Unveiling the Antiviral Efficacy of Forskolin: A Multifaceted In Vitro and In Silico Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of the Isolated Compound
2.2. Biological Evaluation
2.2.1. Cytotoxicity Assay
2.2.2. Vero Cell Lines Morphological Changes
2.2.3. Antiviral Activity of Forskolin (Detection of IC50)
2.3. In Silico Studies
2.3.1. Virtual Screening-Based Target Identification
2.3.2. Molecular Docking
2.3.3. Molecular Dynamics Simulation
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation Procedures
3.4. Reagents for Biological Assay, Cell Lines, and Experimental Strains
3.5. Preparation of Forskolin Dilutions
3.6. MTT Cell Viability and Cytotoxicity Assessment
3.7. Forskolin Antiviral Activities Assessment
3.8. In Silico Studies
3.8.1. Virtual Target Identification
3.8.2. Docking Studies
3.8.3. Molecular Dynamics Simulation
3.8.4. Binding Free Energy Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Ciências 2019, 91 (Suppl. S3), e20190105. [Google Scholar] [CrossRef]
- Lahlou, M. The Success of Natural Products in Drug Discovery. Pharmacol. Pharm. 2013, 4, 17–31. [Google Scholar] [CrossRef]
- Clark, A.M. Natural products as a resource for new drugs. Pharm. Res. 1996, 13, 1133–1141. [Google Scholar] [CrossRef]
- Dzobo, K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Compr. Pharmacol. 2022, 408–422. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201. [Google Scholar] [CrossRef]
- MNPS Medicinal Plant Names Services (MNPS). Available online: https://www.kew.org/science/our-science/science-services/medicinal-plant-names-services (accessed on 14 August 2021).
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Ali, S.I.; Sheikh, W.M.; Rather, M.A.; Venkatesalu, V.; Muzamil Bashir, S.; Nabi, S.U. Medicinal plants: Treasure for antiviral drug discovery. Phytother. Res. 2021, 35, 3447–3483. [Google Scholar] [CrossRef] [PubMed]
- Biron, K.K. Antiviral drugs for cytomegalovirus diseases. Antivir. Res. 2006, 71, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Bhattu, M.; Tripathi, A.; Verma, M.; Acevedo, R.; Kumar, P.; Rajput, V.D.; Singh, J. Potential medicinal plants to combat viral infections: A way forward to environmental biotechnology. Environ. Res. 2023, 227, 115725. [Google Scholar] [CrossRef] [PubMed]
- Achilonu, C.C.; Udensi, O.U. Systematic Review of Antimicrobial Activities of Medicinal Plants against Bacterial and Fungal Microbes: A Research Trend in Africa from 1980 to 2019; Research Square: Durham, NC, USA, 2022. [Google Scholar] [CrossRef]
- Pullaiah, T. Coleus forskohlii—A Multipurpose Medicinal Plant. In Forskolin; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Sivakumar, P.; Bavithra, V.; Ashokkumar, K.; Deepadharsini, R.; Selvaraj, K.V.; Gopal, M. Comprehensive review on phytochemistry and in vitro biotechnology of Coleus forskohlii. J. Pharmacogn. Phytochem. 2021, 10, 448–453. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, C.; Lu, W. Progress in heterologous biosynthesis of forskolin. J. Ind. Microbiol. Biotechnol. 2021, 48, kuab009. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K. Bioactive Phytocomponents and Their Analysis. Qual. Control Eval. Herbal Drugs 2019, 237–328. [Google Scholar] [CrossRef]
- Kumari, A.; Kumar, P.; Kumar, M.; Kumar, J. In Silico Analysis of Forskolin as a Potential Inhibitor of SARS-CoV-2. J. Pure Appl. Microbiol. 2021, 15, 709–715. [Google Scholar] [CrossRef]
- Patel, M.B. Forskolin: A successful therapeutic phytomolecule. East Central Afr. J. Pharm. Sci. 2010, 13, 25–32. [Google Scholar]
- James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Y. Herpes simplex virus encephalitis of childhood: Inborn errors of central nervous system cell-intrinsic immunity. Hum. Genet. 2020, 139, 911–918. [Google Scholar] [CrossRef]
- Hepatitis A Outbreaks in the United States. Retrieved August 23, 2022, from CDC. Available online: https://www.cdc.gov/hepatitis/outbreaks/hepatitisaoutbreaks.htm (accessed on 1 January 2024).
- Win, N.N.; Kanda, T.; Ogawa, M.; Nakamoto, S.; Haga, Y.; Sasaki, R.; Nakamura, M.; Wu, S.; Matsumoto, N.; Matsuoka, S.; et al. Superinfection of hepatitis A virus in hepatocytes infected with hepatitis B virus. Int. J. Med. Sci. 2019, 16, 1366–1370. [Google Scholar] [CrossRef]
- Noël, L.; Tubiana, R.; Simon, A.; Valantin, M.-A.; Palich, R.; Blanc, C.; Katlama, C.; Marcelin, A.-G.; Calvez, V.; Todesco, E. Low immune response rate of HIV-infected patients to a single injection of hepatitis A vaccine. Méd. Mal. Infect. 2021, 51, 94–96. [Google Scholar] [CrossRef]
- Ndumbi, P.; Freidl, G.S.; Williams, C.J.; Mårdh, O.; Varela, C.; Avellón, A.; Friesema, I.; Vennema, H.; Beebeejaun, K.; Ngui, S.L.; et al. Hepatitis A outbreak disproportionately affecting men who have sex with men (MSM) in the European Union and European Economic Area. Eurosurveillance 2018, 23, 1700641. [Google Scholar] [CrossRef]
- Jmii, H.; Halouani, A.; Maatouk, M.; Chekir-Ghedira, L.; Aouni, M.; Fisson, S.; Jaïdane, H. Coxsackievirus B4 infection and interneuronal spread in primary cultured neurons. Microb. Pathog. 2020, 145, 104235. [Google Scholar] [CrossRef]
- Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010, 38 (Suppl. S2), W609–W614. [Google Scholar] [CrossRef]
- Chowdhury, S.F.; Joseph, L.; Kumar, S.; Shenoy, R.T.; Bhat, S.; Ziomek, E.; Ménard, R.; Sivaraman, J.; Purisima, E.O. Exploring inhibitor binding at the S′ subsites of cathepsin L. J. Med. Chem. 2008, 51, 1361–1368. [Google Scholar] [CrossRef]
- Mondal, S.; Chen, Y.; Lockbaum, G.J.; Sen, S.; Chaudhuri, S.; Reyes, A.C.; Lee, J.M.; Kaur, A.N.; Sultana, N.; Cameron, M.D.; et al. Dual Inhibitors of Main Protease (MPro) and Cathepsin L as Potent Antivirals against SARS-CoV2. J. Am. Chem. Soc. 2022, 144, 21035–21045. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Choi, J.H.; Kim, B.K.; Min, S.C.; Chokkakula, S.; Oh, S.; Park, J.H.; Shim, S.M.; Kim, E.G.; Choi, Y.K.; et al. Evaluating Z-FA-FMK, a host cathepsin L protease inhibitor, as a potent and broad-spectrum antiviral therapy against SARS-CoV-2 and related coronaviruses. Antivir. Res. 2023, 216, 105669. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J.; Yadavalli, T.; Agelidis, A.M.; Shukla, D. Host enzymes heparanase and cathepsin L promote herpes simplex virus 2 release from cells. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Scarcella, M.; d’Angelo, D.; Ciampa, M.; Tafuri, S.; Avallone, L.; Pavone, L.M.; De Pasquale, V. The key role of lysosomal protease cathepsins in viral infections. Int. J. Mol. Sci. 2022, 23, 9089. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, M.; Das, P.; Gahlot, G.P.S.; Singh, R.; Roeb, E.; Roderfeld, M.; Datta Gupta, S.; Saraya, A.; Pandey, R.M.; Chauhan, S.S. Cathepsin L and B as potential markers for liver fibrosis: Insights from patients and experimental models. Clin. Transl. Gastroenterol. 2017, 8, e99. [Google Scholar] [CrossRef] [PubMed]
- Klöhn, M.; Burkard, T.; Janzen, J.; Schrader, J.A.; Gömer, A.; Brown, R.J.; Dao Thi, V.L.; Kinast, V.; Brüggemann, Y.; Todt, D.; et al. Targeting cellular cathepsins inhibits hepatitis E virus infection. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, L.; Shen, J.; Wang, Y.; Fu, Z.; Su, S.A.; Cai, Z.; Wang, J.A.; Xiang, M. Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis. PLoS Pathog. 2018, 14, e1006872. [Google Scholar] [CrossRef] [PubMed]
- Mohamud, Y.; Tang, H.; Xue, Y.C.; Liu, H.; Ng, C.S.; Bahreyni, A.; Luo, H. Coxsackievirus B3 targets TFEB to disrupt lysosomal function. Autophagy 2021, 17, 3924–3938. [Google Scholar] [CrossRef]
- Liu, T.; Luo, S.; Libby, P.; Shi, G.P. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol. Ther. 2018, 213, 107587. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.D.; Meng, W.; Wang, X.J.; Wang, H.C.R. Broad-spectrum antiviral agents. Front. Microbiol. 2015, 6, 517. [Google Scholar] [CrossRef] [PubMed]
- Elshabrawy, H.A.; Fan, J.; Haddad, C.S.; Ratia, K.; Broder, C.C.; Caffrey, M.; Prabhakar, B.S. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J. Virol. 2014, 88, 4353–4365. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Abdulghani, R.; Ismail, S.M.; Abidin, M.H.Z. Immune-stimulatory potential of hot water extracts of selected edible mushrooms. Food Agric. Immunol. 2017, 28, 374–387. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017, 45, W356–W360. [Google Scholar] [CrossRef]
- Kerwin, S.M. ChemBioOffice ultra 2010 suite. J. Am. Chem. Soc. 2010, 132, 2466–2467. [Google Scholar] [CrossRef]
- Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. Scripps Res. Inst. Mol. Graph. Lab. 2012, 10550, 1000. [Google Scholar]
- Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Ribeiro, J.V.; Bernardi, R.C.; Rudack, T.; Schulten, K.; Tajkhorshid, E. QwikMD-Gateway for Easy Simulation with VMD and NAMD. Biophys. J. 2018, 114, 673a–674a. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.R., III; McGee, T.D., Jr.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA. py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
Compound | IC50 | |||
---|---|---|---|---|
HSV-1 | HSV-2 | HAV | COX-B4 | |
Forskolin | 99.08 | 106.01 | 73.17 | 62.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amen, Y.; Selim, M.A.; Suef, R.A.; Sayed, A.M.; Othman, A. Unveiling the Antiviral Efficacy of Forskolin: A Multifaceted In Vitro and In Silico Approach. Molecules 2024, 29, 704. https://doi.org/10.3390/molecules29030704
Amen Y, Selim MA, Suef RA, Sayed AM, Othman A. Unveiling the Antiviral Efficacy of Forskolin: A Multifaceted In Vitro and In Silico Approach. Molecules. 2024; 29(3):704. https://doi.org/10.3390/molecules29030704
Chicago/Turabian StyleAmen, Yhiya, Mohamed A Selim, Reda A. Suef, Ahmed M. Sayed, and Ahmed Othman. 2024. "Unveiling the Antiviral Efficacy of Forskolin: A Multifaceted In Vitro and In Silico Approach" Molecules 29, no. 3: 704. https://doi.org/10.3390/molecules29030704
APA StyleAmen, Y., Selim, M. A., Suef, R. A., Sayed, A. M., & Othman, A. (2024). Unveiling the Antiviral Efficacy of Forskolin: A Multifaceted In Vitro and In Silico Approach. Molecules, 29(3), 704. https://doi.org/10.3390/molecules29030704