Characterizing Aptamer Interaction with the Oncolytic Virus VV-GMCSF-Lact
Abstract
:1. Introduction
2. Results
2.1. Molecular Dynamic Simulations of Aptamer to Vaccinia Virus
2.2. Stability of Aptamer–Virus Complex in the Presence of Human Blood Serum and Aptamer Binding to VV-GMCSF-Lact
2.3. Determination of the Size of the Virus–Aptamer Complex and ζ-Potential, the Effect of Human Blood Serum Containing Neutralizating Antibodies on the Virus–Aptamer Complex
2.4. Using Microscale Thermophoresis (MST) for the Characterization of the Interaction of Aptamers with VV-GMCSF-Lact and Human Blood Serum Containing Neutralizing Antibodies
2.5. Cytotoxic Effect of Oncolytic Virus VV-GMCSF-Lact on U87 MG Cells in the Presence of the Aptamer NV14t_56 and Human Blood Serum
3. Discussion
4. Materials and Methods
4.1. Molecular Modeling
4.2. Oligonucleotides Sequence
4.3. Cell Lines
4.4. Serum Samples
4.5. Flow Cytometry
4.6. Dynamic Light Scattering
4.7. Microscale Thermophoresis
4.8. Cytotoxicity Analysis
4.9. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, Y.W.; Vollmuth, P.; Foltyn-Dumitru, M.; Sahm, F.; Ahn, S.S.; Chang, J.H.; Kim, S.H. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 1—Key Points of the Fifth Edition and Summary of Imaging Findings on Adult-Type Diffuse Gliomas. J. Magn. Reson. Imaging 2023, 58, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, S.U. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac. J. Cancer Prev. APJCP 2017, 18, 3–9. [Google Scholar]
- Goradel, N.H.; Alizadeh, A.; Hosseinzadeh, S.; Taghipour, M.; Ghesmati, Z.; Arashkia, A.; Negahdari, B. Oncolytic virotherapy as promising immunotherapy against cancer: Mechanisms of resistance to on-colytic viruses. Futur. Oncol. 2022, 18, 245–259. [Google Scholar] [CrossRef]
- Kochneva, G.; Sivolobova, G.; Tkacheva, A.; Grazhdantseva, A.; Troitskaya, O.; Nushtaeva, A.; Tkachenko, A.; Kuligina, E.; Richter, V.; Koval, O. Engineering of double recombinant vaccinia virus with enhanced oncolytic potential for solid tumor virotherapy. Oncotarget 2016, 7, 74171–74188. [Google Scholar] [CrossRef]
- Vasileva, N.; Ageenko, A.; Dmitrieva, M.; Nushtaeva, A.; Mishinov, S.; Kochneva, G.; Richter, V.; Kuligina, E. Double Recombinant Vaccinia Virus: A Candidate Drug against Human Glioblastoma. Life 2021, 11, 1084. [Google Scholar] [CrossRef]
- Zheng, M.; Huang, J.; Tong, A.; Yang, H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. Mol. Ther. - Oncolytics 2019, 15, 234–247. [Google Scholar] [CrossRef]
- Cao, G.-D.; He, X.-B.; Sun, Q.; Chen, S.; Wan, K.; Xu, X.; Feng, X.; Li, P.-P.; Chen, B.; Xiong, M.-M. The Oncolytic Virus in Cancer Diagnosis and Treatment. Front. Oncol. 2020, 10, 1786. [Google Scholar] [CrossRef]
- Leija-Montoya, A.G.; Benítez-Hess, M.L.; Alvarez-Salas, L.M. Application of Nucleic Acid Aptamers to Viral Detection and Inhibition. In Nucleic Acids—From Basic Aspects to Laboratory Tools; InTech: London, UK, 2016. [Google Scholar]
- Zou, X.; Wu, J.; Gu, J.; Shen, L.; Mao, L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front. Microbiol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Muharemagic, D.; Zamay, A.; Ghobadloo, S.M.; Evgin, L.; Savitskaya, A.; Bell, J.C.; Berezovski, M.V. Aptamer-facilitated Protection of Oncolytic Virus from Neutralizing Antibodies. Mol. Ther. Nucleic Acids. 2014, 3, e167. [Google Scholar] [CrossRef]
- Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; et al. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl. Mater. Interfaces 2020, 13, 9500–9519. [Google Scholar] [CrossRef] [PubMed]
- Muharemagic, D.; Labib, M.; Ghobadloo, S.M.; Zamay, A.S.; Bell, J.C.; Berezovski, M.V. Anti-Fab Aptamers for Shielding Virus from Neutralizing Antibodies. J. Am. Chem. Soc. 2012, 134, 17168–17177. [Google Scholar] [CrossRef]
- Ghobadloo, S.M.; Gargaun, A.; Casselman, R.; Muharemagic, D.; Berezovski, M.V. Aptamer-Facilitated Cryoprotection of Viruses. ACS Med. Chem. Lett. 2014, 5, 1240–1244. [Google Scholar] [CrossRef]
- Labib, M.; Zamay, A.S.; Muharemagic, D.; Chechik, A.V.; Bell, J.C.; Berezovski, M.V. Aptamer-Based Viability Impedimetric Sensor for Viruses. Anal. Chem. 2012, 84, 1813–1816. [Google Scholar] [CrossRef]
- Aptekar, S.; Arora, M.; Lawrence, C.L.; Lea, R.W.; Ashton, K.; Dawson, T.; Alder, J.E.; Shaw, L. Selective Targeting to Glioma with Nucleic Acid Aptamers. PLoS ONE 2015, 10, e0134957. [Google Scholar] [CrossRef]
- Popova, V.; Poletaeva, Y.; Chubarov, A.; Pyshnyi, D.; Dmitrienko, E. Doxorubicin-Loaded Silica Nanocomposites for Cancer Treatment. Coatings 2023, 13, 324. [Google Scholar] [CrossRef]
- Entzian, C.; Schubert, T. Studying small molecule–aptamer interactions using MicroScale Thermophoresis (MST). Methods 2016, 97, 27–34. [Google Scholar] [CrossRef]
- Cleri, F.; Lensink, M.F.; Blossey, R. DNA Aptamers Block the Receptor Binding Domain at the Spike Protein of SARS-CoV-2. Front. Mol. Biosci. 2021, 8, 713003. [Google Scholar] [CrossRef]
- Kothandan, R.; Uthayasooriyan, P.; Vairamani, S. Search for RNA aptamers against non-structural protein of SARS-CoV-2: Design using molecular dynamics approach. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Stuber, A.; Douaki, A.; Hengsteler, J.; Buckingham, D.; Momotenko, D.; Garoli, D.; Nakatsuka, N. Aptamer Conformational Dynamics Modulate Neurotransmitter Sensing in Nanopores. ACS Nano 2023, 17, 19168–19179. [Google Scholar] [CrossRef]
- Dymova, M.A.; Kuligina, E.V.; Richter, V.A.; Artyushenko, P.V.; Rogova, A.V.; Shchugoreva, I.A.; Kichkailo, T.N.Z. Obtaining highly selective aptamers to the VV-GMCSF-Lact oncolytic virus. Theoretical and experimental approaches. Sib. Med. Rev. 2023, 5, 5–11. [Google Scholar]
- Mao, Y.; Gu, J.; Chang, D.; Wang, L.; Yao, L.; Ma, Q.; Luo, Z.; Qu, H.; Li, Y.; Zheng, L. Evolution of a highly functional circular DNA aptamer in serum. Nucleic Acids Res. 2020, 48, 10680–10690. [Google Scholar] [CrossRef] [PubMed]
- Vasileva, N.S.; Ageenko, A.B.; Richter, V.A.; Kuligina, E.V. The Signaling Pathways Controlling the Efficacy of Glioblastoma Therapy. Acta Naturae 2022, 14, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Gold, L. Diversity of Oligonucleotide Functions. Annu. Rev. Biochem. 1995, 64, 763–797. [Google Scholar] [CrossRef] [PubMed]
- Hermann, T.; Patel, D.J. Adaptive Recognition by Nucleic Acid Aptamers. Science 2000, 287, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Dymova, M.A.; Kichkailo, A.S.; Kuligina, E.V.; Richter, V.A. Aptamers Enhance Oncolytic Viruses’ Antitumor Efficacy. Pharmaceutics 2022, 15, 151. [Google Scholar] [CrossRef] [PubMed]
- Kichkailo, A.S.; Narodov, A.A.; Komarova, M.A.; Zamay, T.N.; Zamay, G.S.; Kolovskaya, O.S.; Erakhtin, E.E.; Glazyrin, Y.E.; Veprintsev, D.V.; Moryachkov, R.V.; et al. Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells. Mol. Ther.-Nucleic Acids 2023, 32, 267–288. [Google Scholar] [CrossRef] [PubMed]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Lunardi, C.N.; Gomes, A.J.; Rocha, F.S.; De Tommaso, J.; Patience, G.S. Experimental methods in chemical engineering: Zeta potential. Can. J. Chem. Eng. 2021, 99, 627–639. [Google Scholar] [CrossRef]
- Jarmoskaite, I.; AlSadhan, I.; Vaidyanathan, P.P.; Herschlag, D. How to measure and evaluate binding affinities. eLife 2020, 9, e57264. [Google Scholar] [CrossRef]
- Buchwald, P. A single unified model for fitting simple to complex receptor response data. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Burton, D.R. Antiviral neutralizing antibodies: From in vitro to in vivo activity. Nat. Rev. Immunol. 2023, 23, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Boniecki, M.J.; Lach, G.; Dawson, W.K.; Tomala, K.; Lukasz, P.; Soltysinski, T.; Rother, K.M.; Bujnicki, J.M. SimRNA: A coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 2015, 44, e63. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Heyer, L.J.; Kruglyak, S.; Yooseph, S. Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Res. 1999, 9, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Leparc-Goffart, I.; Poirier, B.; Garin, D.; Tissier, M.-H.; Fuchs, F.; Crance, J.-M. Standardization of a neutralizing anti-vaccinia antibodies titration method: An essential step for titration of vaccinia immunoglobulins and smallpox vaccines evaluation. J. Clin. Virol. 2005, 32, 47–52. [Google Scholar] [CrossRef]
- Kovrigina, E.; Poletaeva, Y.; Zheng, Y.; Chubarov, A.; Dmitrienko, E. Nylon-6-Coated Doxorubicin-Loaded Magnetic Nanoparticles and Nanocapsules for Cancer Treatment. Magnetochemistry 2023, 9, 106. [Google Scholar] [CrossRef]
- El Deeb, S.; Al-Harrasi, A.; Khan, A.; Al-Broumi, M.; Al-Thani, G.; Alomairi, M.; Elumalai, P.; Sayed, R.A.; Ibrahim, A.E. Microscale thermophoresis as a powerful growing analytical technique for the investigation of biomolecular interaction and the determination of binding parameters. Methods Appl. Fluoresc. 2022, 10, 042001. [Google Scholar] [CrossRef] [PubMed]
- Sakovina, L.; Vokhtantsev, I.; Vorobyeva, M.; Vorobyev, P.; Novopashina, D. Improving Stability and Specificity of CRISPR/Cas9 System by Selective Modification of Guide RNAs with 2′-fluoro and Locked Nucleic Acid Nucleotides. Int. J. Mol. Sci. 2022, 23, 13460. [Google Scholar] [CrossRef]
Hydrodynamic Diameter (by Intensity), nm | ζ-Potential, mV | ||
---|---|---|---|
1 | Virus (20:80 dilution) | 805 ± 15 | −8.4 ± 0.4 |
2 | Aptamer_Cy5 (20:80 dilution) | 4.3 ± 0.7 | |
3 | Virus + Aptamer_Cy5 (10:10:80) | 556 ± 9 | −14.6 ± 0.4 |
4 | Virus + Aptamer_Cy5 (1:1 ratio, serum dilution 1:500) | 571 ± 30 | |
5 | Virus + Aptamer_Cy5 (1:1 ratio, serum dilution 1:1000) | 542 ± 14 | |
6 | Virus + Aptamer_Cy5 (1:1 ratio, serum dilution 1:3000) | 512 ± 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymova, M.A.; Malysheva, D.O.; Popova, V.K.; Dmitrienko, E.V.; Endutkin, A.V.; Drokov, D.V.; Mukhanov, V.S.; Byvakina, A.A.; Kochneva, G.V.; Artyushenko, P.V.; et al. Characterizing Aptamer Interaction with the Oncolytic Virus VV-GMCSF-Lact. Molecules 2024, 29, 848. https://doi.org/10.3390/molecules29040848
Dymova MA, Malysheva DO, Popova VK, Dmitrienko EV, Endutkin AV, Drokov DV, Mukhanov VS, Byvakina AA, Kochneva GV, Artyushenko PV, et al. Characterizing Aptamer Interaction with the Oncolytic Virus VV-GMCSF-Lact. Molecules. 2024; 29(4):848. https://doi.org/10.3390/molecules29040848
Chicago/Turabian StyleDymova, Maya A., Daria O. Malysheva, Victoria K. Popova, Elena V. Dmitrienko, Anton V. Endutkin, Danil V. Drokov, Vladimir S. Mukhanov, Arina A. Byvakina, Galina V. Kochneva, Polina V. Artyushenko, and et al. 2024. "Characterizing Aptamer Interaction with the Oncolytic Virus VV-GMCSF-Lact" Molecules 29, no. 4: 848. https://doi.org/10.3390/molecules29040848
APA StyleDymova, M. A., Malysheva, D. O., Popova, V. K., Dmitrienko, E. V., Endutkin, A. V., Drokov, D. V., Mukhanov, V. S., Byvakina, A. A., Kochneva, G. V., Artyushenko, P. V., Shchugoreva, I. A., Rogova, A. V., Tomilin, F. N., Kichkailo, A. S., Richter, V. A., & Kuligina, E. V. (2024). Characterizing Aptamer Interaction with the Oncolytic Virus VV-GMCSF-Lact. Molecules, 29(4), 848. https://doi.org/10.3390/molecules29040848