Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues
Abstract
:1. Introduction
1.1. Microglial Phenotypes and Secretome
1.2. Effect of Neurotrophic Factors
1.3. Microglia-Derived Neurotrophic Factors
2. Oncostatin M
2.1. Overview of Structure and Function
2.2. Expression and Secretion by Microglia
2.3. Neuronal Targets
2.4. Neurotrophic Effects
3. Leukemia Inhibitory Factor
3.1. Overview of Structure and Function
3.2. Expression and Secretion by Microglia
3.3. Neuronal Targets
3.4. Neurotrophic Effects
4. Activin A
4.1. Overview of Structure and Function
4.2. Expression of Inhibin ßA and Secretion of Activin A by Microglia
4.3. Neuronal Targets
4.4. Neurotrophic Effects
5. CSF-1
5.1. Overview of Structure and Function
5.2. Expression and Secretion by Microglia
5.3. Neuronal Targets
5.4. Neurotrophic Effects
6. Interleukin-34
6.1. Overview of Structure and Function
6.2. Expression and Secretion by Microglia
6.3. Neuronal Targets
6.4. Neurotrophic Effects
7. Growth/Differentiation Factor-15
7.1. Overview of Structure and Function
7.2. Expression and Secretion by Microglia
7.3. Neuronal Targets
7.4. Neurotrophic Effects
8. Fibroblast Growth Factor 2
8.1. Overview of Structure and Function
8.2. Expression and Secretion by Microglia
8.3. Neuronal Targets
8.4. Neurotrophic Effects
9. Insulin-Like Growth Factor 2
9.1. Overview of Structure and Function
9.2. Expression and Secretion by Microglia
9.3. Neuronal Targets
9.4. Neurotrophic Effects
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s Disease. J. Cell Biol. 2018, 217, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Leng, F.; Edison, P. Neuroinflammation and Microglial Activation in Alzheimer Disease: Where Do We Go from Here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Lepiarz-Raba, I.; Gbadamosi, I.; Florea, R.; Paolicelli, R.C.; Jawaid, A. Metabolic Regulation of Microglial Phagocytosis: Implications for Alzheimer’s Disease Therapeutics. Transl. Neurodegener. 2023, 12, 48. [Google Scholar] [CrossRef]
- Muzio, L.; Viotti, A.; Martino, G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front. Neurosci. 2021, 15, 742065. [Google Scholar] [CrossRef]
- Jha, M.K.; Seo, M.; Kim, J.-H.; Kim, B.-G.; Cho, J.-Y.; Suk, K. The Secretome Signature of Reactive Glial Cells and Its Pathological Implications. Biochim. Biophys. Acta Proteins Proteom. 2013, 1834, 2418–2428. [Google Scholar] [CrossRef]
- Lindhout, I.A.; Murray, T.E.; Richards, C.M.; Klegeris, A. Potential Neurotoxic Activity of Diverse Molecules Released by Microglia. Neurochem. Int. 2021, 148, 105117. [Google Scholar] [CrossRef] [PubMed]
- Augusto-Oliveira, M.; Arrifano, G.P.; Delage, C.I.; Tremblay, M.; Crespo-Lopez, M.E.; Verkhratsky, A. Plasticity of Microglia. Biol. Rev. 2022, 97, 217–250. [Google Scholar] [CrossRef]
- Vidal-Itriago, A.; Radford, R.A.W.; Aramideh, J.A.; Maurel, C.; Scherer, N.M.; Don, E.K.; Lee, A.; Chung, R.S.; Graeber, M.B.; Morsch, M. Microglia Morphophysiological Diversity and Its Implications for the CNS. Front. Immunol. 2022, 13, 997786. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Tremblay, M.-E.; Aguzzi, A.; Ajami, B.; Amit, I.; Audinat, E.; Bechmann, I.; Bennett, M.; et al. Microglia States and Nomenclature: A Field at Its Crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef]
- Lyu, J.; Jiang, X.; Leak, R.K.; Shi, Y.; Hu, X.; Chen, J. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Transl. Stroke Res. 2021, 12, 474–495. [Google Scholar] [CrossRef]
- Sampaio, T.; Savall, A.; Gutierrez, M.Z.; Pinton, S. Neurotrophic Factors in Alzheimer’s and Parkinson’s Diseases: Implications for Pathogenesis and Therapy. Neural Regen. Res. 2017, 12, 549. [Google Scholar] [CrossRef] [PubMed]
- Frade, J.M.; Ovejero-Benito, M.C. Neuronal Cell Cycle: The Neuron Itself and Its Circumstances. Cell Cycle 2015, 14, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Rosso, S.B.; Inestrosa, N.C. WNT Signaling in Neuronal Maturation and Synaptogenesis. Front. Cell Neurosci. 2013, 7, 103. [Google Scholar] [CrossRef]
- Oliveira, S.L.B.; Pillat, M.M.; Cheffer, A.; Lameu, C.; Schwindt, T.T.; Ulrich, H. Functions of Neurotrophins and Growth Factors in Neurogenesis and Brain Repair. Cytom. Part A 2013, 83A, 76–89. [Google Scholar] [CrossRef]
- Xiao, N.; Le, Q.-T. Neurotrophic Factors and Their Potential Applications in Tissue Regeneration. Arch. Immunol. Ther. Exp. 2016, 64, 89–99. [Google Scholar] [CrossRef]
- Skaper, S.D. Neurotrophic Factors: An Overview. Methods Mol. Biol. 2018, 1727, 1–17. [Google Scholar]
- Poyhonen, S.; Er, S.; Domanskyi, A.; Airavaara, M. Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol 2019, 10, 486. [Google Scholar] [CrossRef]
- Platholi, J.; Lee, F.S. Neurotrophic Factors. In Handbook of Developmental Neurotoxicology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 55–64. [Google Scholar]
- Zarling, J.M.; Shoyab, M.; Marquardt, H.; Hanson, M.B.; Lioubin, M.N.; Todaro, G.J. Oncostatin M: A Growth Regulator Produced by Differentiated Histiocytic Lymphoma Cells. Proc. Natl. Acad. Sci. USA 1986, 83, 9739–9743. [Google Scholar] [CrossRef] [PubMed]
- Hermanns, H.M. Oncostatin M and Interleukin-31: Cytokines, Receptors, Signal Transduction and Physiology. Cytokine Growth Factor Rev. 2015, 26, 545–558. [Google Scholar] [CrossRef]
- Richards, C.D.; Kerr, C.; Tanaka, M.; Hara, T.; Miyajima, A.; Pennica, D.; Botelho, F.; Langdon, C.M. Regulation of Tissue Inhibitor of Metalloproteinase-1 in Fibroblasts and Acute Phase Proteins in Hepatocytes in Vitro by Mouse Oncostatin M, Cardiotrophin-1, and IL-6. J. Immunol. 1997, 159, 2431–2437. [Google Scholar] [CrossRef]
- Sims, N.A.; Lévesque, J.-P. Oncostatin M: Dual Regulator of the Skeletal and Hematopoietic Systems. Curr. Osteoporos. Rep. 2024, 22, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Beatus, P.; Jhaveri, D.J.; Walker, T.L.; Lucas, P.G.; Rietze, R.L.; Cooper, H.M.; Morikawa, Y.; Bartlett, P.F. Oncostatin M Regulates Neural Precursor Activity in the Adult Brain. Dev. Neurobiol. 2011, 71, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Bugno, M.; Witek, B.; Bereta, J.; Bereta, M.; Edwards, D.R.; Kordula, T. Reprogramming of TIMP-1 and TIMP-3 Expression Profiles in Brain Microvascular Endothelial Cells and Astrocytes in Response to Proinflammatory Cytokines. FEBS Lett. 1999, 448, 9–14. [Google Scholar] [CrossRef]
- Friedrich, M.; Höss, N.; Stögbauer, F.; Senner, V.; Paulus, W.; Ringelstein, E.B.; Halfter, H. Complete Inhibition of in Vivo Glioma Growth by Oncostatin, M. J. Neurochem. 2001, 76, 1589–1592. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; Chida, K.; Todate, A.; Ide, K.; Asada, K.; Nakamura, Y.; Suzuki, K.; Kuwata, H.; Nakamura, H. Oncostatin M Production by Human Dendritic Cells in Response to Bacterial Products. Cytokine 2002, 17, 335–340. [Google Scholar] [CrossRef]
- Sato, F.; Miyaoka, Y.; Miyajima, A.; Tanaka, M. Oncostatin M Maintains the Hematopoietic Microenvironment in the Bone Marrow by Modulating Adipogenesis and Osteogenesis. PLoS ONE 2014, 9, e116209. [Google Scholar] [CrossRef]
- Zhang, Y.; Sloan, S.A.; Clarke, L.E.; Caneda, C.; Plaza, C.A.; Blumenthal, P.D.; Vogel, H.; Steinberg, G.K.; Edwards, M.S.B.; Li, G.; et al. Purification and Characterization of Progenitor and Mature Human Reveals Transcriptional and Functional differences with Mouse. Neuron 2016, 89, 37–53. [Google Scholar] [CrossRef]
- Halpern, M.; Brennand, K.J.; Gregory, J. Examining the Relationship between Astrocyte Dysfunction and Neurodegeneration in ALS Using HiPSCs. Neurobiol. Dis. 2019, 132, 104562. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, M.-C.; Konaté, M.M.; Chen, L.; Das, B.; Karlovich, C.; Williams, P.M.; Evrard, Y.A.; Doroshow, J.H.; McShane, L.M. TPM, FPKM, or Normalized Counts? A Comparative Study of Quantification Measures for the Analysis of RNA-Seq Data from the NCI Patient-Derived Models Repository. J. Transl. Med. 2021, 19, 269. [Google Scholar] [CrossRef]
- Zhu, Z.; Reiser, G. The Small Heat Shock Proteins, Especially HspB4 and HspB5 Are Promising Protectants in Neurodegenerative Diseases. Neurochem. Int. 2018, 115, 69–79. [Google Scholar] [CrossRef]
- Moidunny, S.; Matos, M.; Wesseling, E.; Banerjee, S.; Volsky, D.J.; Cunha, R.A.; Agostinho, P.; Boddeke, H.W.; Roy, S. Oncostatin M Promotes Excitotoxicity by Inhibiting Glutamate Uptake in Astrocytes: Implications in HIV-Associated Neurotoxicity. J. Neuroinflamm. 2016, 13, 144. [Google Scholar] [CrossRef] [PubMed]
- Repovic, P.; Benveniste, E.N. Prostaglandin E2 Is a Novel Inducer of Oncostatin-M Expression in Macrophages and Microglia. J. Neurosci. 2002, 22, 5334–5343. [Google Scholar] [CrossRef]
- Ma, Y. Cloning and Characterization of Human Oncostatin M Promoter. Nucleic Acids Res. 1999, 27, 4649–4657. [Google Scholar] [CrossRef]
- Ruprecht, K.; Kuhlmann, T.; Seif, F.; Hummel, V.; Kruse, N.; Brück, W.; Rieckmann, P. Effects of Oncostatin M on Human Cerebral Endothelial Cells and Expression in Inflammatory Brain Lesions. J. Neuropathol. Exp. Neurol. 2001, 60, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Mosley, B.; De Imus, C.; Friend, D.; Boiani, N.; Thoma, B.; Park, L.S.; Cosman, D. Dual Oncostatin M (OSM) Receptors. J. Biol. Chem. 1996, 271, 32635–32643. [Google Scholar] [CrossRef]
- Lindberg, R.A.; Juan, T.S.-C.; Welcher, A.A.; Sun, Y.; Cupples, R.; Guthrie, B.; Fletcher, F.A. Cloning and Characterization of a Specific Receptor for Mouse Oncostatin, M. Mol. Cell. Biol. 1998, 18, 3357–3367. [Google Scholar] [CrossRef] [PubMed]
- Tamura, S.; Morikawa, Y.; Tanaka, M.; Miyajima, A.; Senba, E. Developmental Expression Pattern of Oncostatin M Receptor β in Mice. Mech. Dev. 2002, 115, 127–131. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Tamura, S.; Morikawa, Y.; Senba, E. Localization of Oncostatin M Receptor β in Adult and Developing CNS. Neuroscience 2003, 119, 991–997. [Google Scholar] [CrossRef]
- Taga, T.; Kishimoto, T. Gp130 and the Interleukin-6 Family of Cytokines. Annu. Rev. Immunol. 1997, 15, 797–819. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci. 2014, 34, 11929–11947. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Zhang, C.; Méar, L.; Zhong, W.; Digre, A.; Katona, B.; Sjöstedt, E.; Butler, L.; Odeberg, J.; Dusart, P.; et al. A Single–Cell Type Transcriptomics Map of Human Tissues. Sci. Adv. 2021, 7, eabh2169. [Google Scholar] [CrossRef] [PubMed]
- Sjostedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An Atlas of the Protein-Coding Genes in the Human, Pig, and Mouse Brain. Science 2020, 367, eaay5947. [Google Scholar] [CrossRef] [PubMed]
- Handel, U.; Brunn, A.; Drogemuller, K.; Muller, W.; Deckert, M.; Schluter, D. Neuronal Gp130 Expression Is Crucial to Prevent Neuronal Loss, Hyperinflammation, and Lethal Course of Murine Toxoplasma Encephalitis. Am. J. Pathol. 2012, 181, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Hisashi, Y.; Masabumi, M.; Masamichi, S. Localization of MRNA for Leukemia Inhibitory Factor Receptor in the Adult Rat Brain. J. Neuroimmunol. 1996, 70, 45–53. [Google Scholar] [CrossRef]
- Soilu-Hanninen, M.; Broberg, E.; Roytta, M.; Mattila, P.; Rinne, J.; Hukkanen, V. Expression of LIF and LIF Receptor Beta in Alzheimer’s and Parkinson’s Diseases. Acta Neurol. Scand. 2010, 121, 44–50. [Google Scholar] [CrossRef]
- Weiss, T.W.; Samson, A.L.; Niego, B.; Daniel, P.B.; Medcalf, R.L.; Weiss, T.W.; Samson, A.L.; Niego, B.; Daniel, P.B.; Medcalf, R.L. Oncostatin M Is a Neuroprotective Cytokine That Inhibits Excitotoxic Injury in Vitro and in Vivo. FASEB J. 2006, 20, 2369–2371. [Google Scholar] [CrossRef]
- Slaets, H.; Nelissen, S.; Janssens, K.; Vidal, P.M.; Lemmens, E.; Stinissen, P.; Hendrix, S.; Hellings, N. Oncostatin M Reduces Lesion Size and Promotes Functional Recovery and Neurite Outgrowth after Spinal Cord Injury. Mol. Neurobiol. 2014, 50, 1142–1151. [Google Scholar] [CrossRef]
- Gokce, O.; Stanley, G.M.; Treutlein, B.; Neff, N.F.; Camp, J.G.; Malenka, R.C.; Rothwell, P.E.; Fuccillo, M.V.; Südhof, T.C.; Quake, S.R. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. Cell Rep. 2016, 16, 1126–1137. [Google Scholar] [CrossRef]
- Janssens, K.; Maheshwari, A.; den Haute, C.V.; Baekelandt, V.; Stinissen, P.; Hendriks, J.J.A.; Slaets, H.; Hellings, N. Oncostatin M Protects against Demyelination by Inducing a Protective Microglial Phenotype. Glia 2015, 63, 1729–1737. [Google Scholar] [CrossRef]
- Guo, S.; Li, Z.-Z.; Gong, J.; Xiang, M.; Zhang, P.; Zhao, G.-N.; Li, M.; Zheng, A.; Zhu, X.; Lei, H.; et al. Oncostatin M Confers Neuroprotection against Ischemic Stroke. J. Neurosci. 2015, 35, 12047–12062. [Google Scholar] [CrossRef] [PubMed]
- Korzus, E.; Nagase, H.; Rydell, R.; Travis, J. The Mitogen-Activated Protein Kinase and JAK-STAT Signaling Pathways Are Required for an Oncostatin M-Responsive Element-Mediated Activation of Matrix Metalloproteinase 1 Gene Expression. J. Biol. Chem. 1997, 272, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Hinds, M.G.; Maurer, T.; Zhang, J.-G.; Nicola, N.A.; Norton, R.S. Solution Structure of Leukemia Inhibitory Factor. J. Biol. Chem. 1998, 273, 13738–13745. [Google Scholar] [CrossRef]
- Rose, T.M.; Bruce, A.G. Oncostatin M Is a Member of a Cytokine Family That Includes Leukemia-Inhibitory Factor, Granulocyte Colony-Stimulating Factor, and Interleukin 6. Proc. Natl. Acad. Sci. USA 1991, 88, 8641–8645. [Google Scholar] [CrossRef]
- Gearing, D.P.; Gough, N.M.; King, J.A.; Hilton, D.J.; Nicola, N.A.; Simpson, R.J.; Nice, E.C.; Kelso, A.; Metcalf, D. Molecular Cloning and Expression of CDNA Encoding a Murine Myeloid Leukaemia Inhibitory Factor (LIF). EMBO J. 1987, 6, 3995–4002. [Google Scholar] [CrossRef]
- Layton, M.J.; Lock, P.; Metcalf, D.; Nicola, N. Cross-Species Receptor Binding Characteristics of Human and Mouse Leukemia Inhibitory Factor Suggest a Complex Binding Interaction. J. Biol. Chem. 1994, 269, 17048–17055. [Google Scholar] [CrossRef] [PubMed]
- Layton, M.J.; Owczarek, C.M.; Metcalf, D.; Lock, P.A.; Wilson, T.A.; Gough, N.M.; Hilton, D.J.; Nicola, N.A. Complex Binding of Leukemia Inhibitory Factor to Its Membrane-Expressed and Soluble Receptors. Exp. Biol. Med. 1994, 206, 295–298. [Google Scholar] [CrossRef]
- Shih, C.-C.; Hu, M.C.-T.; Hu, J.; Weng, Y.; Yazaki, P.J.; Medeiros, J.; Forman, S.J. A Secreted and LIF-Mediated Stromal Cell–Derived Activity That Promotes Ex Vivo Expansion of Human Hematopoietic Stem Cells. Blood 2000, 95, 1957–1966. [Google Scholar] [CrossRef]
- Nicola, N.A.; Babon, J.J. Leukemia Inhibitory Factor (LIF). Cytokine Growth Factor Rev. 2015, 26, 533–544. [Google Scholar] [CrossRef]
- Baldarelli, R.M.; Smith, C.M.; Finger, J.H.; Hayamizu, T.F.; McCright, I.J.; Xu, J.; Shaw, D.R.; Beal, J.S.; Blodgett, O.; Campbell, J.; et al. The Mouse Gene Expression Database (GXD): 2021 Update. Nucleic Acids Res. 2021, 49, D924–D931. [Google Scholar] [CrossRef]
- Joly, S.; Lange, C.; Thiersch, M.; Samardzija, M.; Grimm, C. Leukemia Inhibitory Factor Extends the Lifespan of Injured Photoreceptors In Vivo. J. Neurosci. 2008, 28, 13765–13774. [Google Scholar] [CrossRef] [PubMed]
- Yamakuni, H.; Kawaguchi, N.; Ohtani, Y.; Nakamura, J.; Katayama, T.; Nakagawa, T.; Minami, M.; Satoh, M. ATP Induces Leukemia Inhibitory Factor MRNA in Cultured Rat Astrocytes. J. Neuroimmunol. 2002, 129, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Greenmyer, J.R.; Gaultney, R.A.; Brissette, C.A.; Watt, J.A. Primary Human Microglia Are Phagocytically Active and Respond to Borrelia Burgdorferi with Upregulation of Chemokines and Cytokines. Front. Microbiol. 2018, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, A.J.; Neitzel, K.L.; Devlin, B.K.; Garcia, J.; Hauptman, G.A.; Gloaguen, I.; Di Marco, A.; Laufer, R.; Lee, N. In Vivo Localization and Characterization of Functional Ciliary Neurotrophic Factor Receptors Which Utilize JAK-STAT Signaling. Neuroscience 2000, 99, 761–772. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT Signaling Pathway: From Bench to Clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Richards, L.J.; Kilpatrick, T.J.; Dutton, R.; Tan, S.-S.; Gearing, D.P.; Bartlett, P.F.; Murphy, M. Leukaemia Inhibitory Factor or Related Factors Promote the Differentiation of Neuronal and Astrocytic Precursors within the Developing Murine Spinal Cord. Eur. J. Neurosci. 1996, 8, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Cheema, S.S.; Arumugam, D.; Murray, S.S.; Bartlett, P.F. Leukemia Inhibitory Factor Maintains Choline Acetyltransferase Expression in Vivo. Neuroreport 1998, 9, 363–366. [Google Scholar] [CrossRef]
- D’Mello, V.; Subramaniam, M.; Bhalla, A.P.; Saavedra, S.; Leiba, O.; Levison, S.W. Intranasal Leukemia Inhibitory Factor Attenuates Gliosis and Axonal Injury and Improves Sensorimotor Function after a Mild Pediatric Traumatic Brain Injury. Neurotrauma Rep. 2023, 4, 236–250. [Google Scholar] [CrossRef]
- Galli, R.; Pagano, S.F.; Gritti, A.; Vescovi, A.L. Regulation of Neuronal Differentiation in Human CNS Stem Cell Progeny by Leukemia Inhibitory Factor. Dev. Neurosci. 2000, 22, 86–95. [Google Scholar] [CrossRef]
- Monaghan, T.K.; Pou, C.; MacKenzie, C.J.; Plevin, R.; Lutz, E.M. Neurotrophic Actions of PACAP-38 and LIF on Human Neuroblastoma SH-SY5Y Cells. J. Mol. Neurosci. 2008, 36, 45–56. [Google Scholar] [CrossRef]
- Kundra, S.; Kaur, R.; Pasricha, C.; Kumari, P.; Gurjeet Singh, T.; Singh, R. Pathological Insights into Activin A: Molecular Underpinnings and Therapeutic Prospects in Various Diseases. Int. Immunopharmacol. 2024, 139, 112709. [Google Scholar] [CrossRef] [PubMed]
- Walton, K.L.; Makanji, Y.; Wilce, M.C.; Chan, K.L.; Robertson, D.M.; Harrison, C.A. A Common Biosynthetic Pathway Governs the Dimerization and Secretion of Inhibin and Related Transforming Growth Factor β (TGFβ) Ligands. J. Biol. Chem. 2009, 284, 9311–9320. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, 51, D933–D941. [Google Scholar] [CrossRef]
- Tanimoto, K.; Handa, S.-I.; Ueno, N.; Murakami, K.; Fukamizu, A. Structure and Sequence Analysis of the Human Activin βA Subunit Gene. DNA Seq. 1991, 2, 103–110. [Google Scholar] [CrossRef]
- Yatskievych, T.A.; Ladd, A.N.; Antin, P.B. Induction of Cardiac Myogenesis in Avian Pregastrula Epiblast: The Role of the Hypoblast and Activin. Development 1997, 124, 2561–2570. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Qi, Y.; Wu, J.; Liu, B.; Cui, X. Activin A, a Novel Chemokine, Induces Mouse NK Cell Migration via AKT and Calcium Signaling. Cells 2024, 13, 728. [Google Scholar] [CrossRef]
- Schubert, D.; Kimura, H.; LaCorbiere, M.; Vaughan, J.; Karr, D.; Fischer, W.H. Activin Is a Nerve Cell Survival Molecule. Nature 1990, 344, 868–870. [Google Scholar] [CrossRef] [PubMed]
- Morianos, I.; Papadopoulou, G.; Semitekolou, M.; Xanthou, G. Activin-A in the Regulation of Immunity in Health and Disease. J. Autoimmun. 2019, 104, 102314. [Google Scholar] [CrossRef]
- Archambeault, D.R.; Yao, H.H.-C. Activin A, a Product of Fetal Leydig Cells, Is a Unique Paracrine Regulator of Sertoli Cell Proliferation and Fetal Testis Cord Expansion. Proc. Natl. Acad. Sci. USA 2010, 107, 10526–10531. [Google Scholar] [CrossRef]
- de Winter, J.P. Activin Is Produced by Rat Sertoli Cells in Vitro and Can Act as an Autocrine Regulator of Sertoli Cell Function. Endocrinology 1993, 132, 975–982. [Google Scholar] [CrossRef]
- Drummond, A.E.; Dyson, M.; Mercer, J.E.; Findlay, J.K. Differential Responses of Post-Natal Rat Ovarian Cells to FSH and Activin. Mol. Cell Endocrinol. 1996, 122, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.L.; Unabia, G.; Childs, G. Expression of Follistatin MRNA by Somatotropes and Mammotropes Early in the Rat Estrous Cycle. J. Histochem. Cytochem. 1993, 41, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Roberts, V.; Meunier, H.; Vaughan, J.; Rivier, J.; Rivier, C.; Vale, W.; Sawchenko, P. Production and Regulation of Inhibin Subunits in Pituitary Gonadotropes. Endocrinology 1989, 124, 552–554. [Google Scholar] [CrossRef]
- Sugama, S.; Takenouchi, T.; Kitani, H.; Fujita, M.; Hashimoto, M. Activin as an Anti-Inflammatory Cytokine Produced by Microglia. J. Neuroimmunol. 2007, 192, 31–39. [Google Scholar] [CrossRef]
- Ebert, S.; Zeretzke, M.; Nau, R.; Michel, U. Microglial Cells and Peritoneal Macrophages Release Activin A upon Stimulation with Toll-like Receptor Agonists. Neurosci. Lett. 2007, 413, 241–244. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Martin, J.A.; Gancarz, A.M.; Adank, D.N.; Sim, F.J.; Dietz, D.M. Activin A Is Increased in the Nucleus Accumbens Following a Cocaine Binge. Sci. Rep. 2017, 7, 43658. [Google Scholar] [CrossRef] [PubMed]
- Wilms, H.; Schwark, T.; Brandenburg, L.-O.; Sievers, J.; Dengler, R.; Deuschl, G.; Lucius, R. Regulation of Activin A Synthesis in Microglial Cells: Pathophysiological Implications for Bacterial Meningitis. J. Neurosci. Res 2010, 88, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Attisano, L.; Wrana, J.L.; Montalvo, E.; Massagué, J. Activation of Signalling by the Activin Receptor Complex. Mol. Cell. Biol. 1996, 16, 1066–1073. [Google Scholar] [CrossRef]
- Marino, F.E.; Risbridger, G.; Gold, E. The Therapeutic Potential of Blocking the Activin Signalling Pathway. Cytokine Growth Factor Rev. 2013, 24, 477–484. [Google Scholar] [CrossRef]
- Tsuchida, K.; Nakatani, M.; Hitachi, K.; Uezumi, A.; Sunada, Y.; Ageta, H.; Inokuchi, K. Activin Signaling as an Emerging Target for Therapeutic Interventions. Cell Commun. Signal. 2009, 7, 15. [Google Scholar] [CrossRef]
- Matzuk, M.M.; Bradley, A. Cloning of the Human Activin Receptor CDNA Reveals High Evolutionary Conservation. Biochim. Biophys. Acta Gene Struct. Expr. 1992, 1130, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Funaba, M.; Murata, T.; Fujimura, H.; Murata, E.; Abe, M.; Torii, K. Immunolocalization of Type I or Type II Activin Receptors in the Rat Brain. J. Neuroendocrinol. 1997, 9, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.A.; Gray, P.C.; Vale, W.W.; Robertson, D.M. Antagonists of Activin Signaling: Mechanisms and Potential Biological Applications. Trends Endocrinol. Metab. 2005, 16, 73–78. [Google Scholar] [CrossRef]
- Link, A.S.; Zheng, F.; Alzheimer, C. Activin Signaling in the Pathogenesis and Therapy of Neuropsychiatric Diseases. Front. Mol. Neurosci. 2016, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Huang, L.; Xiao, D.; Qu, Y.; Mu, D. Research Progress on the Role and Mechanism of Action of Activin A in Brain Injury. Front. Neurosci. 2018, 12, 697. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, Y.; Saito, H.; Torii, K.; Nishiyama, N. Activin Exerts a Neurotrophic Effect on Cultured Hippocampal Neurons. Brain Res. 1997, 760, 52–58. [Google Scholar] [CrossRef]
- Stayte, S.; Rentsch, P.; Tröscher, A.R.; Bamberger, M.; Li, K.M.; Vissel, B. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain in Vivo. PLoS ONE 2017, 12, e0167211. [Google Scholar] [CrossRef]
- Abdipranoto-Cowley, A.; Park, J.S.; Croucher, D.; Daniel, J.; Henshall, S.; Galbraith, S.; Mervin, K.; Vissel, B. Activin A Is Essential for Neurogenesis Following Neurodegeneration. Stem Cells 2009, 27, 1330–1346. [Google Scholar] [CrossRef]
- Hughes, P.E.; Alexi, T.; Williams, C.E.; Clark, R.G.; Gluckman, P.D. Administration of Recombinant Human Activin-A Has Powerful Neurotrophic Effects on Select Striatal Phenotypes in the Quinolinic Acid Lesion Model of Huntington’s Disease. Neuroscience 1999, 92, 197–209. [Google Scholar] [CrossRef]
- Nassrallah, W.B.; Ramandi, D.; Cheng, J.; Oh, J.; Mackay, J.; Sepers, M.D.; Lau, D.; Bading, H.; Raymond, L.A. Activin A Targets Extrasynaptic NMDA Receptors to Ameliorate Neuronal and Behavioral Deficits in a Mouse Model of Huntington Disease. Neurobiol. Dis. 2023, 189, 106360. [Google Scholar] [CrossRef]
- Holloway, R.K.; Ireland, G.; Sullivan, G.; Becher, J.; Smith, C.; Boardman, J.P.; Gressens, P.; Miron, V.E. Microglial Inflammasome Activation Drives Developmental White Matter Injury. Glia 2021, 69, 1268–1280. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Li, M.; He, X.; Luo, J.; Wu, R.; Hong, Z.; Zheng, H.; Hu, X. TREM2 Mediates Physical Exercise-Promoted Neural Functional Recovery in Rats with Ischemic Stroke via Microglia-Promoted White Matter Repair. J. Neuroinflammation 2023, 20, 50. [Google Scholar] [CrossRef]
- Kupershmidt, L.; Amit, T.; Bar-Am, O.; Youdim, M.B.H.; Blumenfeld, Z. The Neuroprotective Effect of Activin A and B: Implication for Neurodegenerative Diseases. J. Neurochem. 2007, 103, 962–971. [Google Scholar] [CrossRef]
- Kimura, F.; Suzu, S.; Nakamura, Y.; Wakimoto, N.; Kanatani, Y.; Yanai, N.; Nagata, N.; Motoyoshi, K. Structural Analysis of Proteoglycan Macrophage Colony-Stimulating Factor. J. Biol. Chem. 1994, 269, 19751–19756. [Google Scholar] [CrossRef] [PubMed]
- Pandit, J.; Bohm, A.; Jancarik, J.; Halenbeck, R.; Koths, K.; Kim, S.-H. Three-Dimensional Structure of Dimeric Human Recombinant Macrophage Colony-Stimulating Factor. Science 1992, 258, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Stanley, E.R. The Macrophage Colony-Stimulating Factor, CSF-1. Methods Enzymol. 1985, 116, 564–587. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, E.S.; Ladner, M.B. Molecular Biology of Macrophage Colony-Stimulating Factor. Immunol. Ser. 1990, 49, 155–176. [Google Scholar]
- Gisselbrecht, S.; Sola, B.; Fichelson, S.; Bordereaux, D.; Tambourin, P.; Mattei, M.G.; Simon, D.; Guenet, J.L. The Murine M-CSF Gene Is Localized on Chromosome 3. Blood 1989, 73, 1742–1745. [Google Scholar] [CrossRef]
- Barreda, D.R.; Hanington, P.C.; Belosevic, M. Regulation of Myeloid Development and Function by Colony Factors. Dev. Comp. Immunol. 2004, 28, 509–554. [Google Scholar] [CrossRef]
- Sakurai, T.; Wakimoto, N.; Yamada, M.; Shimamura, S.; Motoyoshi, K. Effect of Macrophage Colony-Stimulating Factor (M-CSF) on Mouse Immune Responses in Vivo. Immunopharmacol. Immunotoxicol. 1998, 20, 79–102. [Google Scholar] [CrossRef]
- Azuma, C.; Saji, F.; Kimura, T.; Tokugawa, Y.; Takemura, M.; Miki, M.; Ono, M.; Tanizawa, O. The Gene Expressions of Macrophage Colony-Stimulating Factor (MCSF) and MCSF Receptor in the Human Myometrium during Pregnancy: Regulation by Sex Steroid Hormones. J. Steroid Biochem. Mol. Biol. 1991, 39, 883–888. [Google Scholar] [CrossRef]
- Majumdar, M.K.; Thiede, M.A.; Haynesworth, S.E.; Bruder, S.P.; Gerson, S.L. Human Marrow-Derived Mesenchymal Stem Cells (MSCs) Express Hematopoietic Cytokines and Support Long-Term Hematopoiesis When Differentiated toward Stromal and Osteogenic Lineages. J. Hematother. Stem Cell Res. 2000, 9, 841–848. [Google Scholar] [CrossRef]
- Mak, T.W.; Saunders, M.E. Cytokines and Cytokine Receptors. In The Immune Response; Elsevier: Amsterdam, The Netherlands, 2006; pp. 463–516. [Google Scholar]
- Plotkin, L.I.; Aguilar-Pérez, A.; Bivi, N. Local Regulation of Bone Cell Function. In Basic and Applied Bone Biology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 57–84. [Google Scholar]
- Michaelson, M.D.; Bieri, P.L.; Mehler, M.F.; Xu, H.; Arezzo, J.C.; Pollard, J.W.; Kessler, J.A. CSF-1 Deficiency in Mice Results in Abnormal Brain Development. Development 1996, 122, 2661–2672. [Google Scholar] [CrossRef] [PubMed]
- Arceci, R.J.; Shanahan, F.; Stanley, E.R.; Pollard, J.W. Temporal Expression and Location of Colony-Stimulating Factor 1 (CSF-1) and Its Receptor in the Female Reproductive Tract Are Consistent with CSF-1-Regulated Placental Development. Proc. Natl. Acad. Sci. USA 1989, 86, 8818–8822. [Google Scholar] [CrossRef] [PubMed]
- Otero, K.; Turnbull, I.R.; Poliani, P.L.; Vermi, W.; Cerutti, E.; Aoshi, T.; Tassi, I.; Takai, T.; Stanley, S.L.; Miller, M.; et al. Macrophage Colony-Stimulating Factor Induces the Proliferation and Survival of Macrophages via a Pathway Involving DAP12 and β-Catenin. Nat. Immunol. 2009, 10, 734–743. [Google Scholar] [CrossRef]
- Hamilton, J.A. Colony-Stimulating Factors in Inflammation and Autoimmunity. Nat. Rev. Immunol. 2008, 8, 533–544. [Google Scholar] [CrossRef]
- Barca, C.; Kiliaan, A.J.; Foray, C.; Wachsmuth, L.; Hermann, S.; Faber, C.; Schäfers, M.; Wiesmann, M.; Jacobs, A.H.; Zinnhardt, B. A Longitudinal PET/MRI Study of Colony-Stimulating Factor 1 Receptor–Mediated Microglia Depletion in Experimental Stroke. J. Nucl. Med. 2022, 63, 446–452. [Google Scholar] [CrossRef]
- Marzan, D.E.; Brügger-Verdon, V.; West, B.L.; Liddelow, S.; Samanta, J.; Salzer, J.L. Activated Microglia Drive Demyelination via CSF1R Signaling. Glia 2021, 69, 1583–1604. [Google Scholar] [CrossRef]
- Pons, V.; Rivest, S. New Therapeutic Avenues of MCSF for Brain Diseases and Injuries. Front. Cell. Neurosci. 2018, 12, 499. [Google Scholar] [CrossRef]
- Lee, S.C.; Liu, W.; Roth, P.; Dickson, D.W.; Berman, J.W.; Brosnan, C.F. Macrophage Colony-Stimulating Factor in Human Fetal Astrocytes and Microglia. Differential Regulation by Cytokines and Lipopolysaccharide, and Modulation of Class II MHC on Microglia. J. Immunol. 1993, 150, 594–604. [Google Scholar] [CrossRef]
- Liu, W.; Xu, G.Z.; Jiang, C.H.; Tian, J. Macrophage Colony-Stimulating Factor and Its Receptor Signaling Augment Glycated Albumin-Induced Retinal Microglial Inflammation in Vitro. BMC Cell Biol. 2011, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, A.; Miyaishi, O.; Kiuchi, K.; Isobe, K. Macrophage Colony-stimulating Factor Is Expressed in Neuron and Microglia after Focal Brain Injury. J. Neurosci. Res. 2001, 65, 38–44. [Google Scholar] [CrossRef]
- Verstraete, K.; Savvides, S.N. Extracellular Assembly and Activation Principles of Oncogenic III Receptor Tyrosine Kinases. Nat. Rev. Cancer 2012, 12, 753–766. [Google Scholar] [CrossRef]
- Da Silva Figueiredo Celestino Gomes, P.; Panel, N.; Laine, E.; Pascutti, P.G.; Solary, E.; Tchertanov, L. Differential Effects of CSF-1R D802V and KIT D816V Homologous Mutations on Receptor Tertiary Structure and Allosteric Communication. PLoS ONE 2014, 9, e97519. [Google Scholar] [CrossRef]
- Pollard, J.W.; Bartocci, A.; Arceci, R.; Orlofsky, A.; Ladner, M.B.; Stanley, E.R. Apparent Role of the Macrophage Growth Factor, CSF-1, in Placental Development. Nature 1987, 330, 484–486. [Google Scholar] [CrossRef] [PubMed]
- Jokhi, P.P.; Chumbley, G.; King, A.; Gardner, L.; Loke, Y.W. Expression of the Colony Stimulating Factor-1 Receptor (c-Fms) by Cells at the Human Uteroplacental Interface. Lab. Investig. 1993, 68, 308–320. [Google Scholar] [PubMed]
- Oosterhof, N.; Chang, I.J.; Karimiani, E.G.; Kuil, L.E.; Jensen, D.M.; Daza, R.; Young, E.; Astle, L.; van der Linde, H.C.; Shivaram, G.M.; et al. Homozygous Mutations in CSF1R Cause a Pediatric-Onset Leukoencephalopathy and Can Result in Congenital Absence of Microglia. Am. J. Hum. Genet. 2019, 104, 936–947. [Google Scholar] [CrossRef]
- Mun, S.H.; Park, P.S.U.; Park-Min, K.-H. The M-CSF Receptor in Osteoclasts and Beyond. Exp. Mol. Med. 2020, 52, 1239–1254. [Google Scholar] [CrossRef]
- Hu, B.; Duan, S.; Wang, Z.; Li, X.; Zhou, Y.; Zhang, X.; Zhang, Y.-W.; Xu, H.; Zheng, H. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. Front. Aging Neurosci. 2021, 13, 789834. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Berezovska, O.; Fedoroff, S. Expression of Colony Stimulating Factor-1 Receptor (CSF-1R) by CNS Neurons in Mice. J. Neurosci. Res. 1999, 57, 616–632. [Google Scholar] [CrossRef]
- Luo, J.; Elwood, F.; Britschgi, M.; Villeda, S.; Zhang, H.; Ding, Z.; Zhu, L.; Alabsi, H.; Getachew, R.; Narasimhan, R.; et al. Colony-Stimulating Factor 1 Receptor (CSF1R) Signaling in Injured Neurons Facilitates Protection and Survival. J. Exp. Med. Med. 2013, 210, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Fedoroff, S.; Berezovskaya, O.; Maysinger, D. Role of Colony Stimulating Factor-1 in Brain Damage Caused by Ischemia. Neurosci. Biobehav. Rev. 1997, 21, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Berezovskaya, O.; Maysinger, D.; Fedoroff, S. Colony Stimulating Factor-1 Potentiates Neuronal Survival in Cerebral Cortex Ischemic Lesion. Acta Neuropathol. 1996, 92, 479–486. [Google Scholar] [CrossRef]
- Lonze, B.E.; Ginty, D.D. Function and Regulation of CREB Family Transcription Factors in the Nervous System. Neuron 2002, 35, 605–623. [Google Scholar] [CrossRef]
- Murase, S.; Hayashi, Y. Expression Pattern and Neurotrophic Role of the C-Fms Proto-Oncogene M-CSF Receptor in Rodent Purkinje Cells. J. Neurosci. 1998, 18, 10481–10492. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, M.; Umeyama, Y.; Hama, N.; Kobayashi, T.; Han, N.; Wada, H.; Seino, K. Interleukin-34, a Comprehensive Review. J. Leukoc. Biol. 2018, 104, 931–951. [Google Scholar] [CrossRef]
- Lin, H.; Lee, E.; Hestir, K.; Leo, C.; Huang, M.; Bosch, E.; Halenbeck, R.; Wu, G.; Zhou, A.; Behrens, D.; et al. Discovery of a Cytokine and Its Receptor by Functional Screening of the Extracellular Proteome. Science 2008, 320, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Lelios, I.; Cansever, D.; Utz, S.G.; Mildenberger, W.; Stifter, S.A.; Greter, M. Emerging Roles of IL-34 in Health and Disease. J. Exp. Med. 2020, 217, e20190290. [Google Scholar] [CrossRef]
- Wei, S.; Nandi, S.; Chitu, V.; Yeung, Y.-G.; Yu, W.; Huang, M.; Williams, L.T.; Lin, H.; Stanley, E.R. Functional Overlap but Differential Expression of CSF-1 and IL-34 in Their CSF-1 Receptor-Mediated Regulation of Myeloid Cells. J. Leukoc. Biol. 2010, 88, 495–505. [Google Scholar] [CrossRef]
- Gow, D.J.; Garceau, V.; Kapetanovic, R.; Sester, D.P.; Fici, G.J.; Shelly, J.A.; Wilson, T.L.; Hume, D.A. Cloning and Expression of Porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and Analysis of the Species Specificity of Stimulation by CSF-1 and Interleukin 34. Cytokine 2012, 60, 793–805. [Google Scholar] [CrossRef]
- Freuchet, A.; Salama, A.; Remy, S.; Guillonneau, C.; Anegon, I. IL-34 and CSF-1, Deciphering Similarities and Differences at Steady State and in Diseases. J. Leukoc. Biol. 2021, 110, 771–796. [Google Scholar] [CrossRef]
- Ma, X.; Lin, W.Y.; Chen, Y.; Stawicki, S.; Mukhyala, K.; Wu, Y.; Martin, F.; Bazan, J.F.; Starovasnik, M.A. Structural Basis for the Dual Recognition of Helical Cytokines IL-34 and CSF-1 by CSF-1R. Structure 2012, 20, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Szretter, K.J.; Vermi, W.; Gilfillan, S.; Rossini, C.; Cella, M.; Barrow, A.D.; Diamond, M.S.; Colonna, M. IL-34 Is a Tissue-Restricted Ligand of CSF1R Required for the Development of Langerhans Cells and Microglia. Nat. Immunol. 2012, 13, 753–760. [Google Scholar] [CrossRef]
- Greter, M.; Lelios, I.; Pelczar, P.; Hoeffel, G.; Price, J.; Leboeuf, M.; Kündig, T.M.; Frei, K.; Ginhoux, F.; Merad, M.; et al. Stroma-Derived Interleukin-34 Controls the Development and Maintenance of Langerhans Cells and the Maintenance of Microglia. Immunity 2012, 37, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Buki, K.; Vääräniemi, J.; Gu, G.; Väänänen, H.K. The Critical Role of IL-34 in Osteoclastogenesis. PLoS ONE 2011, 6, e18689. [Google Scholar] [CrossRef] [PubMed]
- Bettina, A.; Zhang, Z.; Michels, K.; Cagnina, R.E.; Vincent, I.S.; Burdick, M.D.; Kadl, A.; Mehrad, B. M-CSF Mediates Host Defense during Bacterial Pneumonia by promoting the Survival of Lung and Liver Mononuclear Phagocytes. J. Immunol. 2016, 196, 5047–5055. [Google Scholar] [CrossRef]
- Franzè, E.; Monteleone, I.; Cupi, M.L.; Mancia, P.; Caprioli, F.; Marafini, I.; Colantoni, A.; Ortenzi, A.; Laudisi, F.; Sica, G.; et al. Interleukin-34 Sustains Inflammatory Pathways in the Gut. Clin. Sci. 2015, 129, 271–280. [Google Scholar] [CrossRef]
- Baek, J.-H.; Zeng, R.; Weinmann-Menke, J.; Valerius, M.T.; Wada, Y.; Ajay, A.K.; Colonna, M.; Kelley, V.R. IL-34 Mediates Acute Kidney Injury and Worsens Subsequent Chronic Kidney Disease. J. Clin. Investig. 2015, 125, 3198–3214. [Google Scholar] [CrossRef] [PubMed]
- Franzè, E.; Laudisi, F.; Di Grazia, A.; Marônek, M.; Bellato, V.; Sica, G.; Monteleone, G. Macrophages Produce and Functionally Respond to Interleukin-34 in Colon Cancer. Cell Death Discov. 2020, 6, 117. [Google Scholar] [CrossRef]
- Kana, V.; Desland, F.A.; Casanova-Acebes, M.; Ayata, P.; Badimon, A.; Nabel, E.; Yamamuro, K.; Sneeboer, M.; Tan, I.-L.; Flanigan, M.E.; et al. CSF-1 Controls Cerebellar Microglia and Is Required for Motor Function and Social Interaction. J. Exp. Med. 2019, 216, 2265–2281. [Google Scholar] [CrossRef]
- Easley-Neal, C.; Foreman, O.; Sharma, N.; Zarrin, A.A.; Weimer, R.M. CSF1R Ligands IL-34 and CSF1 Are Differentially Required for Microglia Development and Maintenance in White and Gray Matter Brain Regions. Front. Immunol. 2019, 10, 2199. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Doi, Y.; Mizoguchi, H.; Jin, S.; Noda, M.; Sonobe, Y.; Takeuchi, H.; Suzumura, A. Interleukin-34 Selectively Enhances the Neuroprotective Effects of Microglia to Attenuate Oligomeric Amyloid-β Neurotoxicity. Am. J. Pathol. 2011, 179, 2016–2027. [Google Scholar] [CrossRef] [PubMed]
- Berglund, R.; Cheng, Y.; Piket, E.; Adzemovic, M.Z.; Zeitelhofer, M.; Olsson, T.; Guerreiro-Cacais, A.O.; Jagodic, M. The Aging Mouse CNS Is Protected by an Autophagy-Dependent Microglia Population Promoted by IL-34. Nat. Commun. 2024, 15, 383. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Sonobe, Y.; Kawanokuchi, J.; Horiuchi, H.; Cheng, Y.; Wang, Y.; Mizuno, T.; Takeuchi, H.; Suzumura, A. Interleukin-34 Restores Blood–Brain Barrier Integrity by Upregulating Tight Junction Proteins in Endothelial Cells. PLoS ONE 2014, 9, e115981. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Gokhan, S.; Dai, X.-M.; Wei, S.; Enikolopov, G.; Lin, H.; Mehler, M.F.; Stanley, E.R. The CSF-1 Receptor Ligands IL-34 and CSF-1 Exhibit Distinct Developmental Brain Expression Patterns and Regulate Neural Progenitor Cell Maintenance and Maturation. Dev. Biol. 2012, 367, 100–113. [Google Scholar] [CrossRef]
- Gerngross, L.; Fischer, T. Evidence for CFMS Signaling in HIV Production by Brain Macrophages and Microglia. J. Neurovirol. 2015, 21, 249–256. [Google Scholar] [CrossRef]
- Zuroff, L.R.; Torbati, T.; Hart, N.J.; Fuchs, D.-T.; Sheyn, J.; Rentsendorj, A.; Koronyo, Y.; Hayden, E.Y.; Teplow, D.B.; Black, K.L.; et al. Effects of IL-34 on Macrophage Immunological Profile in Response to Alzheimer’s-Related Aβ42 Assemblies. Front. Immunol. 2020, 11, 1449. [Google Scholar] [CrossRef]
- Nandi, S.; Cioce, M.; Yeung, Y.-G.; Nieves, E.; Tesfa, L.; Lin, H.; Hsu, A.W.; Halenbeck, R.; Cheng, H.-Y.; Gokhan, S.; et al. Receptor-Type Protein-Tyrosine Phosphatase ζ Is a Functional Receptor for Interleukin-34. J. Biol. Chem. 2013, 288, 21972–21986. [Google Scholar] [CrossRef] [PubMed]
- Segaliny, A.I.; Brion, R.; Mortier, E.; Maillasson, M.; Cherel, M.; Jacques, Y.; Le Goff, B.; Heymann, D. Syndecan-1 Regulates the Biological Activities of Interleukin-34. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 1010–1021. [Google Scholar] [CrossRef]
- Hsueh, Y.-P.; Sheng, M. Regulated Expression and Subcellular Localization of Syndecan Heparan Sulfate Proteoglycans and the Syndecan-Binding Protein CASK/LIN-2 during Rat Brain Development. J. Neurosci. 1999, 19, 7415–7425. [Google Scholar] [CrossRef]
- Hinsinger, G.; de Terdonck, L.; Urbach, S.; Salvetat, N.; Rival, M.; Galoppin Manon and Ripoll, C.; Cezar, R.; Laurent-Chabalier, S.; Demattei, C.; Agherbi, H.; et al. Syndecan-1 as Specific Cerebrospinal Fluid Biomarker of Multiple Sclerosis. bioRxiv 2023. [CrossRef]
- Shintani, T.; Watanabe, E.; Maeda, N.; Noda, M. Neurons as Well as Astrocytes Express Proteoglycan-Type Protein Tyrosine Phosphatase ζ/RPTPβ: Analysis of Mice in Which the PTPζ/RPTPβ Gene Was Replaced with the LacZ Gene. Neurosci. Lett. 1998, 247, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Sim, F.J.; Lang, J.K.; Waldau, B.; Roy, N.S.; Schwartz, T.E.; Pilcher, W.H.; Chandross, K.J.; Natesan, S.; Merrill, J.E.; Goldmanm, S.A. Complementary Patterns of Gene Expression by Human Oligodendrocyte Progenitors and Their Environment Predict Determinants of Progenitor Maintenance and Differentiation. Ann. Neurol. 2006, 59, 763–779. [Google Scholar] [CrossRef] [PubMed]
- Garceau, V.; Smith, J.; Paton, I.R.; Davey, M.; Fares, M.A.; Sester, D.P.; Burt, D.W.; Hume, D.A. Pivotal Advance: Avian Colony-Stimulating Factor 1 (CSF-1), Interleukin-34 (IL-34), and CSF-1 Receptor Genes and Gene. J. Leukoc. Biol. 2010, 87, 753–764. [Google Scholar] [CrossRef]
- Lafont, D.; Adage, T.; Gréco, B.; Zaratin, P. A Novel Role for Receptor like Protein Tyrosine Phosphatase Zeta in Modulation of Sensorimotor Responses to Noxious Stimuli: Evidences from Knockout Mice Studies. Behav. Brain Res. 2009, 201, 29–40. [Google Scholar] [CrossRef]
- Bootcov, M.R.; Bauskin, A.R.; Valenzuela Stella, M.; Moore, A.G.; Bansal, M.; He, X.Y.; Zhang, H.P.; Donnellan, M.; Mahler, S.; Pryor, K.; et al. MIC-1, a Novel Macrophage Inhibitory Cytokine, Is a Divergent of the TGF-β Superfamily. Proc. Natl. Acad. Sci. USA 1997, 94, 11514–11519. [Google Scholar] [CrossRef]
- Wischhusen, J.; Melero, I.; Fridman, W.H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front. Immunol. 2020, 11, 951. [Google Scholar] [CrossRef]
- Mullican, S.E.; Lin-Schmidt, X.; Chin Chen-Ni and Chavez, J.A.; Furman, J.L.; Armstrong, A.A.; Beck, S.C.; South, V.J.; Dinh, T.Q.; Cash-Mason, T.D.; Cavanaugh, C.R.; et al. GFRAL Is the Receptor for GDF15 and the Ligand Promotes Loss in Mice and Nonhuman Primates. Nat. Med. 2017, 23, 1150–1157. [Google Scholar] [CrossRef]
- Tsai, V.W.-W.; Macia, L.; Johnen, H.; Kuffner, T.; Manadhar, R.; Jørgensen, S.B.; Lee-Ng, K.K.M.; Zhang, H.P.; Wu, L.; Marquis, C.P.; et al. TGF-b Superfamily Cytokine MIC-1/GDF15 Is a Physiological and Body Weight Regulator. PLoS ONE 2013, 8, e55174. [Google Scholar] [CrossRef]
- Yang, L.; Chang, C.-C.; Sun, Z.; Madsen, D.; Zhu, H.; Padkjær, S.B.; Wu, X.; Huang, T.; Hultman, K.; Paulsen Sarah, J.; et al. GFRAL Is the Receptor for GDF15 and Is Required for The-Obesity Effects of the Ligand. Nat. Med. 2017, 23, 1158–1166. [Google Scholar] [CrossRef]
- Bottner, M.; Laaff, M.; Schechinger, B.; Rappold, G.; Unsicker, K.; Suter-Crazzolara, C. Characterization of the Rat, Mouse, and Human Genes of Growth/Differentiation Factor-15/Macrophage Inhibiting Cytokine-1 (GDF-15/MIC-1). Gene 1999, 237, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Lesch, B.J.; Page, D.C. Poised Chromatin in the Mammalian Germ Line. Development 2014, 141, 3619–3626. [Google Scholar] [CrossRef] [PubMed]
- Ulirsch, J.C.; Lacy, J.N.; An, X.; Mohandas, N.; Mikkelsen, T.S.; Sankaran, V.G. Altered Chromatin Occupancy of Master Regulators Underlies Evolutionary Divergence in the Transcriptional Landscape of Erythroid Differentiation. PLoS Genet. 2014, 10, e1004890. [Google Scholar] [CrossRef]
- Brown, D.A.; Breit, S.N.; Buring, J.; Fairlie, W.D.; Bauskin, A.R.; Liu, T.; Ridker, P.M. Concentration in Plasma of Macrophage Inhibitory Cytokine-1 and Risk of Cardiovascular Events in Women: A Nested Case-Control Study. Lancet 2002, 359, 2159–2163. [Google Scholar] [CrossRef] [PubMed]
- Breit, S.N.; Brown, D.A.; Tsai, V.W.-W. The GDF15-GFRAL Pathway in Health and Metabolic Disease: Friend or Foe? Annu. Rev. Physiol. 2021, 83, 127–151. [Google Scholar] [CrossRef] [PubMed]
- Fairlie, W.D.; Moore, A.G.; Bauskin, A.R.; Russell, P.K.; Zhang, H.-P.; Breit, S.N. MIC-1 Is a Novel TGF-β Superfamily Cytokine Associated with Macrophage Activation. J. Leukoc. Biol. 1999, 65, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Lawton, L.N.; Bonaldo, M.d.F.; Jelenc, P.C.; Qiu, L.; Baumes, S.A.; Marcelino, R.A.; de Jesus, G.M.; Wellington, S.; Knowles, J.A.; Warburton, D.; et al. Identification of a Novel Member of the TGF-Beta Superfamily Highly Expressed in Human Placenta. Gene 1997, 203, 17–26. [Google Scholar] [CrossRef]
- Patel, S.; Alvarez-Guaita, A.; Melvin, A.; Rimmington, D.; Dattilo, A.; Miedzybrodzka, E.L.; Cimino, I.; Maurin, A.-C.; Roberts, G.P.; Meek, C.L.; et al. GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metab. 2019, 29, 707–718.e8. [Google Scholar] [CrossRef]
- Yokoyama-Kobayashi, M.; Saeki, M.; Sekine, S.; Kato, S. Human CDNA Encoding a Novel TGF-Superfamily Protein Highly Expressed in Placenta. J. Biochem. 1997, 122, 622–626. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Lyu, Y.; Dai, W.; Tong, Y.; Li, Y. GDF15 as a Biomarker of Ageing. Exp. Gerontol. 2021, 146, 111228. [Google Scholar] [CrossRef]
- Luan, H.H.; Wang, A.; Hilliard, B.K.; Carvalho, F.; Rosen, C.E.; Ahasic, A.M.; Herzog, E.L.; Kang, I.; Pisani, M.A.; Yu, S.; et al. GDF15 Is an Inflammation-Induced Central Mediator of Tissue. Cell 2019, 178, 1231–1244.e11. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.B.; Sapinoso, L.M.; Kern, S.G.; Brown, D.A.; Liu, T.; Bauskin, A.R.; Ward, R.L.; Hawkins, N.J.; Quinn, D.I.; Russell, P.J.; et al. Large-Scale Delineation of Secreted Protein Biomarkers Overexpressed in Cancer Tissue and Serum. Proc. Natl. Acad. Sci. USA 2003, 100, 3410–3415. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Krebbers, J.; Charalambous, P.; Machado, V.; Schober, A.; Bosse, F.; Müller, H.-W.; Unsicker, K. Growth/Differentiation Factor-15 and Its Role in Peripheral System Lesion and Regeneration. Cell Tissue Res. 2015, 362, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Mensching, L.; Börger, A.-K.; Wang, X.; Charalambous, P.; Unsicker, K.; Haastert-Talini, K. Local Substitution of GDF-15 Improves Axonal and Sensory Recovery after Peripheral Nerve Injury. Cell Tissue Res. 2012, 350, 225–238. [Google Scholar] [CrossRef]
- Fichtner, K.; Kalwa, H.; Lin, M.-M.; Gong, Y.; Müglitz, A.; Kluge, M.; Krügel, U. GFRAL Is Widely Distributed in the Brain and Peripheral of Mice. Nutrients 2024, 16, 734. [Google Scholar] [CrossRef]
- Andersson, C.; Preis, S.R.; Beiser, A.; DeCarli, C.; Wollert, K.C.; Wang, T.J.; Januzzi, J.L.; Vasan, R.S.; Seshadri, S. Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations with Subclinical Vascular Brain Injury and Incident Stroke. Stroke 2015, 46, 2568–2575. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.A.; Bauskin, A.R.; Fairlie, W.D.; Smith, M.D.; Liu, T.; Xu, N.; Breit, S.N. Antibody-Based Approach to High-Volume Genotyping for MIC-1 Polymorphism. Biotechniques 2002, 33, 118–126. [Google Scholar] [CrossRef]
- Chiariello, A.; Valente, S.; Pasquinelli, G.; Baracca, A.; Sgarbi, G.; Solaini, G.; Medici, V.; Fantini, V.; Poloni, T.E.; Tognocchi, M.; et al. The Expression Pattern of GDF15 in Human Brain Changes during Aging and in Alzheimer’s Disease. Front. Aging Neurosci. 2023, 14, 1058665. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-Y.; Crawley, S.; Chen, M.; Ayupova, D.A.; Lindhout, D.A.; Higbee, J.; Kutach, A.; Joo, W.; Gao, Z.; Fu, D.; et al. Non-Homeostatic Body Weight Regulation through a Brainstem-Restricted Receptor for GDF15. Nature 2017, 550, 255–259. [Google Scholar] [CrossRef]
- L’homme, L.; Sermikli, B.P.; Staels, B.; Piette, J.; Legrand-Poels, S.; Dombrowicz, D. Saturated Fatty Acids Promote GDF15 Expression in Human through the PERK/EIF2/CHOP Signaling Pathway. Nutrients 2020, 12, 3771. [Google Scholar] [CrossRef]
- Schindowski, K.; von Bohlen und Halbach, O.; Strelau, J.; Ridder, D.A.; Herrmann, O.; Schober, A.; Schwaninger, M.; Unsicker, K. Regulation of GDF-15, a Distant TGF-β Superfamily, in a Mouse Model of Cerebral Ischemia. Cell Tissue Res. 2011, 343, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Schober, A.; Böttner, M.; Strelau, J.; Kinscherf, R.; Bonaterra, G.A.; Barth, M.; Schilling, L.; Fairlie, W.D.; Breit, S.N.; Unsicker, K. Expression of Growth Differentiation Factor-15/ Macrophage Cytokine-1 (GDF-15/MIC-1) in the Perinatal, Adult, and Injured Rat Brain. J. Comp. Neurol. 2001, 439, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.; Wen, D.; Yu, Y.; Holst Paige, L.; Luo, Y.; Fang, M.; Tamir, R.; Laarni, A.; Hu, Z.; Cupples, R.; et al. GDNF–Induced Activation of the Ret Protein Tyrosine Kinase Is by GDNFR-α, a Novel Receptor for GDNF. Cell 1996, 85, 1113–1124. [Google Scholar] [CrossRef]
- Worth, A.A.; Shoop, R.; Tye, K.; Feetham, C.H.; D’Agostino, G.; Dodd, G.T.; Reimann, F.; Gribble, F.M.; Beebe, E.C.; Dunbar, J.D.; et al. The Cytokine GDF15 Signals through a Population of Brainstem Cholecystokinin Neurons to Mediate Anorectic Signalling. Elife 2020, 9, e55164. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Strelau, J.; Unsicker, K. Growth Differentiation Factor-15 Prevents Low Potassium-Induced Cell Death of Cerebellar Granule Neurons by Differential Regulation of Akt and ERK Pathways. J. Biol. Chem. 2003, 278, 8904–8912. [Google Scholar] [CrossRef]
- Strelau, J.; Sullivan, A.; Böttner, M.; Lingor, P.; Falkenstein, E.; Suter-Crazzolara, C.; Galter, D.; Jaszai, J.; Krieglstein, K.; Unsicker, K. Growth/Differentiation Factor-15/Macrophage Inhibitory Cytokine-1 Is a Novel Trophic Factor for Midbrain Dopaminergic Eurons in Vivo. J. Neurosci. 2000, 20, 8597–8603. [Google Scholar] [CrossRef]
- Machado, V.; Haas, S.J.-P.; von Bohlen und Halbach, O.; Wree, A.; Krieglstein, K.; Unsicker, K.; Spittau, B. Growth/Differentiation Factor-15 Deficiency Compromises Dopaminergic Neuron Survival and Microglial Response in the 6-Hydroxydopamine Mouse Model of Parkinson’s Disease. Neurobiol. Dis. 2016, 88, 1–15. [Google Scholar] [CrossRef]
- Strelau, J.; Strzelczyk, A.; Rusu, P.; Bendner, G.; Wiese, S.; Diella, F.; Altick, A.L.; von Bartheld, C.S.; Klein, R.; Sendtner, M.; et al. Progressive Postnatal Motoneuron Loss in Mice Lacking GDF-15. J. Neurosci. 2009, 29, 13640–13648. [Google Scholar] [CrossRef]
- Xiong, W.; Li, D.; Feng, Y.; Jia, C.; Zhang, X.; Liu, Z. CircLPAR1 Promotes Neuroinflammation and Oxidative Stress in APP/PS1 Mice by Inhibiting SIRT1/Nrf-2/HO-1 Axis through Destabilizing GDF-15 MRNA. Mol. Neurobiol. 2023, 60, 2236–2251. [Google Scholar] [CrossRef]
- Xiong, W.-P.; Yao, W.-Q.; Wang, B.; Liu, K. BMSCs-Exosomes Containing GDF-15 Alleviated SH-SY5Y Cell Injury Model of Alzheimer’s Disease via AKT/GSK-3β/β-Catenin. Brain Res. Bull. 2021, 177, 92–102. [Google Scholar] [CrossRef]
- Li, P.; Lv, H.; Zhang, B.; Duan, R.; Zhang, X.; Lin, P.; Song, C.; Liu, Y. Growth Differentiation Factor 15 Protects SH-SY5Y Cells from Rotenone-Induced Toxicity by Suppressing Mitochondrial Apoptosis. Front. Aging Neurosci. 2022, 14, 869558. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed]
- Bikfalvi, A.; Klein, S.; Pintucci, G.; Rifkin, D.B. Biological Roles of Fibroblast Growth Factor-2. Endocr. Rev. 1997, 18, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Wootton, J.C.; Gertz, E.M.; Agarwala, R.; Morgulis, A.; Schäffer, A.A.; Yu, Y.-K. Protein Database Searches Using Compositionally Adjusted Substitution Matrices. FEBS J. 2005, 272, 5101–5109. [Google Scholar] [CrossRef]
- Itoh, N.; Ornitz, D.M. Evolution of the Fgf and Fgfr Gene Families. Trends Genet. 2004, 20, 563–569. [Google Scholar] [CrossRef]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Kiyota, T.; Ingraham, K.L.; Jacobsen, M.T.; Xiong, H.; Ikezu, T. FGF2 Gene Transfer Restores Hippocampal Functions in Mouse Models of Alzheimer’s Disease and Has Therapeutic Implications for Neurocognitive Disorders. Proc. Natl. Acad. Sci. USA 2011, 108, E1339–E1348. [Google Scholar] [CrossRef]
- Kasai, M.; Jikoh, T.; Fukumitsu, H.; Furukawa, S. FGF-2-Responsive and Spinal Cord-Resident Cells Improve Locomotor Function after Spinal Cord Injury. J. Neurotrauma 2014, 31, 1584–1598. [Google Scholar] [CrossRef]
- Eiselleova, L.; Matulka, K.; Kriz, V.; Kunova, M.; Schmidtova, Z.; Neradil, J.; Tichy, B.; Dvorakova, D.; Pospisilova, S.; Hampl, A.; et al. A Complex Role for FGF-2 in Self-Renewal, Survival, and Adhesion of Human Embryonic Stem Cells. Stem Cells 2009, 27, 1847–1857. [Google Scholar] [CrossRef]
- Jia, T.; Jacquet, T.; Dalonneau, F.; Coudert, P.; Vaganay, E.; Exbrayat-Héritier, C.; Vollaire, J.; Josserand, V.; Ruggiero, F.; Coll, J.-L.; et al. FGF-2 Promotes Angiogenesis through a SRSF1/SRSF3/SRPK1-Dependent Axis That Controls VEGFR1 Splicing in Endothelial Cells. BMC Biol. 2021, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Koike, Y.; Yozaki, M.; Utani, A.; Murota, H. Fibroblast Growth Factor 2 Accelerates the Epithelial–Mesenchymal Transition in Keratinocytes during Wound Healing Process. Sci. Rep. 2020, 10, 18545. [Google Scholar] [CrossRef] [PubMed]
- Grothe, C.; Meisinger, C.; Claus, P. In Vivo Expression and Localization of the Fibroblast Growth Factor System in the Intact and Lesioned Rat Peripheral Nerve and Spinal Ganglia. J. Compar. Neurol. 2001, 434, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Ford-Perriss, M.; Abud, H.; Murphy, M. Fibroblast Growth Factors in the Developing Central Nervous System. Clin. Exp. Pharmacol. Physiol. 2001, 28, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Zechel, S.; Werner, S.; Unsicker, K.; von Bohlen und Halbach, O. Expression and Functions of Fibroblast Growth Factor 2 (FGF-2) in Hippocampal Formation. Neuroscientist 2010, 16, 357–373. [Google Scholar] [CrossRef]
- Wagner, J.P.; Black, I.B.; DiCicco-Bloom, E. Stimulation of Neonatal and Adult Brain Neurogenesis by Subcutaneous Injection of Basic Fibroblast Growth Factor. J. Neurosci. 1999, 19, 6006–6016. [Google Scholar] [CrossRef]
- Yoshimura, S.; Takagi, Y.; Harada, J.; Teramoto, T.; Thomas, S.S.; Waeber, C.; Bakowska, J.C.; Breakefield, X.O.; Moskowitz, M.A. FGF-2 Regulation of Neurogenesis in Adult Hippocampus after Brain Injury. Proc. Natl. Acad. Sci. USA 2001, 98, 5874–5879. [Google Scholar] [CrossRef]
- Woodbury, M.E.; Ikezu, T. Fibroblast Growth Factor-2 Signaling in Neurogenesis and Neurodegeneration. J. Neuroimmune Pharmacol. 2014, 9, 92–101. [Google Scholar] [CrossRef]
- Mudò, G.; Bonomo, A.; Liberto, V.D.; Frinchi, M.; Fuxe, K.; Belluardo, N. The FGF-2/FGFRs Neurotrophic System Promotes Neurogenesis in the Adult Brain. J. Neural Transm. 2009, 116, 995–1005. [Google Scholar] [CrossRef]
- Yue, F.; Cheng, Y.; Breschi, A.; Vierstra, J.; Wu, W.; Ryba, T.; Sandstrom, R.; Ma, Z.; Davis, C.; Pope, B.D.; et al. A Comparative Encyclopedia of DNA Elements in the Mouse Genome. Nature 2014, 515, 355–364. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Zhang, J.-X.; Shen, L.; Qi, Q.; Cheng, X.-X.; Zhong, Z.-R.; Jiang, Z.-Q.; Wang, R.; Lü, H.-Z.; Hu, J.-G. Schwann Cells Induce Proliferation and Migration of Oligodendrocyte Precursor Cells through Secretion of PDGF-AA and FGF-2. J. Mol. Neurosci. 2015, 56, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Pontén, F.; Jirström, K.; Uhlen, M. The Human Protein Atlas—A Tool for Pathology. J. Pathol. 2008, 216, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Noda, M.; Takii, K.; Parajuli, B.; Kawanokuchi, J.; Sonobe, Y.; Takeuchi, H.; Mizuno, T.; Suzumura, A. FGF-2 Released from Degenerating Neurons Exerts Microglial-Induced Neuroprotection via FGFR3-ERK Signaling Pathway. J. Neuroinflammation 2014, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mashour, G.A.; Webster, H.D.; Kurtz, A. Basic FGF and FGF Receptor 1 Are Expressed in Microglia during Experimental Autoimmune Encephalomyelitis: Temporally Distinct Expression of Midkine and Pleiotrophen. Glia 1998, 24, 390–397. [Google Scholar] [CrossRef]
- Clemente, D.; Ortega, M.C.; Arenzana, F.J.; de Castro, F. FGF-2 and Anosmin-1 Are Selectively Expressed in Different Types of Multiple Sclerosis Lesions. J. Neurosci. 2011, 31, 14899–14909. [Google Scholar] [CrossRef]
- He, C.; Liu, Y.; Huang, Z.; Yang, Z.; Zhou, T.; Liu, S.; Hao, Z.; Wang, J.; Feng, Q.; Liu, Y.; et al. A Specific RIP3+ Subpopulation of Microglia Promotes Retinopathy through a Hypoxia-Triggered Necroptotic Mechanism. Proc. Natl. Acad. Sci. USA 2021, 118, e2023290118. [Google Scholar] [CrossRef]
- Plotnikov, A.N.; Schlessinger, J.; Hubbard, S.R.; Mohammadi, M. Structural Basis for FGF Receptor Dimerization and Activation. Cell 1999, 98, 641–650. [Google Scholar] [CrossRef]
- Dai, S.; Zhou, Z.; Chen, Z.; Xu, G.; Chen, Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Cells 2019, 8, 614. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor Signaling Pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef]
- Tacer, K.F.; Bookout, A.L.; Ding, X.; Kurosu, H.; John, G.B.; Wang, L.; Goetz, R.; Mohammadi, M.; Kuro-o, M.; Mangelsdorf, D.J.; et al. Research Resource: Comprehensive Expression Atlas of the Fibroblast Growth Factor System in Adult Mouse. Mol. Endocrinol. 2010, 24, 2050–2064. [Google Scholar] [CrossRef]
- Hughes, S.E. Differential Expression of the Fibroblast Growth Factor Receptor (FGFR) Multigene Family in Normal Human Adult Tissues. J. Histochem. Cytochem. 1997, 45, 1005–1019. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, A.; Loy, K.; Schmalz, A.M.; Hellsten, M.; Umemori, H.; Kerschensteiner, M.; Bareyre, F.M. FGF22 Signaling Regulates Synapse Formation during Post-injury Remodeling of the Spinal Cord. EMBO J. 2015, 34, 1231–1243. [Google Scholar] [CrossRef] [PubMed]
- Neiiendam, J.L.; Køhler, L.B.; Christensen, C.; Li, S.; Pedersen, M.V.; Ditlevsen, D.K.; Kornum, M.K.; Kiselyov, V.V.; Berezin, V.; Bock, E. An NCAM-Derived FGF-Receptor Agonist, the FGL-Peptide, Induces Neurite Outgrowth and Neuronal Survival in Primary Rat Neurons. J. Neurochem. 2004, 91, 920–935. [Google Scholar] [CrossRef] [PubMed]
- Weickert, C.S.; Kittell, D.A.; Saunders, R.C.; Herman, M.M.; Horlick, R.A.; Kleinman, J.E.; Hyde, T.M. Basic Fibroblast Growth Factor and Fibroblast Growth Factor Receptor-1 in the Human Hippocampal Formation. Neuroscience 2005, 131, 219–233. [Google Scholar] [CrossRef]
- Tsuchida, T.; Mano, T.; Koshi-Mano, K.; Bannai, T.; Matsubara, T.; Yamashita, S.; Ushijima, T.; Nagata, K.; Murayama, S.; Toda, T.; et al. Methylation Changes and Aberrant Expression of FGFR3 in Lewy Body Disease Neurons. Brain Res. 2018, 1697, 59–66. [Google Scholar] [CrossRef]
- Bonthius, D.J.; Karacay, B.; Dai, D.; Pantazis, N.J. FGF-2, NGF and IGF-1, but Not BDNF, Utilize a Nitric Oxide Pathway to Signal Neurotrophic and Neuroprotective Effects against Alcohol Toxicity in Cerebellar Granule Cell Cultures. Dev. Brain Res. 2003, 140, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Skaper, S.D.; Kee, W.J.; Facci, L.; Macdonald, G.; Doherty, P.; Walsh, F.S. The FGFR1 Inhibitor PD 173074 Selectively and Potently Antagonizes FGF-2 Neurotrophic and Neurotropic Effects. J. Neurochem. 2000, 75, 1520–1527. [Google Scholar] [CrossRef]
- Nugent, M.A.; Edelman, E.R. Kinetics of Basic Fibroblast Growth Factor Binding to Its Receptor and Heparan Sulfate Proteoglycan: A Mechanism for Cooperativity. Biochemistry 1992, 31, 8876–8883. [Google Scholar] [CrossRef]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan Sulfate Proteoglycans. Cold Spring Harb Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef]
- Schlessinger, J.; Plotnikov, A.N.; Ibrahimi, O.A.; Eliseenkova, A.V.; Yeh, B.K.; Yayon, A.; Linhardt, R.J.; Mohammadi, M. Crystal Structure of a Ternary FGF-FGFR-Heparin Complex Reveals a Dual Role for Heparin in FGFR Binding and Dimerization. Mol. Cell 2000, 6, 743–750. [Google Scholar] [CrossRef]
- Johnson-Farley, N.N.; Patel, K.; Kim, D.; Cowen, D.S. Interaction of FGF-2 with IGF-1 and BDNF in Stimulating Akt, ERK, and Neuronal Survival in Hippocampal Cultures. Brain Res. 2007, 1154, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.J.; Dam, D.; Lee, S.; Cotman, C.W. Basic Fibroblast Growth Factor Prevents Death of Lesioned Cholinergic Neurons in Vivo. Nature 1988, 332, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Faktorovich, E.G.; Steinberg, R.H.; Yasumura, D.; Matthes, M.T.; LaVail, M.M. Basic Fibroblast Growth Factor and Local Injury Protect Photoreceptors from Light Damage in the Rat. J. Neurosc. 1992, 12, 3554–3567. [Google Scholar] [CrossRef]
- Tang, C.; Shan, Y.; Hu, Y.; Fang, Z.; Tong, Y.; Chen, M.; Wei, X.; Fu, X.; Xu, X. FGF2 Attenuates Neural Cell Death via Suppressing Autophagy after Rat Mild Traumatic Brain Injury. Stem Cells Int. 2017, 2017, e2923182. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Z.; Cai, P.; Jiang, T.; Li, Y.; Yuan, Y.; Li, R.; Khor, S.; Lu, Y.; Wang, J.; et al. Dual Delivery of BFGF- and NGF-Binding Coacervate Confers Neuroprotection by Promoting Neuronal Proliferation. Cell Physiol. Biochem. 2018, 47, 948–956. [Google Scholar] [CrossRef]
- Hsuan, S.-L.; Klintworth, H.M.; Xia, Z. Basic Fibroblast Growth Factor Protects against Rotenone-Induced Dopaminergic Cell Death through Activation of Extracellular Signal-Regulated Kinases 1/2 and Phosphatidylinositol-3 Kinase Pathways. J. Neurosci. 2006, 26, 4481–4491. [Google Scholar] [CrossRef]
- Wagle, A.; Singh, J.P. Fibroblast Growth Factor Protects Nitric Oxide-Induced Apoptosis in Neuronal SHSY-5Y Cells. J. Pharmacol. Exp. Ther. 2000, 295, 889–895. [Google Scholar]
- Bergman, D.; Halje, M.; Nordin, M.; Engström, W. Insulin-like Growth Factor 2 in Development and Disease: A Mini-Review. Gerontology 2013, 59, 240–249. [Google Scholar] [CrossRef]
- Guvakova, M.A. Insulin-like Growth Factors Control Cell Migration in Health and Disease. Int. J. Biochem. Cell Biol. 2007, 39, 890–909. [Google Scholar] [CrossRef]
- Morrione, A.; Valentinis, B.; Xu, S.; Yumet, G.; Louvi, A.; Efstratiadis, A.; Baserga, R. Insulin-like Growth Factor II Stimulates Cell Proliferation through the Insulin Receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 3777–3782. [Google Scholar] [CrossRef]
- Tally, M.; Li, C.H.; Hall, K. IGF-2 Stimulated Growth Mediated by the Somatomedin Type 2 Receptor. Biochem. Biophys. Res. Commun. 1987, 148, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Loeser, R.F.; Shanker, G. Autocrine Stimulation by Insulin-like Growth Factor 1 and Insulin-like Growth Factor 2 Mediates Chondrocyte Survival in Vitro. Arthritis Rheum. 2000, 43, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; Dikkes, P.; Barnes, M.; Lopez, M.F. Decreased Motoneuron Survival in Igf2 Null Mice after Sciatic Nerve Transection. Neuroreport 2009, 20, 1414. [Google Scholar] [CrossRef]
- Allodi, I.; Comley, L.; Nichterwitz, S.; Nizzardo, M.; Simone, C.; Benitez, J.A.; Cao, M.; Corti, S.; Hedlund, E. Differential Neuronal Vulnerability Identifies IGF-2 as a Protective Factor in ALS. Sci. Rep. 2016, 6, 25960. [Google Scholar] [CrossRef]
- Jeong, E.Y.; Kim, S.; Jung, S.; Kim, G.; Son, H.; Lee, D.H.; Roh, G.S.; Kang, S.S.; Cho, G.J.; Choi, W.S.; et al. Enhancement of IGF-2-Induced Neurite Outgrowth by IGF-Binding Protein-2 and Osteoglycin in SH-SY5Y Human Neuroblastoma Cells. Neurosci. Lett. 2013, 548, 249–254. [Google Scholar] [CrossRef]
- Beletskiy, A.; Chesnokova, E.; Bal, N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer—Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int. J. Mol. Sci. 2021, 22, 1849. [Google Scholar] [CrossRef]
- Mellott, T.J.; Pender, S.M.; Burke, R.M.; Langley, E.A.; Blusztajn, J.K. IGF2 Ameliorates Amyloidosis, Increases Cholinergic Marker Expression and Raises BMP9 and Neurotrophin Levels in the Hippocampus of the APPswePS1dE9 Alzheimer’s Disease Model Mice. PLoS ONE 2014, 9, e94287. [Google Scholar] [CrossRef] [PubMed]
- Duart-Garcia, C.; Braunschweig, M.H. Functional Expression Study of Igf2 Antisense Transcript in Mouse. Int. J. Genom. 2014, 2014, 390296. [Google Scholar] [CrossRef]
- Gray, A.; Tam, A.W.; Dull, T.J.; Hayflick, J.; Pintar, J.; Cavenee, W.K.; Koufos, A.; Ullrich, A. Tissue-Specific and Developmentally Regulated Transcription of the Insulin-like Growth Factor 2 Gene. DNA 1987, 6, 283–295. [Google Scholar] [CrossRef]
- Qiu, Q.; Jiang, J.-Y.; Bell, M.; Tsang, B.K.; Gruslin, A. Activation of Endoproteolytic Processing of Insulin-like Growth Factor-II in Fetal, Early Postnatal, and Pregnant Rats and Persistence of Circulating Levels in Postnatal Life. Endocrinology 2007, 148, 4803–4811. [Google Scholar] [CrossRef]
- Baker, J.; Liu, J.P.; Robertson, E.J.; Efstratiadis, A. Role of Insulin-like Growth Factors in Embryonic and Postnatal Growth. Cell 1993, 75, 73–82. [Google Scholar] [CrossRef] [PubMed]
- DeChiara, T.M.; Efstratiadis, A.; Robertsen, E.J. A Growth-Deficiency Phenotype in Heterozygous Mice Carrying an Insulin-like Growth Factor II Gene Disrupted by Targeting. Nature 1990, 345, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Han, V.K.M.; D’Ercole, A.J.; Lund, P.K. Cellular Localization of Somatomedin (Insulin-like Growth Factor) Messenger RNA in the Human Fetus. Science 1987, 236, 193–197. [Google Scholar] [CrossRef]
- Hill, D.J. Relative Abundance and Molecular Size of Immunoreactive Insulin-like Growth Factors I and II in Human Fetal Tissues. Early Hum. Dev. 1990, 21, 49–58. [Google Scholar] [CrossRef]
- Carlsson-Skwirut, C.; Jörnvall, H.; Holmgren, A.; Andersson, C.; Bergman, T.; Lundquist, G.; Sjögren, B.; Sara, V.R. Isolation and Characterization of Variant IGF-1 as well as IGF-2 from Adult Human Brain. FEBS Lett. 1986, 201, 46–50. [Google Scholar] [CrossRef]
- Suh, H.-S.; Zhao, M.-L.; Derico, L.; Choi, N.; Lee, S.C. Insulin-like Growth Factor 1 and 2 (IGF1, IGF2) Expression in Human Microglia: Differential Regulation by Inflammatory Mediators. J. Neuroinflamm. 2013, 10, 805. [Google Scholar] [CrossRef]
- Walter, H.J.; Berry, M.; Hill, D.J.; Cwyfan-Hughes, S.; Holly, J.M.P.; Logan, A. Distinct Sites of Insulin-like Growth Factor (IGF)-II Expression and Localization in Lesioned Rat Brain: Possible Roles of IGF Binding Proteins (IGFBPs) in the Mediation of IGF-II Activity. Endocrinology 1999, 140, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Kihira, T.; Suzuki, A.; Kubo, T.; Miwa, H.; Kondo, T. Expression of Insulin-like Growth Factor-II and Leukemia Inhibitory Factor Antibody Immunostaining on the Ionized Calcium-Binding Adaptor Molecule 1-Positive Microglias in the Spinal Cord of Amyotrophic Lateral Sclerosis Patients. Neuropathology 2007, 27, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; LeRoith, D. Insulin and Insulin-like Growth Factor I Receptors: Similarities and Differences in Signal Transduction. Horm. Res. Paediatr. 2004, 55, 22–26. [Google Scholar] [CrossRef]
- Harris, L.K.; Westwood, M. Biology and Significance of Signalling Pathways Activated by IGF-II. Growth Factors 2012, 30, 1–12. [Google Scholar] [CrossRef]
- Brown, J.; Jones, E.Y.; Forbes, B.E. Chapter 25: Interactions of IGF-II with the IGF2R/Cation-independent Mannose-6-phosphate Receptor. Vitam. Horm. 2009, 80, 699–719. [Google Scholar] [PubMed]
- Chen, D.Y.; Stern, S.A.; Garcia-Osta, A.; Saunier-Rebori, B.; Pollonini, G.; Bambah-Mukku, D.; Blitzer, R.D.; Alberini, C.M. A Critical Role for IGF-II in Memory Consolidation and Enhancement. Nature 2011, 469, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, R.; Zhao, Z.; Ji, Z.; Xu, S.; Holscher, C.; Sheng, S. Coexistences of Insulin Signaling-Related Proteins and Choline Acetyltransferase in Neurons. Brain Res. 2009, 1249, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Kizhakke-Madathil, S.; Evans, H.N.; Saatman, K.E. Temporal and Regional Changes in IGF-1/IGF-1R Signaling in the Mouse Brain after Traumatic Brain Injury. J. Neurotrauma 2010, 27, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-W.; Pandey, K.; Katzman, A.C.; Alberini, C.M. A Role for CIM6P/IGF2 Receptor in Memory Consolidation and Enhancement. Elife 2020, 9, e54781. [Google Scholar] [CrossRef]
- Rivera, E.J.; Goldin, A.; Fulmer, N.; Tavares, R.; Wands, J.R.; de la Monte, S.M. Insulin and Insulin-like Growth Factor Expression and Function Deteriorate with Progression of Alzheimer’s Disease: Link to Brain Reductions in Acetylcholine. J. Alzheimers. Dis. 2005, 8, 247–268. [Google Scholar] [CrossRef]
- Kar, S.; Poirier, J.; Guevara, J.; Dea, D.; Hawkes, C.; Robitaille, Y.; Quirion, R. Cellular Distribution of Insulin-like Growth Factor-II/Mannose-6-Phosphate Receptor in Normal Human Brain and Its Alteration in Alzheimer’s Disease Pathology. Neurobiol. Aging 2006, 27, 199–210. [Google Scholar] [CrossRef]
- Mackay, K.B.; Loddick, S.A.; Naeve, G.S.; Vana, A.M.; Verge, G.M.; Foster, A.C. Neuroprotective Effects of Insulin-like Growth Factor-Binding Protein Ligand Inhibitors in Vitro and in Vivo. J. Cereb. Blood Flow Metab. 2003, 23, 1160–1167. [Google Scholar] [CrossRef]
- Schmeisser, M.J.; Baumann, B.; Johannsen, S.; Vindedal, G.F.; Jensen, V.; Hvalby, Ø.C.; Sprengel, R.; Seither, J.; Maqbool, A.; Magnutzki, A.; et al. IκB Kinase/Nuclear Factor ΚB-Dependent Insulin-like Growth Factor 2 (Igf2) Expression Regulates Synapse Formation and Spine Maturation via Igf2 Receptor Signaling. J. Neurosci. 2012, 32, 5688–5703. [Google Scholar] [CrossRef]
- Martin-Montañez, E.; Pavia, J.; Santin, L.J.; Boraldi, F.; Estivill-Torrus, G.; Aguirre, J.A.; Garcia-Fernandez, M. Involvement of IGF-II Receptors in the Antioxidant and Neuroprotective Effects of IGF-II on Adult Cortical Neuronal Cultures. Biochim. Biophys. Acta Mol. Basis Dis. 2014, 1842, 1041–1051. [Google Scholar] [CrossRef]
- Pascual-Lucas, M.; da Silva, S.; Scala, M.D.; Garcia-Barroso, C.; González-Aseguinolaza, G.; Mulle, C.; Alberini, C.M.; Cuadrado-Tejedor, M.; Garcia-Osta, A. Insulin-like Growth Factor 2 Reverses Memory and Synaptic Deficits in APP Transgenic Mice. EMBO Mol. Med. 2014, 6, 1246–1262. [Google Scholar] [CrossRef] [PubMed]
- Vafaee, F.; Zarifkar, A.; Emamghoreishi, M.; Namavar, M.R.; Shirzad, S.; Ghazavi, H.; Mahdavizadeh, V. Insulin-like Growth Factor 2 (IGF-2) Regulates Neuronal Density and IGF-2 Distribution Following Hippocampal Intracerebral Hemorrhage. J. Stroke Cerebrovasc. Dis. 2020, 29, 105128. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Xu, Y.; Liu, Z.; Wang, Y.; Xu, X.; Li, C.; Li, S.; Zhang, J.; Xiong, T.; Cao, W.; et al. IGF2 Inhibits Hippocampal Over-Activated Microglia and Alleviates Depression-like Behavior in LPS- Treated Male Mice. Brain Res. Bull. 2023, 194, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shay, T.; Jojic, V.; Zuk, O.; Rothamel, K.; Puyraimond-Zemmour, D.; Feng, T.; Wakamatsu, E.; Benoist, C.; Koller, D.; Regev, A. Conservation and Divergence in the Transcriptional Programs of the Human and Mouse Immune Systems. Proc. Natl. Acad. Sci. USA 2013, 110, 2946–2951. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Paulo, D.; Bento Torres Neto, J.; Filho, C.S.; de Oliveira, T.C.G.; de Sousa, A.A.; dos Reis, R.R.; dos Santos, Z.A.; de Lima, C.M.; de Oliveira, M.A.; Said, N.M.; et al. Microglial Morphology Scross Distantly Related Species: Phylogenetic, Environmental and Age Influences on Microglia Reactivity and Surveillance States. Front. Immunol. 2021, 12, 683026. [Google Scholar] [CrossRef]
Expression of Cytokines by Microglia | Expression of Cytokine Receptors by Neurons | Expression by Murine Cells (FPKM) | Expression by Human Cells (FPKM) |
---|---|---|---|
Oncostatin M (OSM) | 209.9 | 3.2 | |
OSMRß | 0.2 | 0.78 | |
LIFRß | 5.1 | 6.5 | |
gp130α | 8.2 | 18.6 | |
Leukemia inhibitory factor (LIF) | 2.3 | 0.1 | |
LIFRß | 5.1 | 6.5 | |
gp130α | 8.2 | 18.6 | |
Inhibin ßA (INHBA) | 0.1 | 17.7 | |
ACVR1A | 9.5 | 3.5 | |
ACVR2A | 12.0 | 5.3 | |
ACVR1B | 17.5 | 6.0 | |
ACVR2B | 3.6 | 1.6 | |
Colony-stimulating factor (CSF)-1 | 198.4 | 9.5 | |
CSF1R | 1.9 | 0.5 | |
Interleukin (IL)-34 | 1.3 | 0.1 | |
CSF1R | 1.9 | 0.5 | |
Syndecan-1 | 5.2 | 0.1 | |
PTP-ζ | 45.5 | 20.5 | |
Growth/differentiation factor (GDF)-15 | 782.9 | 0.1 | |
GFRAL | 0.1 | 0.1 | |
RET | 1.0 | 1.0 | |
Fibroblast growth factor (FGF)-2 | 0.1 | 0.7 | |
FGFR1 | 7.4 | 1.0 | |
FGFR2 | 2.7 | 6.6 | |
FGFR3 | 9.5 | 0.1 | |
FGFR4 | 0.2 | 0.1 | |
Insulin-like growth factor (IGF)-2 | 2.0 | 0.1 | |
IGF1R | 6.8 | 1.8 | |
IGF2R | 2.0 | 1.6 | |
INSR | 8.6 | 3.5 |
Cytokine | Expression by Microglia | Modulators of Microglial Expression | Expression of Corresponding Receptors by Neuronal Targets | Disease Models Studied | Neurotrophic Effects Observed In Vitro (Conditions) | Neurotrophic Effects Observed In Vivo (Disease Model) |
---|---|---|---|---|---|---|
Oncostatin M (OSM) | Murine (in vitro, in vivo) Human (in vitro, in vivo) | PGE2 HIV GM-CSF LPS PMA | Murine (in vitro, in vivo) Human (in vitro) | SCI MS Excitotoxic injury Nutrient deprivation MCAO | Murine: Increased survival (excitotoxic injury) Rescue after insult (excitotoxic injury) Neurite outgrowth (nutrient deprivation) | Murine: Increased survival (SCI) Attenuation of neurodegeneration (MS) Rescue after insult (MCAO) Neurite outgrowth (SCI) |
Leukemia inhibitory factor (LIF) | Murine (in vitro) Human (in vitro) | ATP Borrelia burgdorferi | Murine (in vitro, in vivo) Human (in vitro) | Hypoxia Oxidative stress TBI Axotomy | Murine: Increased survival (embryonic cells) Human: Neuronal differentiation (Stem cells) Neurite outgrowth (physiological conditions) Increased survival (physiological conditions) Increased survival (oxidative stress) Increased survival (hypoxia) Increased survival (TNF) | Murine: Rescue after insult (axotomy) Neurite outgrowth (TBI) |
Activin A/INHBA | Murine (in vitro, in vivo) Human (in vitro, in vivo) | TLR2 agonists LPS and other TLR4 agonists TLR9 agonists | Murine (in vitro, in vivo) Human (in vitro) | Nutrient deprivation PD Excitotoxicity HD Oxidative stress | Murine: Increased survival (nutrient deprivation) Human: Rescue after insult (nutrient deprivation) Rescue after insult (PD model) Rescue after insult (oxidative stress) | Murine: Increased survival (PD) Attenuation of neurodegeneration (excitotoxicity) Increased proliferation (physiological conditions) Differentiation (physiological conditions) Attenuation of neurodegeneration (HD) |
Colony-stimulating factor (CSF-1) | Murine (in vitro, in vivo) Human (in vitro) | Glycated albumin Ethanol | Murine (in vitro, in vivo) Human (in vitro) | Ischemia | Murine: Increased survival (physiological conditions) Increased proliferation (physiological conditions) Neurite outgrowth (physiological conditions) | Murine: Increased survival (ischemia) |
Interleukin (IL)-34 | Murine (in vitro, in vivo) Human (in vivo) | N/A | Murine (in vitro, in vivo) Human (in vitro, in vivo) | Excitotoxicity Osteopetrosis | Murine: Increased survival (excitotoxicity) Neuronal differentiation (physiological conditions) | Murine: Increased survival (excitotoxicity) Increased survival (osteopetrosis) Increased differentiation (osteopetrosis) |
Growth/differentiation factor (GDF)-15 | Murine (in vitro, in vivo) Human (in vitro) | Saturated fatty acids Cryogenic stimulation MCAO | Murine (in vivo) Human (in vivo) | Hypokalemia Iron intoxication PD AD | Murine: Increased survival (hypokalemia) Rescue after insult (iron intoxication) Human: Rescue after insult (AD model) Rescue after insult (PD model) | Murine: Increased survival (PD) |
Fibroblast growth factor (FGF)-2 | Murine (in vitro, in vivo) Human (in vivo) | Hypoxia | Murine (in vitro, in vivo) Human (in vivo) | Nutrient deprivation Axotomy TBI AD PD Oxidative stress Light-induced retinal damage | Murine: Increased survival (nutrient deprivation) Rescue after insult (Ethanol-induced stress) Human: Increased survival (PD model) Increased survival (oxidative stress) | Murine: Rescue after insult (axotomy) Increased survival (TBI) Increased survival (AD) Neuroprotection (light-induced retinal damage) |
Insulin growth factor (IGF)-2 | Murine (in vitro, in vivo) Human (in vitro) | IFN-γ | Murine (in vitro, in vivo) Human (in vitro, in vivo) | Oxygen-glucose deprivation Synaptic dysfunction Steroid toxicity AD ICH Excitotoxicity Inflammation | Murine: Increased survival (oxygen-glucose deprivation) Neurite outgrowth (synaptic dysfunction) Increased survival (steroid toxicity) Human: Neurite outgrowth (physiological conditions) Rescue after insult (astrocyte-mediated toxicity) Rescue after insult (excitotoxicity) Rescue (inflammation) | Murine: Neurite outgrowth (AD) Increased proliferation (ICH) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiens, K.R.; Wasti, N.; Ulloa, O.O.; Klegeris, A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024, 29, 5525. https://doi.org/10.3390/molecules29235525
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules. 2024; 29(23):5525. https://doi.org/10.3390/molecules29235525
Chicago/Turabian StyleWiens, Kennedy R., Naved Wasti, Omar Orlando Ulloa, and Andis Klegeris. 2024. "Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues" Molecules 29, no. 23: 5525. https://doi.org/10.3390/molecules29235525
APA StyleWiens, K. R., Wasti, N., Ulloa, O. O., & Klegeris, A. (2024). Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules, 29(23), 5525. https://doi.org/10.3390/molecules29235525