Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism
Abstract
:1. Introduction
2. Plant Sources and Extraction Methods of Phlorizin
3. Study on the Pharmacological Activity of Phlorizin
3.1. Antioxidant Effect
3.2. Antibacterial Effect
3.3. Antiviral Effect
3.4. Anti-Diabetic Effect
3.5. Anti-Tumor Effect
3.6. Protecting the Liver
3.7. Other Functions
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Dong, H.; Ning, Z.; Yu, L.; Li, L.; Lin, L.; Huang, J. Preparative separation and identification of the flavonoid phlorhizin from the crude extract of lithocarpus polystachyus rehd. Molecules 2007, 12, 552–562. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, L.; Hu, X.; Zeng, Z.; Wu, W.; Geng, F.; Li, H.; Wu, D. Evaluation of the binding affinity and antioxidant activity of phlorizin to pepsin and trypsin. Food Sci. Human Wellness 2024, 13, 392–400. [Google Scholar] [CrossRef]
- Ridgway, T.; O’Reilly, J.; West, G.; Tucker, G.; Wiseman, H. Antioxidant action of novel derivatives of the apple-derived flavonoid phloridzin compared to oestrogen: Relevance to potential cardioprotective action. Biochem. Soc. Trans. 1997, 25, 106S. [Google Scholar] [CrossRef]
- Gosch, C.; Halbwirth, H.; Stich, K. Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry 2010, 71, 838–843. [Google Scholar] [CrossRef]
- Rezk, B.M.; Haenen, G.R.; van der Vijgh, W.J.; Bast, A. The antioxidant activity of phloretin: The disclosure of a new antioxidant pharmacophore in flavonoids. Biochem. Biophys. Res. Commun. 2002, 295, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, X.; Zhang, Y.; Zhai, Y.; Xu, W.; Zhao, B.; Liu, D.; Yu, H. Biotransformation of phlorizin by human intestinal flora and inhibition of biotransformation products on tyrosinase activity. Food Chem. 2012, 132, 936–942. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Li, K.; Chen, Y.; Vanegas, D.; Mclamore, E.S.; Shen, Y. Leaf extract from lithocarpus polystachyus rehd. Promote glycogen synthesis in t2dm mice. PLoS ONE 2016, 11, e166557. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sinha, K.; Sharma, R.; Purohit, R.; Padwad, Y. Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting ppargamma/cdk5 interaction in differentiated adipocytes. Exp. Cell Res. 2019, 383, 111480. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhai, X.; Li, X.; Wang, S.; Zhang, L.; Wang, L.; Jin, X.; Liang, L.; Deng, Z.; Li, Z.; et al. Met1-specific motifs conserved in otub subfamily of green plants enable rice otub1 to hydrolyse met1 ubiquitin chains. Nat. Commun. 2022, 13, 4672. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.H.; Liao, W.; Lin, L.T.; Zhu, Z.P.; Lu, M.G.; Fu, C.M.; Xie, T. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications. Phytomedicine 2022, 102, 154090. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Zhu, J.; Bai, Z.; Mao, Q.; Zhang, Y.; Hui, Z.; Luo, X.; Ye, X.Y.; Xie, T. Second generation beta-elemene nitric oxide derivatives with reasonable linkers: Potential hybrids against malignant brain glioma. J. Enzym. Inhib. Med. Chem. 2022, 37, 379–385. [Google Scholar] [CrossRef]
- Huang, B.; Gui, M.; An, H.; Shen, J.; Ye, F.; Ni, Z.; Zhan, H.; Che, L.; Lai, Z.; Zeng, J.; et al. Babao dan alleviates gut immune and microbiota disorders while impacting the tlr4/myd88/nf-small ka, cyrillicb pathway to attenuate 5-fluorouracil-induced intestinal injury. Biomed. Pharmacother. 2023, 166, 115387. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dong, Y.; Chen, X.; Wang, Z.; Cui, Z.; Ni, S. Using sulfide as nitrite oxidizing bacteria inhibitor for the successful coupling of partial nitrification-anammox and sulfur autotrophic denitrification in one reactor. Chem. Eng. J. 2023, 475, 146286. [Google Scholar] [CrossRef]
- Xiang, J.; Mlambo, R.; Shaw, I.; Seid, Y.; Shah, H.; He, Y.; Kpegah, J.; Tan, S.; Zhou, W.; He, B. Cryopreservation of bioflavonoid-rich plant sources and bioflavonoid-microcapsules: Emerging technologies for preserving bioactivity and enhancing nutraceutical applications. Front. Nutr. 2023, 10, 1232129. [Google Scholar] [CrossRef] [PubMed]
- Kan, Y.; Kan, H.; Bai, Y.; Zhang, S.; Gao, Z. Effective and environmentally safe self-antimildew strategy to simultaneously improve the mildew and water resistances of soybean flour-based adhesives. J. Clean Prod. 2023, 392, 136319. [Google Scholar] [CrossRef]
- Su, Y.; Wang, M.; Yang, J.; Wu, X.; Xia, M.; Bao, M.; Ding, Y.; Feng, Q.; Fu, L. Effects of yulin tong bu formula on modulating gut microbiota and fecal metabolite interactions in mice with polycystic ovary syndrome. Front. Endocrinol. 2023, 14, 1122709. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, T.; Wu, J.; Chen, D.; Wang, W. Unveiling the mystery of sumo-activating enzyme subunit 1: A groundbreaking biomarker in the early detection and advancement of hepatocellular carcinoma. Transplant. Proc. 2023, 55, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Su, M.; Du, J.; Zhou, H.; Li, X.; Li, X.; Ye, Z. Comparison of phytochemical differences of the pulp of different peach [Prunus persica (l.) Batsch] cultivars with alpha-glucosidase inhibitory activity variations in china using uplc-q-tof/ms. Molecules 2019, 24, 1968. [Google Scholar] [CrossRef] [PubMed]
- Hvattum, E. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spectrom. 2002, 16, 655–662. [Google Scholar] [CrossRef]
- Turner, A.; Chen, S.N.; Joike, M.K.; Pendland, S.L.; Pauli, G.F.; Farnsworth, N.R. Inhibition of uropathogenic escherichia coli by cranberry juice: A new antiadherence assay. J. Agric. Food Chem. 2005, 53, 8940–8947. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, F.; He, C.; Yu, Y.; Wang, M. Optimization of ultrasonic-assisted aqueous two-phase extraction of phloridzin from malus micromalus makino with ethanol/ammonia sulfate system. J. Food Sci. 2017, 82, 2944–2953. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Hao, M.; Ding, C.; Zhang, J.; Ding, Q.; Zhang, Y.; Zhao, Y.; Liu, W. Sf/pvp nanofiber wound dressings loaded with phlorizin: Preparation, characterization, in vivo and in vitro evaluation. Colloid Surf. B-Biointerfaces 2022, 217, 112692. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Xia, Y.; Guo, H.; He, X.; Li, H.; Wu, D.; Geng, F.; Lin, F.; Li, H.; et al. Screening and process optimization of ultrasound-assisted extraction of main antioxidants from sweet tea (Lithocarpus litseifolius [hance] chun). Food Biosci. 2021, 43, 101277. [Google Scholar] [CrossRef]
- Shang, A.; Luo, M.; Gan, R.; Xu, X.; Xia, Y.; Guo, H.; Liu, Y.; Li, H. Effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus rehd.). Antioxidants 2020, 9, 678. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.M.; Barrosoa, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind. Crop. Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef]
- Sun, L.; Guo, Y.; Fu, C.; Li, J.; Li, Z. Simultaneous separation and purification of total polyphenols, chlorogenic acid and phlorizin from thinned young apples. Food Chem. 2013, 136, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, J.; Liu, X.; Zha, H.; Ren, N. Purification of phloridzin from lithocarpus polystachyus rehd leaves using polymeric adsorbents functionalized with glucosamine and β-cyclodextrin. Chem. Pap. 2014, 68, 1521–1531. [Google Scholar] [CrossRef]
- Tian, L.; Cao, J.; Zhao, T.; Liu, Y.; Khan, A.; Cheng, G. The bioavailability, extraction, biosynthesis and distribution of natural dihydrochalcone: Phloridzin. Int. J. Mol. Sci. 2021, 22, 962. [Google Scholar] [CrossRef]
- Kammerer, J.; Boschet, J.; Kammerer, D.R.; Carle, R. Enrichment and fractionation of major apple flavonoids, phenolic acids and dihydrochalcones using anion exchange resins. Lwt-Food Sci. Technol. 2011, 44, 1079–1087. [Google Scholar] [CrossRef]
- Lijia, X.; Guo, J.; Chen, Q.; Baoping, J.; Zhang, W. Quantitation of phlorizin and phloretin using an ultra high performance liquid chromatography-electrospray ionization tandem mass spectrometric method. J. Chromatogr. B 2014, 960, 67–72. [Google Scholar] [CrossRef]
- Xue, K.; Lue, H.; Que, B.; Shan, H.; Song, J. High-speed counter-current chromatography preparative separation and purification of phloretin from apple tree bark. Sep. Purif. Technol. 2010, 72, 406–409. [Google Scholar] [CrossRef]
- Chen, H.; Dong, L.; Chen, X.; Ding, C.; Hao, M.; Peng, X.; Zhang, Y.; Zhu, H.; Liu, W. Anti-aging effect of phlorizin on d-galactose -induced aging in mice through antioxidant and anti-inflammatory activity, prevention of apoptosis, and regulation of the gut microbiota. Exp. Gerontol. 2022, 163, 111769. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, Y.; Deng, H.; Meng, Y. Antibacterial mechanism of apple phloretin on physiological and morphological properties of listeria monocytogenes. Food Sci. Technol. 2022, 42, e55120. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Zhao, Z.; Yuan, X.; Li, C.; Liu, S.; Cui, Y.; Liu, Y.; Zhou, Y.; Zhu, Z. In vivo and in vitro antiviral activity of phlorizin against bovine viral diarrhea virus. J. Agric. Food Chem. 2022, 70, 14841–14850. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.C.; Chen, M.C.; Liu, S.; Callahan, V.M.; Bracci, N.R.; Lehman, C.W.; Dahal, B.; de la Fuente, C.L.; Lin, C.C.; Wang, T.T.; et al. Phloretin inhibits zika virus infection by interfering with cellular glucose utilisation. Int. J. Antimicrob. Agents 2019, 54, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, Z.; Wang, A.; Jia, L.; Zhang, X.; Fang, M.; Yi, K.; Li, Q.; Hu, H. Comparative oral and intravenous pharmacokinetics of phlorizin in rats having type 2 diabetes and in normal rats based on phase ii metabolism. Food Funct. 2019, 10, 1582–1594. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Zhang, X.; Wang, Z.; Gao, Z.; Liu, G.; Hu, H.; Zou, L.; Li, X. Insulin sensitivity-enhancing activity of phlorizin is associated with lipopolysaccharide decrease and gut microbiota changes in obese and type 2 diabetes (db/db) mice. J. Agric. Food Chem. 2016, 64, 7502–7511. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J.; Fasching, A.; Pihl, L.; Patinha, D.; Franzen, S.; Palm, F. Acute sglt inhibition normalizes o2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am. J. Physiol.-Renal Physiol. 2015, 309, F227–F234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, S.; Fu, H.; Shu, G.; Tang, H.; Zhao, X.; Chen, Y.; Huang, X.; Zhao, L.; Yin, L.; et al. Hypoglycemic and hypolipidemic activities of phlorizin from lithocarpus polystachyus rehd in diabetes rats. Food Sci. Nutr. 2021, 9, 1989–1996. [Google Scholar] [CrossRef]
- Lu, W.D.; Li, B.Y.; Yu, F.; Cai, Q.; Zhang, Z.; Yin, M.; Gao, H.Q. Quantitative proteomics study on the protective mechanism of phlorizin on hepatic damage in diabetic db/db mice. Mol. Med. Rep. 2012, 5, 1285–1294. [Google Scholar] [CrossRef]
- de Oliveira, M.R. Phloretin-induced cytoprotective effects on mammalian cells: A mechanistic view and future directions. Biofactors 2016, 42, 13–40. [Google Scholar] [CrossRef]
- Yang, K.; Tsai, C.; Wang, Y.; Wei, P.; Lee, C.; Chen, J.; Wu, C.; Ho, Y. Apple polyphenol phloretin potentiates the anticancer actions of paclitaxel through induction of apoptosis in human hep g2 cells. Mol. Carcinog. 2009, 48, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Usui, I.; Kanatani, Y.; Matsuya, Y.; Tsuneyama, K.; Fujisaka, S.; Bukhari, A.; Suzuki, H.; Senda, S.; Imanishi, S.; et al. Treatment with srt1720, a sirt1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in msg mice. Am. J. Physiol.-Endocrinol. Metab. 2009, 297, E1179–E1186. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, Z.; Liu, D.; Li, X.; Rehman, R.; Wang, H.; Wu, Z. Apple phlorizin attenuates oxidative stress in drosophila melanogaster. J. Food Biochem. 2019, 43, e12744. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Guo, Y.; Xu, L.; Wang, H. Phlorizin exerts potent effects against aging induced by d-galactose in mice and pc12 cells. Food Funct. 2021, 12, 2148–2160. [Google Scholar] [CrossRef] [PubMed]
- Bhakkiyalakshmi, E.; Sireesh, D.; Rajaguru, P.; Paulmurugan, R.; Ramkumar, K.M. The emerging role of redox-sensitive nrf2-keap1 pathway in diabetes. Pharmacol. Res. 2015, 91, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.H.C.S.; Garrido-Pascual, P.; Moreirinha, C.; Almeida, A.; Palomares, T.; Alonso-Varona, A.; Vilela, C.; Freire, C.S.R. Multifunctional nanofibrous patches composed of nanocellulose and lysozyme nanofibers for cutaneous wound healing. Int. J. Biol. Macromol. 2020, 165, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Peterhans, E.; Schweizer, M. Bvdv: A pestivirus inducing tolerance of the innate immune response. Biologicals 2013, 41, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Slavov, S.N.; Otaguiri, K.K.; Kashima, S.; Covas, D.T. Overview of zika virus (zikv) infection in regards to the brazilian epidemic. Brazilian J. Med. Biol. Res. 2016, 49. [Google Scholar] [CrossRef]
- Alvarado, F.; Crane, R.K. Studies on the mechanism of intestinal absorption of sugars. Vii. Phenylglycoside transport and its possible relationship to phlorizin inhibition of the active transport of sugars by the small intestine. Biochim. Biophys. Acta 1964, 93, 116–135. [Google Scholar] [CrossRef]
- Panayotova-Heiermann, M.; Loo, D.D.; Wright, E.M. Kinetics of steady-state currents and charge movements associated with the rat na+/glucose cotransporter. J. Biol. Chem. 1995, 270, 27099–27105. [Google Scholar] [CrossRef] [PubMed]
- Najafian, M.; Jahromi, M.Z.; Nowroznejhad, M.J.; Khajeaian, P.; Kargar, M.M.; Sadeghi, M.; Arasteh, A. Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol. Biol. Rep. 2012, 39, 5299–5306. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, B.; Pruniau, V.P.E.G.; Cauwelier, E.J.G.; Schuit, F.; Lerut, E.; Ectors, N.; Declercq, J.; Creemers, J.W.M. Phlorizin pretreatment reduces acute renal toxicity in a mouse model for diabetic nephropathy. J. Biol. Chem. 2013, 288, 27200–27207. [Google Scholar] [CrossRef]
- Katsuda, Y.; Sasase, T.; Tadaki, H.; Mera, Y.; Motohashi, Y.; Kemmochi, Y.; Toyoda, K.; Kakimoto, K.; Kume, S.; Ohta, T. Contribution of hyperglycemia on diabetic complications in obese type 2 diabetic sdt fatty rats: Effects of sglt inhibitor phlorizin. Exp. Anim. 2015, 64, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Greally, M.; Ilson, D.H. Neoadjuvant therapy for esophageal cancer: Who, when, and what? Cancer 2018, 124, 4276–4278. [Google Scholar] [CrossRef]
- Borggreve, A.S.; Kingma, B.F.; Ruurda, J.P.; van Hillegersberg, R. Safety and feasibility of minimally invasive surgical interventions for esophageal and gastric cancer in the acute setting: A nationwide cohort study. Surg. Endosc. 2021, 35, 1219–1229. [Google Scholar] [CrossRef]
- Semenkovich, T.R.; Subramanian, M.; Yan, Y.; Hofstetter, W.L.; Cassivi, S.D.; Inra, M.L.; Stiles, B.M.; Altorki, N.K.; Chang, A.C.; Brescia, A.A.; et al. Adjuvant therapy for node-positive esophageal cancer after induction and surgery: A multisite study. Ann. Thorac. Surg. 2019, 108, 828–836. [Google Scholar] [CrossRef]
- Timme, S.; Ihde, S.; Fichter, C.D.; Waehle, V.; Bogatyreva, L.; Atanasov, K.; Kohler, I.; Schoepflin, A.; Geddert, H.; Faller, G.; et al. Stat3 expression, activity and functional consequences of stat3 inhibition in esophageal squamous cell carcinomas and barrett’s adenocarcinomas. Oncogene 2014, 33, 3256–3266. [Google Scholar] [CrossRef]
- Liu, J.; Wu, W.; Liu, S.; Zuo, L.; Wang, Y.; Yang, J.; Nan, Y. Nimesulide inhibits the growth of human esophageal carcinoma cells by inactivating the jak2/stat3 pathway. Pathol. Res. Pract. 2015, 211, 426–434. [Google Scholar] [CrossRef]
- Kobori, M.; Shinmoto, H.; Tsushida, T.; Shinohara, K. Phloretin-induced apoptosis in b16 melanoma 4a5 cells by inhibition of glucose transmembrane transport. Cancer Lett. 1997, 119, 207–212. [Google Scholar] [CrossRef]
- Jia, Z.; Xie, Y.; Wu, H.; Wang, Z.; Li, A.; Li, Z.; Yang, Z.; Zhang, Z.; Xing, Z.; Zhang, X. Phlorizin from sweet tea inhibits the progress of esophageal cancer by antagonizing the jak2/stat3 signaling pathway. Oncol. Rep. 2021, 46, 137. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Z.W.; Zhang, W.; Xu, R.; Gao, F.; Liu, Y.F.; Li, Y.J. Synthesis, crystal structure, and biological evaluation of a series of phloretin derivatives. Molecules 2014, 19, 16447–16457. [Google Scholar] [CrossRef] [PubMed]
- Perumal, P.; Arthanari, U.; Sanniyasi, E. Phlorizin isolated from seagrass syringodium isoetifolium inhibits diethylnitrosamine and carbon tetrachloride-induced hepatocellular carcinoma in balb/c mice. S. Afr. J. Bot. 2023, 155, 1–15. [Google Scholar] [CrossRef]
- Shin, J.W.; Kundu, J.K.; Surh, Y.J. Phloretin inhibits phorbol ester-induced tumor promotion and expression of cyclooxygenase-2 in mouse skin: Extracellular signal-regulated kinase and nuclear factor-kappab as potential targets. J. Med. Food 2012, 15, 253–257. [Google Scholar] [CrossRef]
- Tevar, A.D.; Clarke, C.; Wang, J.; Rudich, S.M.; Woodle, E.S.; Lentsch, A.B.; Edwards, M.L. Clinical review of nonalcoholic steatohepatitis in liver surgery and transplantation. J. Am. Coll. Surg. 2010, 210, 515–526. [Google Scholar] [CrossRef]
- Safaei, A.; Arefi, O.A.; Mohebbi, S.R.; Rezaei-Tavirani, M.; Mahboubi, M.; Peyvandi, M.; Okhovatian, F.; Zamanian-Azodi, M. Metabolomic analysis of human cirrhosis, hepatocellular carcinoma, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis diseases. Gastroenterol. Hepatol. Bed Bench 2016, 9, 158–173. [Google Scholar]
- Brunt, E.M. Pathology of nonalcoholic steatohepatitis. Hepatol. Res. 2005, 33, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Firneisz, G. Non-alcoholic fatty liver disease and type 2 diabetes mellitus: The liver disease of our age? World J. Gastroenterol. 2014, 20, 9072–9089. [Google Scholar] [CrossRef]
- David-Silva, A.; Esteves, J.V.; Morais, M.R.P.T.; Freitas, H.S.; Zorn, T.M.; Correa-Giannella, M.L.; Machado, U.F. Dual sglt1/sglt2 inhibitor phlorizin ameliorates non-alcoholic fatty liver disease and hepatic glucose production in type 2 diabetic mice. Diabetes Metab. Syndr. Obes. 2020, 13, 739–751. [Google Scholar] [CrossRef]
- Medhat, E.; Rashed, L.; Abdelgwad, M.; Aboulhoda, B.E.; Khalifa, M.M.; El-Din, S.S. Exercise enhances the effectiveness of vitamin d therapy in rats with alzheimer’s disease: Emphasis on oxidative stress and inflammation. Metab. Brain Dis. 2020, 35, 111–120. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Zhao, T.; Cao, J.; Liu, Y.; Wang, Y.; Wang, Y.; Cheng, G. E se tea alleviates acetaminophen-induced liver injury by activating the nrf2 signaling pathway. Food Funct. 2022, 13, 7240–7250. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Kim, Y.S.; Park, D.; Toyama, K.; Date, A.; Lee, J. Phloridzin isolated from acanthopanax senticosus promotes proliferation of alpha6 integrin (cd 49f) and beta1 integrin (cd29) enriched for a primary keratinocyte population through the erk-mediated mtor pathway. Arch. Dermatol. Res. 2013, 305, 747–754. [Google Scholar] [CrossRef]
- Antika, L.D.; Lee, E.; Kim, Y.; Kang, M.; Park, S.; Kim, D.Y.; Oh, H.; Choi, Y.; Kang, Y. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing -catenin activity via gsk-3 inhibition in a model of senile osteoporosis. J. Nutr. Biochem. 2017, 49, 42–52. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Harada, S.; Wada, T.; Yoshida, S.; Tokuyama, S. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia. J. Pharm. Pharmacol. 2016, 68, 922–931. [Google Scholar] [CrossRef]
- Harada, S.; Yamazaki, Y.; Nishioka, H.; Tokuyama, S. Neuroprotective effect through the cerebral sodium-glucose transporter on the development of ischemic damage in global ischemia. Brain Res. 2013, 1541, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, Y.; Nagoshi, T.; Yoshino, T.; Tanaka, T.D.; Ito, K.; Harada, T.; Takahashi, H.; Ikegami, M.; Anzawa, R.; Yoshimura, M. Expression of sglt1 in human hearts and impairment of cardiac glucose uptake by phlorizin during ischemia-reperfusion injury in mice. PLoS ONE 2015, 10, e130605. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Shibazaki, T.; Nakada, T.; Kashihara, T.; Yano, S.; Okamoto, Y.; Isaji, M.; Matsushita, N.; Taira, E.; Yamada, M. Phlorizin prevents electrically-induced ventricular tachyarrhythmia during ischemia in langendorff-perfused guinea-pig hearts. Biol. Pharm. Bull. 2014, 37, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Abouelenein, D.; Caprioli, G.; Mustafa, A.M. Phloridzin: Advances on resources, biosynthetic pathway, bioavailability, bioactivity, and pharmacology. In Handbook of Dietary Flavonoids; Springer: New York, NY, USA, 2023; pp. 1–29. [Google Scholar]
- Ehrenkranz, J.R.; Lewis, N.G.; Ronald Kahn, C.; Roth, J. Phlorizin: A review. Diabetes/Metab. Res. Rev. 2005, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Fernando, W.; Clark, R.F.; Rupasinghe, H.; Hoskin, D.W.; Coombs, M. Phloridzin docosahexaenoate inhibits spheroid formation by breast cancer stem cells and exhibits cytotoxic effects against paclitaxel-resistant triple negative breast cancer cells. Int. J. Mol. Sci. 2023, 24, 14577. [Google Scholar] [CrossRef] [PubMed]
- Fernando, W.; Coyle, K.; Marcato, P.; Vasantha, R.H.; Hoskin, D.W. Phloridzin docosahexaenoate, a novel fatty acid ester of a plant polyphenol, inhibits mammary carcinoma cell metastasis. Cancer Lett. 2019, 465, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Fernando, W.; Coombs, M.; Hoskin, D.W.; Rupasinghe, H. Docosahexaenoic acid-acylated phloridzin, a novel polyphenol fatty acid ester derivative, is cytotoxic to breast cancer cells. Carcinogenesis 2016, 37, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
Serial Number | Plant Sources | Parts | Place of Origin | Reference |
---|---|---|---|---|
1 | Malus pumila Mill. | Skin, fruit, juice, pulp | Shanxi, Shaanxi, Ningxia, Gansu, and other areas in China | [10] |
2 | Punica granatum L. | pulps | Anhui, Shaanxi, Yunnan, Sichuan, etc., China | [16] |
3 | Reynoutria japonica Houtt. | flower | Shaanxi, Gansu, EastChina, Sichuan, and other areas in China | [18] |
4 | Prunus persica (L.) Batsch | pulps | Gansu, Sichuan, Liaoning, Zhejiang, and other areas in China | [18] |
5 | Rosa canina Gremli ex Chris | pulps | Neighboring regions of Europe, Northern Africa, and Iraq | [19] |
6 | Vitis vinifera L. | pulps | Shandong, Shaanxi, Turpan, and other areas in China | [19] |
7 | Vaccinium macrocarpon Ait. | Pulps | Shandong, Jiangsu, Liaoning, Hebei, and other areas in China | [20] |
8 | Malus spectabilis (Ait.) Borkh. | leaf | Shandong, Henan, Anhui, Jiangsu, and other areas in China | [21] |
Pharmacological Activity | Dosage of Rhizopyranoside | Experimental Model | Mechanism | References |
---|---|---|---|---|
antioxidant | 20 and 40 mg/kg | D-galactose (D-gal) aging mouse model | Regulation of apoptosis-related proteins inhibits apoptosis and exerts antioxidant effects by modulating the IL-1β/IKB-α/NF-kB signaling pathway. | [32] |
100 and 150 μg/mL | A model of hydrogen peroxide-induced oxidative damage in HepG2 cells | Regulation of Nrf2 protein and apoptosis-related gene expression to alleviate h2o2-induced oxidative stress, DNA damage, and apoptosis in HepG2 cells. | [15] | |
antimicrobial | 100–200 μg/mL | Listeria monocytogenes model | Causes aggregation of intracellular DNA, leading to reduced protein synthesis. | [33] |
antiviral | 6.25, 12.5, 25 mg/kg | Mouse models of BVDV infection | Promotes IFN-α and IFN-β levels, decreases IL-1β and IL-6 expression, and regulates rig -1, MDA5, TLR3, and NLRP3 levels. | [34] |
6.25, 12.5, 25, 50 and 100 μM | Zika virus cell model | Reduces apoptotic caspase-3 and -7 activity and reduces phosphorylation of the Akt/mTOR pathway. | [35] | |
antidiabetic | 20 mg/kg | Type 2 diabetes mellitus (db/db) mouse model | Increases abundance of beneficial bacterial communities, inhibits the growth of pathogenic bacteria, reduces LPS loading into the host and increases levels of short-chain fatty acids (SCFAs) in the gut. | [36] |
30, 60 and 120 mg/kg | Streptozotocin (STZ) treatment in a rat model of diabetes mellitus | Decreases FBG levels, decreases serum TC, TG, and LDL-C levels, and increases HDL-C levels. | [37] | |
200 mg/kg | Streptozotocin (STZ)-induced diabetes model in sober rats | Inhibition of glycogen synthase kinase-3 pathway activation modulates the ubiquitin proteasome pathway and reduces the production of advanced glycosylation end products (AGEs). | [38,39] | |
100 µg/mL | Human KYSE450 and KYSE30 cells were modeled with rmi-1640 medium in 10% bovine fetal bovine serum. | Inhibits the JAK2/stat3 signaling pathway and inhibits the JAK2/stat3 signaling pathway. | [40] | |
antitumor | 10 mg/kg | HepG2 tumor explant mice | Associated with GLUT2, inhibits PKC expression and regulates apoptosis. | [41] |
1–5 μmol/200 μL | A model of skin tumors in mice by fobol ester | Inhibition of TPA blocks the upstream ERK signaling pathway by inactivating NF-jB-induced COX-2 expression. | [42] | |
protection of the liver | 0.4 g/kg | T2D animal model of obesity obtained by injection of monosodium glutamate (MSG) | Resumption of glycemic control and hepatic glucose metabolism and substantial improvement in NASH, reinforcing the involvement of altered hepatic glucose metabolism in T2D-associated NAFLD. | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, T.; Zhang, S.; Rao, J.; Zhao, J.; Huang, H.; Liu, Y.; Ding, Y.; Liu, Y.; Ma, Y.; Zhang, S.; et al. Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism. Molecules 2024, 29, 741. https://doi.org/10.3390/molecules29030741
Ni T, Zhang S, Rao J, Zhao J, Huang H, Liu Y, Ding Y, Liu Y, Ma Y, Zhang S, et al. Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism. Molecules. 2024; 29(3):741. https://doi.org/10.3390/molecules29030741
Chicago/Turabian StyleNi, Tongjia, Shuai Zhang, Jia Rao, Jiaqi Zhao, Haiqi Huang, Ying Liu, Yue Ding, Yaqian Liu, Yuchi Ma, Shoujun Zhang, and et al. 2024. "Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism" Molecules 29, no. 3: 741. https://doi.org/10.3390/molecules29030741
APA StyleNi, T., Zhang, S., Rao, J., Zhao, J., Huang, H., Liu, Y., Ding, Y., Liu, Y., Ma, Y., Zhang, S., Gao, Y., Shen, L., Ding, C., & Sun, Y. (2024). Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism. Molecules, 29(3), 741. https://doi.org/10.3390/molecules29030741