Comparative Efficacy of Botryocladia leptopoda Extracts in Scar Inhibition and Skin Regeneration: A Study on UV Protection, Collagen Synthesis, and Fibroblast Proliferation
Abstract
:1. Introduction
2. Results
2.1. Potential Skin Care Compounds in B. leptopoda Extracts
Proportion (%) | Compound | Potential Skin Care Related Function |
---|---|---|
FE extraction | ||
5.96 | 4-Hydroxyquinoline | Antioxidant [15,16] |
3.97 | Phytosphingosine | Skin protection [11] |
1.44 | 1-Methylindole-3-carboxamide | Improve skin barrier [17] |
1.26 | Docosapentaenoic acid (DPA) | Anti-inflammatory [18] |
1.25 | Indole-5-carboxylic acid ethyl ester | Immune regulation [12] |
AE extraction | ||
9.39 | 4-Hydroxyquinoline | Antioxidant [15,16] |
5.62 | Phenylalanine betaine | Anti-melanogenic properties [9] |
2.95 | Indole-5-carboxylic acid ethyl ester | Immune regulation [12] |
1.55 | γ-Aminobutyric acid | Skin repair [13] |
1.25 | 1-Methylindole-3-carboxamide | Improve skin barrier [17] |
2.2. Comparative Analysis of UV Protection, Collagen Synthesis, and Melanin Inhibition Between FE and AE Extracts of B. leptopoda
2.3. Targeted Modulation of Cell Cycle Regulatory Proteins by B. leptopoda Extracts
2.4. Comparison of B. leptopoda Extracts in Inhibiting Hypertrophic Scar Contraction
2.5. B. leptopoda Extracts Inhibit TGF-β1-Induced Fibrosis and Collagen Synthesis in Hypertrophic Scar Fibroblasts
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of Bioactive Compounds from B. leptopoda
3.3. Component Identification of B. leptopoda Extracts
3.4. Absorption Spectrum Analysis
3.5. Photodamage Recovery Assay
3.6. Inhibition Assay for Hypertrophic Fibroblasts
3.7. Contraction Assay
3.8. Extracellular Matrix Proliferation Assay for Hypertrophic Fibroblasts
3.9. Statistical Methodology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A. Exploring Marine-Derived Bioactives for Innovative Cosmeceutical Applications: A review. J. Nat. Appl. Sci. 2024, 16, 478–494. [Google Scholar] [CrossRef]
- Reza, A.H.M.M.; Zhu, X.; Qin, J.; Tang, Y. Microalgae-Derived Health Supplements to Therapeutic Shifts: Redox-Based Study Opportunities with AIE-Based Technologies. Adv. Healthc. Mater. 2021, 10, 2101223. [Google Scholar] [CrossRef] [PubMed]
- Suparmaniam, U.; Lam, M.K.; Lim, J.W.; Tan, I.S.; Chin, B.L.F.; Shuit, S.H.; Lim, S.; Pan, Y.L.; Kiew, P.L. Abiotic Stress as A Dynamic Strategy for Enhancing High Value Phytochemicals in Microalgae: Critical Insights, Challenges and Future Prospects. Biotechnol. Adv. 2023, 70, 108280. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jia, J. Photoprotection Mechanisms of Nannochloropsis Oceanica in Response to Light Stress. Algal Res. 2023, 46, 101784. [Google Scholar] [CrossRef]
- Pradhan, B.; Nayak, R.; Patra, S.; Jit, B.P.; Ragusa, A.; Jena, M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores Against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2020, 26, 37. [Google Scholar] [CrossRef] [PubMed]
- Majid, A.; Hassan, F.O.; Hoque, M.M.; Gbadegoye, J.O.; Lebeche, D. Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect. J. Cardiovasc. Dev. Dis. 2023, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- El-Baz, F.K.; Salama, A.; Salama, R.A.A. Therapeutic Effect of Dunaliella salina Microalgae on Thioacetamide-(TAA-) Induced Hepatic Liver Fibrosis in Rats: Role of TGF-β and MMP9. Biomed Res. Int. 2019, 1, 7028314. [Google Scholar] [CrossRef]
- Xu, S.; Mao, Y.; Wu, J.; Feng, J.; Li, J.; Wu, L.; Yu, Q.; Zhou, Y.; Zhang, J.; Chen, J.; et al. TGF-β/ Smad and JAK/STAT Pathways are Involved in the Anti-Fibrotic Effects of Propylene Glycol Alginate Sodium Sulphate on Hepatic Fibrosis. J. Cell Mol. Med. 2020, 24, 5224–5237. [Google Scholar] [CrossRef]
- Cho, B.R.; Jun, H.J.; Thach, T.T.; Wu, C.; Lee, S.J. Betaine Reduces Cellular Melanin Content via Suppression of Microphthalmia-Associated Transcription Factor in B16-F1 Murine Melanocytes. Food Sci. Biotechnol. 2017, 26, 1391–1397. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wang, Y.; He, X.; Wang, J.; Cai, W.; Jia, Y.; Xiao, D.; Zhang, J.; Zhao, M.; et al. Overexpression of miR-101 Suppresses Collagen Synthesis by Targeting EZH2 in Hypertrophic Scar Fibroblasts. IJBT 2021, 9, tkab038. [Google Scholar] [CrossRef]
- Choi, H.K.; Cho, Y.H.; Lee, E.O.; Kim, J.W.; Park, C.S. Phytosphingosine Enhances Moisture Level in Human Skin Barrier Through Stimulation of the Filaggrin Biosynthesis and Degradation Leading to NMF Formation. Arch. Dermatol. Res. 2017, 309, 795–803. [Google Scholar] [CrossRef]
- Drews, A.; Bovens, S.; Roebrock, K.; Sunderkötter, C.; Reinhardt, D.; Schäfers, M.; van der Velde, A.; Schulze, E.A.; Fabian, J.; Lehr, M. 1-(5-Carboxyindol-1-yl) propan-2-one Inhibitors of Human Cytosolic Phospholipase A2A with Reduced Lipophilicity: Synthesis, Biological Activity, Metabolic Stability, Solubility, Bioavailability, and Topical in Vivo Activity. J. Med. Chem. 2010, 53, 5165–5178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Park, B.; Kim, M.J.; Hwang, S.H.; Kim, T.J.; Kim, S.U.; Kwon, I.; Hwang, J.S. The Effect of γ-aminobutyric Acid Intake on UVB-Induced Skin Damage in Hairless Mice. Biomol. Ther. 2023, 31, 640. [Google Scholar] [CrossRef] [PubMed]
- Muhamad, I.I.; Hassan, N.D.; Mamat, S.N.H.; Nawi, N.M.; Rashid, W.A.; Tan, N.A.H. Extraction Technologies and Solvents of Phytocompounds from Plant Materials: Physicochemical Characterization and Identification of Ingredients and Bioactive Compounds from Plant Extract Using Various Instrumentations. In Ingredients Extraction by Physicochemical Methods in Food; Academic Press: Cambridge, MA, USA, 2017; Volume 10, pp. 523–560. [Google Scholar] [CrossRef]
- Kullavanijaya, P.; Lim, H.W. Photoprotection. J. Am. Acad. Dermatol. 2005, 52, 937–958. [Google Scholar] [CrossRef] [PubMed]
- Merino, M.; González, S.; Clares, M.P.; García-España, E.; Mullor, J.L. A Mn (II) Quinoline Complex (4QMn) Mitigates Oxidative Damage Induced by Ultraviolet Radiation and Protein Aggregation. Cosmetics 2024, 11, 95. [Google Scholar] [CrossRef]
- Rikken, G.; van den Brink, N.J.M.; van Vlijmen-Willems, I.M.J.J.; van Erp, P.E.J.; Pettersson, L.; Smits, J.P.H.; van den Bogaard, E.H. Carboxamide Derivatives Are Potential Therapeutic AHR Ligands for Restoring IL-4 Mediated Repression of Epidermal Differentiation Proteins. Int. J. Mol. Sci. 2022, 23, 1773. [Google Scholar] [CrossRef]
- Lii, C.K.; Chang, J.W.; Chen, J.J.; Chen, H.W.; Liu, K.L.; Yeh, S.L.; Wang, T.S.; Liu, S.H.; Tsai, C.H.; Li, C.C. Docosahexaenoic Acid Inhibits 12-O-Tetradecanoylphorbol-13-Acetate-Induced Fascin-1-Dependent Breast Cancer Cell Migration by Suppressing the PKCδ-and Wnt-1/β-catenin-Mediated Pathways. Oncotarget 2016, 7, 25162. [Google Scholar] [CrossRef]
- Biernacki, M.; Conde, T.; Stasiewicz, A.; Surażyński, A.; Domingues, M.R.; Domingues, P.; Skrzydlewska, E. Restorative Effect of Microalgae Nannochloropsis oceanica Lipid Extract on Phospholipid Metabolism in Keratinocytes Exposed to UVB Radiation. Int. J. Mol. Sci. 2023, 24, 14323. [Google Scholar] [CrossRef]
- Song, J.; Li, H.; Zhang, Y.; Wang, T.; Dong, Y.; Shui, H.; Du, J. Effect of Dunaliella salina on Myocardial Ischemia-Reperfusion Injury Through KEAP1/NRF2 Pathway Activation and JAK2/STAT3 Pathway Inhibition. Gene Protein Dis. 2023, 2, 387. [Google Scholar] [CrossRef]
- Ismaiel, M.M.S.; Piercey-Normore, M.D. Cooperative Antioxidative Defense of The Blue-Green Alga Arthrospira (Spirulina) Platensis Under Oxidative Stress Imposed by Exogenous Application of Hydrogen Peroxide. Environ Pollut. 2024, 341, 123002. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, E.J.; Cheng, Y.; Shin, M.H.; Oh, J.H.; Lee, D.H.; Chung, J.H. Inhibition of DNA Methylation in The COL1A2 Promoter by Anacardic Acid Prevents UV-Induced Decrease of Type I Procollagen Expression. J. Invest. Dermatol. 2017, 137, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.B.; An, S.; Kim, M.J.; Kim, K.R.; Choi, Y.M.; Ahn, K.J.; An, I.S.; Cha, H.J. Phytosphingosine-1-phosphate and epidermal growth factor synergistically restore extracellular matrix in human dermal fibroblasts in vitro and in vivo. Int. J. Mol. Med. 2017, 39, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, M.S.; Tayarani-Najaran, Z.; Kabiri, H.; Nasirizadeh, S.; Golmohammadzadeh, S.; Kamali, H. Preparation and characterization of Undecylenoyl Phenylalanine Loaded-Nanostructure Lipid Carriers (Nlcs) As A New A-MSH Antagonist and Antityrosinase Agent. Adv. Pharm. Bull. 2023, 13, 290. [Google Scholar] [CrossRef] [PubMed]
- Takaya, K.; Aramaki-Hattori, N.; Sakai, S.; Okabe, K.; Asou, T.; Kishi, K. Fibroblast growth Factor 7 Suppresses Fibrosis and Promotes Epithelialization During Wound Healing in Mouse Fetuses. Int. J. Mol. Sci. 2022, 23, 7087. [Google Scholar] [CrossRef]
- Dumitru, A.M.G.; Compton, D.A. Identifying Cyclin A/Cdk1 Substrates in Mitosis in Human Cells. Mitosis: Meth. Protocol. 2022, 2415, 175–182. [Google Scholar] [CrossRef]
- Tsai, C.L.; Changchien, C.Y.; Chen, Y.; Chang, H.H.; Tsai, W.C.; Wang, Y.W.; Chou, K.C.; Chiang, M.H.; Tsai, Y.L.; Tsai, H.C.; et al. Accelerated Wound Healing and Keratinocyte Proliferation Through PI3K/Akt/pS6 and VEGFR2 Signaling by Topical Use of Pleural Fluid. Cells 2022, 11, 817. [Google Scholar] [CrossRef]
- Paramanya, A.; Farah, M.; Alanazi, K.; Devkota, H.; Ali, A. Exploring the Potential of Spirulina (Arthrospira platensis) Aqueous Extract in Preventing Glycation of Hemoglobin and pBR322 Plasmid. Pharmacogn. Mag. 2023, 19, 581–591. [Google Scholar] [CrossRef]
- Ajayi, E.I.; Oladele, J.O.; Nkumah, A.O. Application of Algae in Wound Healing. Next-Gener. Algae 2023, 2, 251–284. [Google Scholar] [CrossRef]
- Kim, B.H.; Lee, J.M.; Jung, Y.G.; Kim, S.; Kim, T.Y. Phytosphingosine Derivatives Ameliorate Skin Inflammation by Inhibiting NF-κB and JAK/STAT Signaling in Keratincoytes and Mice. J. Investig. Dermatol. 2014, 134, 1023–1032. [Google Scholar] [CrossRef]
- Arumugam, M.K.; Chava, S.; Perumal, S.K.; Paal, M.C.; Rasineni, K.; Ganesan, M.; Donohue, T.M., Jr.; Osna, N.A.; Kharbanda, K.K. Acute Ethanol-Induced Liver Injury is Prevented by Betaine Administration. Front. Physiol. 2022, 13, 940148. [Google Scholar] [CrossRef]
- Gutiérrez-Castañeda, N.E.; González-Corona, J.; Griego, E.; Galván, E.J.; Ochoa-de la Paz, L.D. Taurine Promotes Differentiation and Maturation of Neural Stem/Progenitor Cells from the Subventricular Zone via Activation of GABAA Receptors. Neurochem. Res. 2023, 48, 2206–2219. [Google Scholar] [CrossRef] [PubMed]
- Cezar, T.L.C.; Martinez, R.M.; Rocha, C.D.; Melo, C.P.B.; Vale, D.L.; Borghi, S.M.; Fattori, V.; Vignoli, J.A.; Camilios-Neto, D.; Baracat, M.M.; et al. Treatment with Maresin 1, a Docosahexaenoic Acid-Derived Pro-Resolution Lipid, Protects Skin from Inflammation and Oxidative Stress Caused by UVB Irradiation. Sci. Rep. 2019, 9, 3062. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Li, X.H.; Zhang, J.Y.; Lee, K.H. Biology of Quinoline and Quinazoline Alkaloids. Alkaloids Chem. Biol. 2022, 88, 1–47. [Google Scholar] [CrossRef]
- Ding, H.; Chen, J.; Qin, J.; Chen, R.; Yi, Z. TGF-β-Induced α-SMA Expression is Mediated by C/EBPβ Acetylation in Human Alveolar Epithelial Cells. Mol. Med. 2021, 27, 22. [Google Scholar] [CrossRef]
- Pan, Y.; You, B.; Zhao, X.; Li, W. MicroRNA-30a Depresses Hepatic Stellate Cell Activation Against Liver Fibrosis Through Blockade of the TGF-β1/Smad2/3 Pathway. Biotechnol. Genet. Eng. Rev. 2023, 40, 2036–2050. [Google Scholar] [CrossRef]
- Raote, I.; Rosendahl, A.H.; Häkkinen, H.M.; Vibe, C.; Küçükaylak, I.; Sawant, M.; Keufgens, L.; Frommelt, P.; Halwas, K.; Broadbent, K.; et al. TANGO1 Inhibitors Reduce Collagen Secretion and Limit Tissue Scarring. Nat. Commun. 2024, 15, 3302. [Google Scholar] [CrossRef]
- Zhang, J.X.; Ran, Z.; Xie, H.X.; Kong, F.; Zhang, M.Q.; Zhou, Y.; Li, Y.R.; Liao, K.; Yan, X.; Xu, J.L. A Systematic Analysis and Evaluation of Nutritional Composition of 23 Strains of Marine Microalgae Commonly Used in Aquaculture. Algal Res. 2023, 72, 103122. [Google Scholar] [CrossRef]
- Sharma, T.; Tyagi, V.; Bansal, M. Determination of Sun Protection Factor of Vegetable and Fruit Extracts Using UV–Visible Spectroscopy: A Green Approach. Sustain. Chem. Pharm. 2020, 18, 100347. [Google Scholar] [CrossRef]
- Lu, J.J.; Cheng, M.C.; Khumsupan, D.; Hsieh, C.C.; Hsieh, C.W.; Cheng, K.C. Evaluation of Fermented Turmeric Milk by Lactic Acid Bacteria to Prevent UV-Induced Oxidative Stress in Human Fibroblast Cells. Ferment 2023, 9, 230. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Hou, C.Y.; Lei, H.Y.; Khumsupan, D.; Chai, H.J.; Lim, P.K.; Hsu, C.C.; Wu, S.J.; Cheng, K.W.; Chen, Y.C.; et al. Aromatic Compounds and Organic Acids Identified from Ganoderma formosanum Exhibit Synergistic Anti-Melanogenic Effects. J. Food Drug Anal. 2024, 27, 4. [Google Scholar]
- Keisari, Y. A colorimetric Microtiter Assay for the Quantitation of Cytokine Activity on Adherent Cells in Tissue Culture. J. Immunol. Methods 1992, 146, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kong, H.K.; Kim, Y.S.; Lee, Y.S.; Park, J.H. Inhibition of S-adenosylhomocysteine Hydrolase Decreases Cell Mobility and Cell Proliferation Through Cell Cycle Arrest. American J. Cancer Res. 2015, 5, 2127–2138. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4548325/ (accessed on 22 July 2023).
- Carroll, L.A.; Hanasono, M.M.; Mikulec, A.A.; Kita, M.; Koch, R.J. Triamcinolone Stimulates bFGF Production and Inhibits TGF-β1 Production by Human Dermal Fibroblasts. Dermatol. Surg. 2022, 28, 8. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Z.; Li, Y.; He, J.; Wu, X. Shikonin reduces TGF-β1-induced collagen production and contraction in hypertrophic scar-derived human skin fibroblasts. Int. J. Mol. Med. 2015, 36, 985. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, C.-C.; Yi, T.-K.; Kao, Y.-F.; Lin, S.-P.; Tu, M.-C.; Chou, Y.-C.; Lu, J.-J.; Chai, H.-J.; Cheng, K.-C. Comparative Efficacy of Botryocladia leptopoda Extracts in Scar Inhibition and Skin Regeneration: A Study on UV Protection, Collagen Synthesis, and Fibroblast Proliferation. Molecules 2024, 29, 5688. https://doi.org/10.3390/molecules29235688
Hsieh C-C, Yi T-K, Kao Y-F, Lin S-P, Tu M-C, Chou Y-C, Lu J-J, Chai H-J, Cheng K-C. Comparative Efficacy of Botryocladia leptopoda Extracts in Scar Inhibition and Skin Regeneration: A Study on UV Protection, Collagen Synthesis, and Fibroblast Proliferation. Molecules. 2024; 29(23):5688. https://doi.org/10.3390/molecules29235688
Chicago/Turabian StyleHsieh, Chen-Che, Tsung-Kai Yi, Yi-Feng Kao, Shin-Ping Lin, Ming-Chieh Tu, Yu-Chieh Chou, Jheng-Jhe Lu, Huey-Jine Chai, and Kuan-Chen Cheng. 2024. "Comparative Efficacy of Botryocladia leptopoda Extracts in Scar Inhibition and Skin Regeneration: A Study on UV Protection, Collagen Synthesis, and Fibroblast Proliferation" Molecules 29, no. 23: 5688. https://doi.org/10.3390/molecules29235688
APA StyleHsieh, C.-C., Yi, T.-K., Kao, Y.-F., Lin, S.-P., Tu, M.-C., Chou, Y.-C., Lu, J.-J., Chai, H.-J., & Cheng, K.-C. (2024). Comparative Efficacy of Botryocladia leptopoda Extracts in Scar Inhibition and Skin Regeneration: A Study on UV Protection, Collagen Synthesis, and Fibroblast Proliferation. Molecules, 29(23), 5688. https://doi.org/10.3390/molecules29235688