Structure Revision of Formyl Phloroglucinol Meroterpenoids: A Unified Approach Using NMR Fingerprinting and DFT NMR and ECD Analyses
Abstract
:1. Introduction
2. Results
2.1. Formyl Phloroglucinol NMR Fingerprinting and PCA Analysis
2.2. Reanalysis of One- and Two-Dimensional NMR Data Reported for Eucalyprobusal C and Eucalypcamal K
2.3. GIAO DFT NMR Chemical Shift Analyses for 1a, 1b, 2a, and 2b with Experimental NMR Data for Eucalyprobusal C and Eucalypcamal K
2.4. TDDFT ECD Comparison of Revised FPC Structures (1b and 2b) with Experimental ECD Data Reported for Eucalyprobusal C and Eucalypcamal K
3. Discussion
4. Materials and Methods
4.1. NMR Fingerprint Visualization, Statistical, and Principal Component Analyses
4.2. Computational Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Idelbayev, Y.; Roberts, N.; Tao, Y.; Nannapaneni, Y.; Duggan, B.M.; Min, J.; Lin, E.C.; Gerwick, E.C.; Cottrell, G.W.; et al. Small Molecule Accurate Recognition Technology (SMART) to Enhance Natural Products Research. Sci. Rep. 2017, 7, 14243. [Google Scholar] [CrossRef]
- Guan, Y.; Shree Sowndarya, S.V.; Gallegos, L.C.; St. John, P.C.; Paton, R.S. Real-time prediction of 1H and 13C chemical shifts with DFT accuracy using a 3D graph neural network. Chem. Sci. 2021, 12, 12012–12026. [Google Scholar] [CrossRef]
- Robien, W. Computer-Assisted Peer Reviewing of Spectral Data: The CSEARCH Protocol. Monatsh. Chem. 2019, 150, 927–932. [Google Scholar] [CrossRef]
- Kleks, G.; Holland, D.C.; Porter, J.; Carroll, A.R. Natural Products Dereplication by Diffusion Ordered NMR Spectroscopy (DOSY). Chem. Sci. 2021, 12, 10930–10943. [Google Scholar] [CrossRef]
- Chhetri, B.K.; Lavoie, S.; Sweeney-Jones, A.M.; Kubanek, J. Recent Trends in the Structural Revision of Natural Products. Nat. Prod. Rep. 2018, 35, 514–531. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.M.; Appendino, G.; Guo, Y.W. Pitfalls in the Structural Elucidation of Small Molecules. A Critical Analysis of a Decade of Structural Misassignments of Marine Natural Products. Nat. Prod. Rep. 2022, 39, 1803–1832. [Google Scholar] [CrossRef]
- Baxter, J.R.; Holland, D.C.; Gavranich, B.; Nicolle, D.; Hayton, J.B.; Avery, V.M.; Carroll, A.R. NMR Fingerprints of Formyl Phloroglucinol Meroterpenoids and Their Application to the Investigation of Eucalyptus gittinsii subsp. gittinsii. J. Nat. Prod. 2023, 86, 1317–1334. [Google Scholar] [CrossRef]
- Holland, D.C.; Kiefel, M.J.; Carroll, A.R. Structure Revisions of the Sponge-Derived Dibrominated Bis-Indole Alkaloids, Echinosulfone A and the Echinosulfonic Acids A to D. J. Org. Chem. 2020, 85, 3490–3496. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.P.; Moodie, L.W.K.; Holland, D.C.; Jandér, K.C.; Göransson, U. Sulfadiazine Masquerading as a Natural Product from Scilla Madeirensis (Scilloideae). J. Nat. Prod. 2020, 83, 1305–1308. [Google Scholar] [CrossRef]
- Carroll, A.R. Structure Revision of Pilidiostigmin from the Leaves of Pilidiostigma Glabrum. Tetrahedron Lett. 2016, 57, 281–284. [Google Scholar] [CrossRef]
- Prebble, D.W.; Holland, D.C.; Ferretti, F.; Hayton, J.B.; Avery, V.M.; Mellick, G.D.; Carroll, A.R. α-Synuclein Aggregation Inhibitory and Antiplasmodial Activity of Constituents from the Australian Tree Eucalyptus Cloeziana. J. Nat. Prod. 2023, 86, 2171–2184. [Google Scholar] [CrossRef]
- Senadeera, S.P.D.; Duffy, S.; Avery, V.M.; Carroll, A.R. Antiplasmodial β-Triketones from the Flowers of the Australian Tree Angophora Woodsiana. Bioorg. Med. Chem. Lett. 2017, 27, 2602–2607. [Google Scholar] [CrossRef]
- Senadeera, S.P.D.; Lucantoni, L.; Duffy, S.; Avery, V.M.; Carroll, A.R. Antiplasmodial β-Triketone-Flavanone Hybrids from the Flowers of the Australian Tree Corymbia Torelliana. J. Nat. Prod. 2018, 81, 1588–1597. [Google Scholar] [CrossRef]
- Senadeera, S.P.D.; Robertson, L.P.; Duffy, S.; Wang, Y.; Avery, V.M.; Carroll, A.R. β-Triketone-Monoterpene Hybrids from the Flowers of the Australian Tree Corymbia Intermedia. J. Nat. Prod. 2018, 81, 2455–2461. [Google Scholar] [CrossRef]
- Carroll, A.R.; Urban, S.; Lamb, J.; Moni, R.; Guymer, G.P.; Forster, P.I.; Quinn, R.J. Corymbones A and B, Phloroglucinols with Thyrotropin Releasing Hormone Receptor 2 Binding Affinity from the Flowers of Corymbia Peltata. J. Nat. Prod. 2008, 71, 881–883. [Google Scholar] [CrossRef]
- Carroll, A.R.; Avery, V.M.; Duffy, S.; Forster, P.I.; Guymer, G.P. Watsonianone A-C, Anti-Plasmodial β-Triketones from the Australian Tree, Corymbia Watsoniana. Org. Biomol. Chem. 2013, 11, 453–458. [Google Scholar] [CrossRef]
- Carroll, A.R.; Lamb, J.; Moni, R.; Guymer, G.P.; Forster, P.I.; Quinn, R.J. Myrtucommulones F-I, Phloroglucinols with Thyrotropin-Releasing Hormone Receptor-2 Binding Affinity from the Seeds of Corymbia Scabrida. J. Nat. Prod. 2008, 71, 1564–1568. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.D.; Johnson, L.A.S. Sytematic Studies in the Eucalypts 7. A Revision of the Bloodwoods, Genus Corymbia (Mytraceae). Telopea 1995, 6, 185–504. [Google Scholar] [CrossRef]
- Brooker, M.I.H. A New Classification of the Genus Eucalyptus L’Her. (Myrtaceae). Aust. Syst. Bot. 2000, 13, 79–148. [Google Scholar] [CrossRef]
- Phang, Y.L.; Liu, S.; Zheng, C.; Xu, H. Recent Advances in the Synthesis of Natural Products Containing the Phloroglucinol Motif. Nat. Prod. Rep. 2022, 39, 1766–1802. [Google Scholar] [CrossRef] [PubMed]
- Yamakoshi, Y.; Murata, M.; Shimizu, A.; Homma, S. Isolation and Characterization of Macrocarpals B-G Antibacterial Compounds from Eucalyptus macrocarpa. Biosci. Biotechnol. Biochem. 1992, 56, 1570–1576. [Google Scholar] [CrossRef]
- Osawa, K.; Yasuda, H.; Morita, H.; Takeya, K.; Itokawa, H. Macrocarpals H, I, and J from the Leaves of Eucalyptus globulus. J. Nat. Prod. 1996, 59, 823–827. Available online: https://pubs.acs.org/sharingguidelines (accessed on 14 January 2021). [CrossRef]
- Cobas, C. NMR Signal Processing, Prediction, and Structure Verification with Machine Learning Techniques. Magn. Reson. Chem. 2020, 58, 512–519. [Google Scholar] [CrossRef]
- Elyashberg, M.; Argyropoulos, D. Computer Assisted Structure Elucidation (CASE): Current and Future Perspectives. Magn. Reson. Chem. 2021, 59, 669–690. [Google Scholar] [CrossRef]
- Lodewyk, M.W.; Siebert, M.R.; Tantillo, D.J. Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 2012, 112, 1839–1862. [Google Scholar] [CrossRef]
- Hiranrat, A.; Holland, D.C.; Mahabusarakam, W.; Hooper, J.N.A.; Avery, V.M.; Carroll, A.R. Tedaniophorbasins A and B—Novel Fluorescent Pteridine Alkaloids Incorporating a Thiomorpholine from the Sponge Tedaniophorbas ceratosis. Mar. Drugs 2021, 19, 95. [Google Scholar] [CrossRef]
- Sarotti, A.M. Successful Combination of Computationally Inexpensive GIAO 13C NMR Calculations and Artificial Neural Network Pattern Recognition: A New Strategy for Simple and Rapid Detection of Structural Misassignments. Org. Biomol. Chem. 2013, 11, 4847–4859. [Google Scholar] [CrossRef]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds Using Quantum Chemical Calculations of NMR Shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef] [PubMed]
- Grimblat, N.; Gavín, J.A.; Hernández Daranas, A.; Sarotti, A.M. Combining the Power of J Coupling and DP4 Analysis on Stereochemical Assignments: The J-DP4 Methods. Org. Lett. 2019, 21, 4003–4007. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; He, X.Z.; Feng, M.Y.; Yuan-Zeng; Rauwolf, T.J.; Shao, L.D.; Ni, W.; Yan, H.; Porco, J.A.; Hao, X.J.; et al. Acylphloroglucinols with Acetylcholinesterase Inhibitory Effects from the Fruits of Eucalyptus robusta. Bioorg. Chem. 2020, 103, 104127. [Google Scholar] [CrossRef] [PubMed]
- Daus, M.; Wunnoo, S.; Voravuthikunchai, S.P.; Saithong, S.; Poldorn, P.; Jungsuttiwong, S.; Chomlamay, N.; Yangok, K.; Watanapokasin, R.; Chakthong, S. Phloroglucinol–Meroterpenoids from the Leaves of Eucalyptus camaldulensis Dehnh. Phytochemistry 2022, 200, 113179. [Google Scholar] [CrossRef]
- Daus, M.; Hayton, J.B.; Holland, D.C.; Voravuthikunchai, S.P.; Carroll, A.R.; Chakthong, S. Camaldulensals A-C, the First Meroterpenoids Possessing Two Spatially Separated Formyl Phloroglucinols Conjugated to a Terpene Core from the Leaves of Eucalyptus Camaldulensis Dehnh. J. Nat. Prod. 2023, 86, 1994–2005. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A. Structure Revision of Four Acylphloroglucinols Isolated from the Leaves of Syzygium Polyanthum. Planta Med. Lett. 2016, 3, e8–e9. [Google Scholar] [CrossRef]
- Carroll, A.R.; Duffy, S.; Sykes, M.; Avery, V.M. Wilsoniamines A and B: Novel Alkaloids from the Temperate Australian Bryozoan, Amathia Wilsoni. Org. Biomol. Chem. 2011, 9, 604–609. [Google Scholar] [CrossRef]
- Buchanan, M.S.; Carroll, A.R.; Quinn, R.J. Revised Structure of Palau’amine. Tetrahedron Lett. 2007, 48, 4573–4574. [Google Scholar] [CrossRef]
- Burns, D.C.; Reynolds, W.F. Minimizing the Risk of Deducing Wrong Natural Product Structures from NMR Data. Magn. Reson. Chem. 2021, 59, 500–533. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Product. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 (Revision C.01); Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Tomasi, J.; Mennucci, B.; Cancès, E. The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM Ab Initio Level. J. Mol. Struct. THEOCHEM 1999, 464, 211–226. [Google Scholar] [CrossRef]
- CHESHIRE Chemical Shift Repository. Available online: http://cheshirenmr.info/ScalingFactors.htm#table5dimethylsulfoxideheading (accessed on 14 January 2021).
- Pierens, G.K. 1H and 13C NMR Scaling Factors for the Calculation of Chemical Shifts in Commonly Used Solvents Using Density Functional Theory. J. Comput. Chem. 2014, 35, 1388–1394. [Google Scholar] [CrossRef]
- Bruhn, T.; Schaumloffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the Comparison of Calculated and Experimental Electronic Circular Dichroism Spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, P.H.; Jansma, M.J.; Hoye, T.R. A Guide to Small-Molecule Structure Assignment through Computation of (1H and 13C) NMR Chemical Shifts. Nat. Protoc. 2014, 9, 643–660. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holland, D.C.; Carroll, A.R. Structure Revision of Formyl Phloroglucinol Meroterpenoids: A Unified Approach Using NMR Fingerprinting and DFT NMR and ECD Analyses. Molecules 2024, 29, 594. https://doi.org/10.3390/molecules29030594
Holland DC, Carroll AR. Structure Revision of Formyl Phloroglucinol Meroterpenoids: A Unified Approach Using NMR Fingerprinting and DFT NMR and ECD Analyses. Molecules. 2024; 29(3):594. https://doi.org/10.3390/molecules29030594
Chicago/Turabian StyleHolland, Darren C., and Anthony R. Carroll. 2024. "Structure Revision of Formyl Phloroglucinol Meroterpenoids: A Unified Approach Using NMR Fingerprinting and DFT NMR and ECD Analyses" Molecules 29, no. 3: 594. https://doi.org/10.3390/molecules29030594
APA StyleHolland, D. C., & Carroll, A. R. (2024). Structure Revision of Formyl Phloroglucinol Meroterpenoids: A Unified Approach Using NMR Fingerprinting and DFT NMR and ECD Analyses. Molecules, 29(3), 594. https://doi.org/10.3390/molecules29030594