applications. Molecules 2018, 23, 263. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, E. One-pot hydrothermal synthesis of Al-containing SBA-3 mesoporous materials. Micropor. Mesopor. Mat. 2014, 193, 77–84. [Google Scholar] [CrossRef]
- Putz, A.M.; Almásy, L.; Len, A.; Ianăşi, C. Functionalized silica materials synthesized via co-condensation and post-grafting methods. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 323–332. [Google Scholar] [CrossRef]
- Shylesh, S.; Samuel, P.P.; Sisodiya, S.; Singh, A.P. Periodic Mesoporous Silicas and Organosilicas: An Overview Towards Catalysis. Catal. Surv. Asia 2008, 12, 266–282. [Google Scholar] [CrossRef]
- Ajayan, V.; Zakir, H.K.; Katsuhiko, A. Recent Advances in Functionalization of Mesoporous Silica. J. Nanosci. Nanotechnol. 2005, 5, 347–371. [Google Scholar] [CrossRef]
- Gupta, P.; Paul, S. Solid acids: Green alternatives for acid catalysis. Catal. Today 2014, 236, 153–170. [Google Scholar] [CrossRef]
- Najafi Chermahini, A.; Andisheh, N.; Teimouri, A. KIT-6-anchored sulfonic acid groups as a heterogeneous solid acid catalyst for the synthesis of aryl tetrazoles. J. Iran. Chem. Soc. 2018, 15, 831–838. [Google Scholar] [CrossRef]
- Doustkhah, E.; Lin, J.; Rostamnia, S.; Len, C.; Luque, R.; Luo, X.; Bando, Y.; Wu, K.C.W.; Kim, J.; Yamauchi, Y.; et al. Development of sulfonic-acid-functionalized mesoporous materials: Synthesis and catalytic applications. Chem. Eur. J. 2019, 25, 1614–1635. [Google Scholar] [CrossRef]
- Wawrzyńczak, A.; Jarmolińska, S.; Nowak, I. Nanostructured KIT-6 materials functionalized with sulfonic groups for catalytic purposes. Catal. Today 2022, 397–399, 526–539. [Google Scholar] [CrossRef]
- Tran, T.T.V.; Kongparakul, S.; Karnjanakom, S.; Reubroycharoen, P.; Guan, G.; Chanlek, N.; Samart, C. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Mol. Catal. 2020, 484, 110724. [Google Scholar] [CrossRef]
- Chermahini, A.N.; Assar, M. Production of n-butyl levulinate over modified KIT-6 catalysts: Comparison of the activity of KIT-SO3H and Al-KIT-6 catalysts. J. Iran. Chem. Soc. 2019, 16, 2045–2053. [Google Scholar] [CrossRef]
- Kowalska-Kuś, J.; Held, A.; Nowińska, K. A Continuous-flow Process for the Acetalization of Crude Glycerol with Acetone on Zeolite Catalysts. J. Chem. Eng. 2020, 401, 126143. [Google Scholar] [CrossRef]
- Kowalska-Kuś, J.; Held, A.; Frankowski, M.; Nowińska, K. Solketal Formation from Glycerol and Acetone over Hierarchical Zeolites of Different Structure as Catalysts. J. Mol. Catal. A Chem. 2017, 426, 205–212. [Google Scholar] [CrossRef]
- Kowalska-Kuś, J.; Held, A.; Nowińska, K. Solketal Formation in a Continuous Flow Process over Hierarchical Zeolites. ChemCatChem 2020, 12, 510. [Google Scholar] [CrossRef]
- Almeida, E.L.; Olivo, J.E.; Andrade, C.M.G. Production of Biofuels from Glycerol from the Biodiesel Production Process—A Brief Review. Fermentation 2023, 9, 869. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, B.; Lawa, A. Recovery and utilization of crude glycerol, a biodiesel byproduct. RSC Adv. 2022, 12, 27997–28008. [Google Scholar] [CrossRef]
- da Silva, M.J.; Rodrigues, A.A.; Pinheiro, P.F. Solketal synthesis from glycerol and acetone in the presence of metal salts: A Lewis or Brønsted acid catalyzed reaction. Fuel 2020, 276, 118164. [Google Scholar] [CrossRef]
- Ao, S.; Lalthazuala Rokhum, S. Biomass derived heterogenous catalyst for synthesis of solketal from biodiesel byproduct glycerol. Sci. Talks 2023, 8, 100264. [Google Scholar] [CrossRef]
- Vannucci, J.A.; Gatti, M.N.; Cardaci, N.; Nichio, N.N. Economic Feasibility of a Solketal Production Process from Glycerol at Small Industrial Scale. Renew. Energy 2022, 190, 540–547. [Google Scholar] [CrossRef]
- Vicente, G.; Melero, J.A.; Morales, G.; Paniagua, M.; Martín, E. Acetalisation of Bio-glycerol with Acetone to Produce Solketal over Sulfonic Mesostructured Silicas. Green Chem. 2010, 12, 899–907. [Google Scholar] [CrossRef]
- Gonçalves, M.; Rodrigues, R.; Galhardo, T.S.; Carvalho, W.A. Highly Selective Acetalization of Glycerol with Acetone to Solketal over Acidic Carbon-based Catalysts from Biodiesel Waste. Fuel 2016, 181, 46–54. [Google Scholar] [CrossRef]
- Juliao, D.; Mirante, F.; Balula, S.S. Easy and Fast Production of Solketal from Glycerol Acetalization via Heteropolyacids. Molecules 2022, 27, 6573. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Nohair, B.; Zhao, D.; Kaliaguine, S. Highly Efficient Glycerol Acetalization over Supported Heteropoly Acid Catalysts. ChemCatChem 2018, 10, 1918–1925. [Google Scholar] [CrossRef]
- Ammaji, S.; Rao, G.S.; Chary, K.V.R. Acetalization of glycerol with acetone over various metal-modified SBA-1 5catalysts. Appl. Petrochem. Res. 2018, 8, 107–118. [Google Scholar] [CrossRef]
- Matkala, B.; Boggala, S.; Basavaraju, S.; Sarma Akella, V.S.; Aytam, H.P. Influence of sulphonation on Al-MCM-4 1catalyst for effective bio-glycerol conversion to Solketal. Micropor. Mesopor. Mater. 2024, 363, 112830. [Google Scholar] [CrossRef]
- Castanheiro, J.E.; Vital, J.; Fonseca, I.M.; Ramos, A.M. Glycerol conversion into biofuel additives by acetalization with pentanal over heteropolyacids immobilized on zeolites. Catal. Today 2020, 346, 76–80. [Google Scholar] [CrossRef]
- Bakuru, V.R.; Churipard, S.R.; Maradur, S.P.; Kalidindi, S.B. Exploring the Bronsted acidity of UiO-66 (Zr, Ce, Hf) metal-organic frameworks for efficient solketal synthesis from glycerol acetalization. Dalton Trans. 2019, 48, 843–847. [Google Scholar] [CrossRef]
- Dashtipour, B.; Dehghanpour, S.; Sharbatdaran, M. Improvement of the acidic properties of MOF by doped SnO2 quantum dots for the production of solketal. J. Chem. Sci. 2022, 134, 106. [Google Scholar] [CrossRef]
- Domínguez-Barroso, V.; Herrera, C.; Larrubia, M.Á.; González-Gil, R.; Cortés-Reyes, M.; Alemany, L.J. Continuous-Flow Process for Glycerol Conversion to Solketal Using a Brönsted Acid Functionalized Carbon-Based Catalyst. Catalysts 2019, 9, 609. [Google Scholar] [CrossRef]
- Kowalska-Kuś, J.; Malaika, A.; Held, A.; Jankowska, A.; Janiszewska, E.; Zieliński, M.; Nowińska, K.; Kowalak, S.; Końska, K.; Wróblewski, K. Synthesis of Solketal Catalyzed by Acid-Modified Pyrolytic Carbon Black from Waste Tires. Molecules 2024, 29, 4102. [Google Scholar] [CrossRef]
- Santos-Vieira, I.C.M.S.; Mendes, R.F.; Almeida Paz, F.A.; Rocha, J.; Simões, M.M.Q. Solketal Production via Solvent-Free Acetalization of Glycerol over Triphosphonic-Lanthanide Coordination Polymers. Catalysts 2021, 11, 598. [Google Scholar] [CrossRef]
- Azhagapillai, P.; Sundaravel, B.; Pachamuthu, M.P. Acylation of Isobutylbenzene with acetic anhydride on AlKIT-6 Mesoporous acid catalyst. Mater. Sci. Energy Technol. 2021, 4, 128–135. [Google Scholar] [CrossRef]
- Qin, Z.; Melinte, G.; Gilson, J.-P.; Jaber, M.; Bozhilov, K.; Boullay, P.; Mintova, S.; Ersen, O.; Valtchev, V. The Mosaic Structure of Zeolite Crystals. Angew. Chem. Int. Ed. Engl. 2016, 55, 15049–15052. [Google Scholar] [CrossRef]
- Jones, J.B. Al–O and Si–O tetrahedral distances in aluminosilicate framework structures. Acta Cryst. 1968, B24, 355–358. [Google Scholar] [CrossRef]
- Alvarez, M.G.; Chimentao, R.J.; Tichit, D.; Santos, J.B.; Dafinov, A.; Modesto-López, L.B.; Rosell-Llompart, J.; Güell, E.J.; Gispert-Guirado, F.; Llorca, J.; et al. Synthesis of tungsten carbide on Al-SBA-15 mesoporous materials by carburization. Micropor. Mesopor. Mat. 2016, 219, 19–28. [Google Scholar] [CrossRef]
- Cabrera-Munguia, D.A.; González, H.; Gutiérrez-Alejandre, A.; Rico, J.L.; Huirache-Acuña, R.; Maya-Yescas, R.; del Río, R.E. Heterogeneous acid conversion of a tricaprylin-palmitic acid mixture over Al-SBA-15 catalysts: Reaction study for biodiesel synthesis. Catal. Today 2017, 282, 195–203. [Google Scholar] [CrossRef]
- Neimark, A.V.; Thommes, M.; Sing, K.S.W.; Rodriguez-Reinoso, F.; Olivier, J.P.; Kaneko, K.; Rouquerol, J. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Pirez, C.; Caderon, J.M.; Philippe Dacquin, J.-P.; Lee, A.F.; Wilson, K. Tunable KIT-6 Mesoporous Sulfonic Acid Catalysts for Fatty Acid Esterification. ACS Catal. 2012, 2, 1607–1614. [Google Scholar] [CrossRef]
- Zhou, B.; Li, C.Y.; Qi, N.; Jiang, M.; Wang, B.; Chen, Z.Q. Pore structure of mesoporous silica (KIT-6) synthesized at different temperatures using positron as a nondestructive probe. Appl. Surf. Sci. 2018, 450, 31–37. [Google Scholar] [CrossRef]
- Kohns, R.; Meyer, R.; Wenzel, M.; Matysik, J.; Enke, D.; Tallarek, U. In situ synthesis and characterization of sulfonic acid functionalized hierarchical silica monoliths. J. Sol-Gel Sci. Technol. 2020, 96, 67–82. [Google Scholar] [CrossRef]
- Kishor, R.; Ghoshal, A.K. Understanding the hydrothermal, thermal, mechanical and hydrolytic stability of mesoporous KIT-6: A comprehensive study. Micropor. Mesopor. Mat. 2017, 242, 127–135. [Google Scholar] [CrossRef]
- Saadatjooa, N.; Golshekana, M.; Shariati, S.; Kefayati, H.; Azizi, P. Organic/inorganic MCM-41 magnetite nanocomposite as a solid acid catalyst for synthesis of benzo[α]xanthenone derivatives. J. Mol. Catal. A Chem. 2013, 377, 173–179. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Li, H.; Ma, Y.; Zhang, R. High Selective Production of 5-Hydroxymethylfurfural from Fructose by Sulfonic Acid Functionalized SBA-15 Catalyst. Compos. B Eng. 2019, 156, 88–94. [Google Scholar] [CrossRef]
- Ganesan, V.; Walcarius, A. Surfactant Templated Sulfonic Acid Functionalized Silica Microspheres as New Efficient Ion Exchangers and Electrode Modifiers. Langmuir 2004, 20, 3632–3640. [Google Scholar] [CrossRef]
- Shen, J.G.C.; Herman, R.G.; Klier, K. Sulfonic Acid-Functionalized Mesoporous Silica: Synthesis, Characterization, and Catalytic Reaction of Alcohol Coupling to Ethers. J. Phys. Chem. B 2002, 106, 9975–9978. [Google Scholar] [CrossRef]
- Wine, P.H.; Thompson, R.J.; Semmes, D.H. Kinetics of OH reactions with aliphatic thiols. Int. J. Chem. Kinet. 1984, 16, 1623–1636. [Google Scholar] [CrossRef]
- Trejda, M.; Stawicka, K.; Ziolek, M. New Catalysts for Biodiesel Additives Production. Appl. Catal. B Environ. 2011, 103, 404–412. [Google Scholar] [CrossRef]
- Venkatesha, N.J.; Bhat, Y.S.; Jai Prakash, B.S. Dealuminated BEA zeolite for selective synthesis of five-membered cyclic acetal from glycerol under ambient conditions. RSC Adv. 2016, 6, 18824–18833. [Google Scholar] [CrossRef]
- Manjunathan, P.; Maradur, S.P.; Halgeri, A.B.; Shanbhag, G.V. Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite. J. Mol. Catal. A Chem. 2015, 396, 47–54. [Google Scholar] [CrossRef]
- Calvino-Casilda, V.; Stawicka, K.; Trejda, M.; Ziolek, M.; Bañares, M.A. Real-time Raman monitoring and control of the catalytic acetalization of glycerol with acetone over modified mesoporous cellular foams. J. Phys. Chem. C 2014, 118, 10780–10791. [Google Scholar] [CrossRef]
- Souza, T.E.; Padula, I.D.; Teodoro, M.M.G.; Chagas, P.; Resende, J.M.; Souza, P.P.; Oliveira, L.C.A. Amphiphilic property of niobium oxyhydroxide for waste glycerol conversion to produce solketal. Catal. Today 2015, 254, 83–89. [Google Scholar] [CrossRef]
- Ozorio, L.P.; Pianzolli, R.; Mota, M.B.S.; Mota, C.J.A. Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. J. Braz. Chem. Soc. 2012, 23, 931–937. [Google Scholar] [CrossRef]
- Siril, P.F.; Shiju, N.R.; Brown, D.R.; Wilson, K. Optimising catalytic properties of supported sulfonic acid catalysts. Appl. Catal. A Gen. 2009, 364, 95–100. [Google Scholar] [CrossRef]
- Yongheng, Z.; Zhenan, G. The study of removing hydroxyl from silica glass. J. Non-Cryst. Solids 2006, 352, 4030–4033. [Google Scholar] [CrossRef]
Sample | d211 [nm] | a0 [nm] | ds [nm] |
---|---|---|---|
KIT-6 | 8.88 | 21.7 | 6.18 |
AlKIT-6 | 9.06 | 22.2 | 6.89 |
KIT-6_F | 8.88 | 21.7 | 1.08 |
KIT-6_SO3H | 9.25 | 22.6 | 6.53 |
AlKIT-6_SO3H | 9.64 | 23.6 | 7.21 |
KIT-6_F_SO3H | 9.25 | 22.6 | 1.43 |
Sample | SBET [m2/g] | Smicro [m2/g] | Sext [m2/g] | Vtot [cm3/g] | Vmicro [cm3/g] | D [nm] |
---|---|---|---|---|---|---|
KIT-6 | 783 | 142 | 641 | 0.92 | 0.063 | 4.7 |
AlKIT-6 | 881 | 230 | 651 | 0.93 | 0.108 | 4.2 |
KIT-6_F | 389 | 56 | 333 | 0.96 | 0.024 | 9.8 |
KIT-6_SO3H | 695 | 112 | 583 | 0.86 | 0.051 | 5.0 |
AlKIT-6_SO3H | 700 | 184 | 516 | 0.80 | 0.085 | 4.6 |
KIT-6_F_SO3H | 376 | 44 | 332 | 0.90 | 0.021 | 9.9 |
Sample | Content of OH Groups * [mmol/g] | Density of OH Groups * [mmol/m2] | Content of SO3H Groups [mmol/g] | Density of SO3H Groups [mmol/m2] | -OH/-SO3H Molar Ratio |
---|---|---|---|---|---|
KIT-6_SO3H | 1.33 | 1.70 × 10−3 | 0.75 | 1.0 × 10−3 | 1.77 |
AlKIT-6_SO3H | 2.16 | 2.45 × 10−3 | 1.50 | 2.14 × 10−3 | 1.44 |
KIT-6_F_SO3H | 2.12 | 5.45 × 10−3 | 1.00 | 2.66 × 10−3 | 2.12 |
Sample | Conversion [%] | Ssolketal [%] | Sisomer [%] | Ysolketal [%] |
---|---|---|---|---|
KIT-6 | 3.3 | 74.3 | 25.7 | 2.6 |
AlKIT-6 | 5.9 | 79.5 | 20.6 | 4.6 |
KIT-6_F | 7.4 | 74.3 | 25.8 | 5.6 |
KIT-6_SO3H | 80.1 | 97.8 | 2.2 | 78.3 |
AlKIT-6_SO3H | 81.1 | 97.1 | 2.9 | 78.8 |
KIT-6_F_SO3H | 88.8 | 96.9 | 3.1 | 86.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janiszewska, E.; Kowalska-Kuś, J.; Wiktorowska, J.; Jankowska, A.; Tabero, A.; Held, A.; Kowalak, S. Generation of Acid Sites in Nanostructured KIT-6 Using Different Methods to Obtain Efficient Acidic Catalysts for Glycerol Acetalization to Solketal. Molecules 2024, 29, 5512. https://doi.org/10.3390/molecules29235512
Janiszewska E, Kowalska-Kuś J, Wiktorowska J, Jankowska A, Tabero A, Held A, Kowalak S. Generation of Acid Sites in Nanostructured KIT-6 Using Different Methods to Obtain Efficient Acidic Catalysts for Glycerol Acetalization to Solketal. Molecules. 2024; 29(23):5512. https://doi.org/10.3390/molecules29235512
Chicago/Turabian StyleJaniszewska, Ewa, Jolanta Kowalska-Kuś, Justyna Wiktorowska, Aldona Jankowska, Agata Tabero, Agnieszka Held, and Stanisław Kowalak. 2024. "Generation of Acid Sites in Nanostructured KIT-6 Using Different Methods to Obtain Efficient Acidic Catalysts for Glycerol Acetalization to Solketal" Molecules 29, no. 23: 5512. https://doi.org/10.3390/molecules29235512
APA StyleJaniszewska, E., Kowalska-Kuś, J., Wiktorowska, J., Jankowska, A., Tabero, A., Held, A., & Kowalak, S. (2024). Generation of Acid Sites in Nanostructured KIT-6 Using Different Methods to Obtain Efficient Acidic Catalysts for Glycerol Acetalization to Solketal. Molecules, 29(23), 5512. https://doi.org/10.3390/molecules29235512