The Graphene Quantum Dots Gated Nanoplatform for Photothermal-Enhanced Synergetic Tumor Therapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of GQDs and af-GQDs
2.2. Characterizations of DOX/MCN-SS-GQDs
2.3. Photothermal Properties of MCN-SS-GQDs
2.4. Multiple-Responsive DOX Release
2.5. Safety Evaluation of MCN-SS-GQDs
2.6. Evaluation of Cellular Photothermal Effect
2.7. Cellular Uptake
2.8. Evaluation of Combined Treatment Effect
2.9. In Vitro Cytotoxicity Evaluation
3. Materials and Methods
3.1. Reagents
3.2. Preparation of af-GQDs
3.3. Preparation of DOX/MCN-SS-GQDs
3.4. Stimuli-Triggered Release Performance
3.5. In Vitro Evaluation of Photothermal Effect
3.6. Stability and Hemolysis Test of MCN-SS-GQDs
3.7. Cellular Photothermal Evaluation
3.8. Cellular Uptake
3.9. In vitro Cytotoxicity Study
3.10. Characterizations
3.11. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Q.; Yang, Y.; Lu, J.; Lin, Y.; Feng, S.; Luo, X.; Di, D.; Wang, S.; Zhao, Q. Recent trends of mesoporous silica-based nanoplatforms for nanodynamic therapies. Coord. Chem. Rev. 2022, 469, 214687. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, Z.; Di, Y.; Yang, S.; Ning, Y.; Mao, Y.; Gao, Y.; Zhao, Q.; Wang, S. Current advances in metal-organic frameworks for cancer nanodynamic therapies. Coord. Chem. Rev. 2023, 497, 215434. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Zhang, H.; Zhang, Y.; Xu, Q.; Lu, J.; Feng, S.; Luo, X.; Wang, S.; Zhao, Q. Smart polydopamine-based nanoplatforms for biomedical applications: State-of-art and further perspectives. Coord. Chem. Rev. 2023, 488, 215153. [Google Scholar] [CrossRef]
- Feng, S.; Lu, J.; Wang, K.; Di, D.; Shi, Z.; Zhao, Q.; Wang, S. Advances in smart mesoporous carbon nanoplatforms for photothermal–enhanced synergistic cancer therapy. Chem. Eng. J. 2022, 435, 134886. [Google Scholar] [CrossRef]
- Cao, Y.; Meng, X.; Wang, D.; Zhang, K.; Dai, W.; Dong, H.; Zhang, X. Intelligent MnO2/Cu2–x S for Multimode Imaging Diagnostic and Advanced Single-Laser Irradiated Photothermal/Photodynamic Therapy. ACS Appl. Mater. Interfaces 2018, 10, 17732–17741. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Sha, L.; Wang, D.; Shi, W.; Zhao, Q.; Wang, S. Thermosensitive Lipid Bilayer-Coated Mesoporous Carbon Nanoparticles for Synergistic Thermochemotherapy of Tumor. ACS Appl. Mater. Interfaces 2018, 10, 19386–19397. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yang, Y.; Xu, Q.; Lin, Y.; Feng, S.; Mao, Y.; Wang, D.; Wang, S.; Zhao, Q. Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coord. Chem. Rev. 2023, 474, 214861. [Google Scholar] [CrossRef]
- Cheng, H.; He, Y.; Lu, J.; Yan, Z.; Song, L.; Mao, Y.; Di, D.; Gao, Y.; Zhao, Q.; Wang, S. Degradable iron-rich mesoporous dopamine as a dual-glutathione depletion nanoplatform for photothermal-enhanced ferroptosis and chemodynamic therapy. J. Colloid Interface Sci. 2023, 639, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Liu, Y.; Jiang, X. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials 2014, 35, 5805–5813. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Cheng, L.; Lee, S.T.; Liu, Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J. Am. Chem. Soc. 2012, 134, 7414–7422. [Google Scholar] [CrossRef]
- Liang, C.; Diao, S.; Wang, C.; Gong, H.; Liu, T.; Hong, G.; Shi, X.; Dai, H.; Liu, Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 2014, 26, 5646–5652. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Wang, S.; Jiao, J.; Di, D.; Jiang, T.; Zhao, Q.; Wang, S. Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 594–603. [Google Scholar] [CrossRef]
- Lu, J.; Mao, Y.; Feng, S.; Li, X.; Gao, Y.; Zhao, Q.; Wang, S. Biomimetic smart mesoporous carbon nanozyme as a dual-GSH depletion agent and O2 generator for enhanced photodynamic therapy. Acta Biomater. 2022, 148, 310–322. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Y.; Yu, T.; Lu, J.; Sun, G.; Luo, X.; Wang, S. Tailored nanoplatforms with detachable ‘meteorolite’for photothermal-enhanced programmed tumor therapy. Carbon 2022, 199, 119–131. [Google Scholar] [CrossRef]
- Bo, T.; Chao, W.; Shuai, Z.; Liangzhu, F.; Zhuang, L. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 5, 7000–7009. [Google Scholar]
- Zhao, Q.; Yang, Y.; Wang, H.; Lei, W.; Liu, Y.; Wang, S. Gold nanoparticles modified hollow carbon system for dual-responsive release and chemo-photothermal synergistic therapy of tumor. J. Colloid Interface Sci. 2019, 554, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, D.; Yu, H.; Wang, M.; Liu, J.; Feng, B.; Zhou, F.; Yin, Q.; Zhang, Z.; Huang, Y. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano 2016, 10, 3496–3508. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Imran, M.; Iqbal, H.M.N. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord. Chem. Rev. 2023, 493, 215329. [Google Scholar] [CrossRef]
- Zhan, J.; Ma, Z.; Wang, D.; Li, X.; Li, X.; Le, L.; Kang, A.; Hu, P.; She, L.; Yang, F. Magnetic and pH dual-responsive mesoporous silica nanocomposites for effective and low-toxic photodynamic therapy. Int. J. Nanomed. 2017, 12, 2733. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Sun, C.; Jiang, T.; Gao, Y.; Yang, Y.; Zhao, Q.; Wang, S. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater. Sci. Eng. C 2019, 105, 110103. [Google Scholar] [CrossRef] [PubMed]
- Heldin, C.H.; Rubin, K.; Pietras, K.; Ostman, A. High interstitial fluid pressure—An obstacle in cancer therapy. Nat. Rev. Cancer 2004, 4, 806–813. [Google Scholar] [CrossRef]
- Jain, R.K. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 2012, 64, 353–365. [Google Scholar] [CrossRef]
- Tang, L.; Fan, T.M.; Borst, L.B.; Cheng, J. Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates. ACS Nano 2012, 6, 3954–3966. [Google Scholar] [CrossRef] [PubMed]
- Sykes, E.A.; Chen, J.; Zheng, G.; Chan, W.C. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 2014, 8, 5696–5706. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.L.; Yu, T.W.; Chiang, W.H.; Chiu, H.C.; Chang, C.H.; Chiang, C.S.; Hu, S.H. Hierarchically targeted and penetrated delivery of drugs to tumors by size-changeable graphene quantum dot nanoaircrafts for photolytic therapy. Adv. Funct. Mater. 2017, 27, 1700056. [Google Scholar] [CrossRef]
- Pan, L.; Sun, S.; Zhang, A.; Jiang, K.; Zhang, L.; Dong, C.; Huang, Q.; Wu, A.; Lin, H. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 2015, 27, 7782–7787. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Mao, Y.; Wang, X.; Zhou, M.; Lu, H.; Zhao, Q.; Wang, S. Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy. J. Colloid Interface Sci. 2020, 559, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, K.; Lei, W.; Mao, Y.; Di, D.; Zhao, Q.; Wang, S. Polydopamine-carbon dots functionalized hollow carbon nanoplatform for fluorescence-imaging and photothermal-enhanced thermochemotherapy. Mater. Sci. Eng. C 2021, 122, 111908. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.F.; Mendes, L.P.; Torchilin, V.P. The effect of low- and high-penetration light on localized cancer therapy. Adv. Drug Deliv. Rev. 2019, 138, 105–116. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Xie, J.; Liu, Y.; Wang, S.; Zhao, Q. Three dimensional mesoporous carbon nanospheres as carriers for chemo-photothermal therapy compared with two dimensional graphene oxide nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2020, 590, 124498. [Google Scholar] [CrossRef]
- Lin, J.; Li, G.; Jiang, K.; Xu, T.; Liu, C.; Wang, L.; Zhang, X.; Cai, D.; Wu, C.; Meng, X.; et al. Customized multi-stimuli nanovehicles with dissociable ‘bomblets’ for photothermal-enhanced synergetic tumor therapy. Colloids Surf. B Biointerfaces 2023, 222, 113083. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yan, Y.; Lin, Y.; Jiao, J.; Wang, D.; Di, D.; Zhang, Y.; Jiang, T.; Zhao, Q.; Wang, S. Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy. J. Colloid Interface Sci. 2017, 494, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.K.; Sang, H.L.; Choi, H.C. In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano 2009, 3, 3707–3713. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, X.; Sun, C.; Liu, Y.; Zhao, Q.; Wang, S. Mesoporous carbon-manganese nanocomposite for multiple imaging guided oxygen-elevated synergetic therapy. J. Control. Release 2020, 319, 104–118. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Vt (cm3/g) | WBJH (nm) |
---|---|---|---|
MCN | 671.1 | 1.11 | 4.1 |
MCN-COOH | 537.2 | 1.13 | 4.1 |
MCN-SS-GQDs | 154.3 | 0.32 | - |
Samples | IC50 (μg/mL) | |
---|---|---|
Without Laser | NIR Laser | |
MCN-SS-GQDs | — | 10.889 |
DOX | 7.318 | 7.554 |
DOX/MCN-SS-GQDs | 12.846 | 5.764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, W.; Wang, Y.; Tao, W.; Hou, T.; Cai, D.; Liu, L.; Liu, C.; Jiang, K.; Lin, J.; et al. The Graphene Quantum Dots Gated Nanoplatform for Photothermal-Enhanced Synergetic Tumor Therapy. Molecules 2024, 29, 615. https://doi.org/10.3390/molecules29030615
Wang L, Wang W, Wang Y, Tao W, Hou T, Cai D, Liu L, Liu C, Jiang K, Lin J, et al. The Graphene Quantum Dots Gated Nanoplatform for Photothermal-Enhanced Synergetic Tumor Therapy. Molecules. 2024; 29(3):615. https://doi.org/10.3390/molecules29030615
Chicago/Turabian StyleWang, Lipin, Wenbao Wang, Yufang Wang, Wenli Tao, Tingxing Hou, Defu Cai, Likun Liu, Chang Liu, Ke Jiang, Jiayin Lin, and et al. 2024. "The Graphene Quantum Dots Gated Nanoplatform for Photothermal-Enhanced Synergetic Tumor Therapy" Molecules 29, no. 3: 615. https://doi.org/10.3390/molecules29030615
APA StyleWang, L., Wang, W., Wang, Y., Tao, W., Hou, T., Cai, D., Liu, L., Liu, C., Jiang, K., Lin, J., Zhang, Y., Zhu, W., & Han, C. (2024). The Graphene Quantum Dots Gated Nanoplatform for Photothermal-Enhanced Synergetic Tumor Therapy. Molecules, 29(3), 615. https://doi.org/10.3390/molecules29030615