Elemental Fingerprinting of Pecorino Romano and Pecorino Sardo PDO: Characterization, Authentication and Nutritional Value
Abstract
:1. Introduction
2. Results and Discussion
2.1. Elemental Composition of Pecorino Romano PDO and Pecorino Sardo PDO
2.2. Differentiation Due to Cheese-Making Process Technology
2.3. Effect of Seasonality
2.4. Nutritional and Safety Aspects
3. Materials and Methods
3.1. Samples
3.2. Instrumentation and Reagents
3.3. Sample Preparation
3.4. Elemental Analysis, Validation, Quality Control and Assurance
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, P.C. Milk Nutritional Composition and Its Role in Human Health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited Review: Current Production Trends, Farm Structures, and Economics of the Dairy Sheep and Goat Sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [PubMed]
- Vagnoni, E.; Franca, A.; Porqueddu, C.; Duce, P. Environmental Profile of Sardinian Sheep Milk Cheese Supply Chain: A Comparison between Two Contrasting Dairy Systems. J. Clean. Prod. 2017, 165, 1078–1089. [Google Scholar] [CrossRef]
- Pulina, G.; Atzori, A.S.; Dimauro, C.; Ibba, I.; Gaias, G.F.; Correddu, F.; Nudda, A. The Milk Fingerprint of Sardinian Dairy Sheep: Quality and Yield of Milk Used for Pecorino Romano P.D.O. Cheese Production on Population-Based 5-Year Survey. Ital. J. Anim. Sci. 2021, 20, 171–180. [Google Scholar] [CrossRef]
- Camanzi, L.; Arba, E.; Rota, C.; Zanasi, C.; Malorgio, G. A Structural Equation Modeling Analysis of Relational Governance and Economic Performance in Agri-Food Supply Chains: Evidence from the Dairy Sheep Industry in Sardinia (Italy). Agric. Food Econ. 2018, 6, 4. [Google Scholar] [CrossRef]
- Lai, G.; Caboni, P.; Piras, C.; Pes, M.; Sitzia, M.; Addis, M.; Pirisi, A.; Scano, P. Development and Chemico-Physical Characterization of Ovine Milk-Based Ingredients for Infant Formulae. Appl. Sci. 2023, 13, 653. [Google Scholar] [CrossRef]
- Kraus, A. Development of Functional Food with the Participation of the Consumer. Motivators for Consumption of Functional Products. Int. J. Consum. Stud. 2015, 39, 2–11. [Google Scholar] [CrossRef]
- Sajdakowska, M.; Gębski, J.; Guzek, D.; Gutkowska, K.; Żakowska-Biemans, S. Dairy Products Quality from a Consumer Point of View: Study among Polish Adults. Nutrients 2020, 12, 1503. [Google Scholar] [CrossRef]
- de la Fuente, M.A.; Juárez, M. Milk and Dairy Products. In Handbook of Mineral Elements in Food; Wiley: Hoboken, NJ, USA, 2015; pp. 645–668. ISBN 9781118654316. [Google Scholar]
- Cannas, D.; Loi, E.; Serra, M.; Firinu, D.; Valera, P.; Zavattari, P. Relevance of Essential Trace Elements in Nutrition and Drinking Water for Human Health and Autoimmune Disease Risk. Nutrients 2020, 12, 2074. [Google Scholar] [CrossRef]
- Islam, M.R.; Akash, S.; Jony, M.H.; Alam, M.N.; Nowrin, F.T.; Rahman, M.M.; Rauf, A.; Thiruvengadam, M. Exploring the Potential Function of Trace Elements in Human Health: A Therapeutic Perspective. Mol. Cell. Biochem. 2023, 478, 2141–2171. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- de Almeida Ribeiro Carvalho, M.; Botero, W.G.; de Oliveira, L.C. Natural and Anthropogenic Sources of Potentially Toxic Elements to Aquatic Environment: A Systematic Literature Review. Environ. Sci. Pollut. Res. 2022, 29, 51318–51338. [Google Scholar] [CrossRef]
- EC No 1881/2006; Setting Maximum Levels for Certain Contaminants in Foodstuffs. European Commission: Luxembourg, 2006; pp. 5–24.
- EU No 15/2011; Amending Regulation (EC) No 2074/2005 as Regards Recognised Testing Methods for Detecting Marine Biotoxins in Live Bivalve Molluscs. European Commission: Luxembourg, 2011; pp. 3–6.
- Koch, W.; Czop, M.; Iłowiecka, K.; Nawrocka, A.; Wiącek, D. Dietary Intake of Toxic Heavy Metals with Major Groups of Food Products—Results of Analytical Determinations. Nutrients 2022, 14, 1626. [Google Scholar] [CrossRef]
- Crupi, R.; Lo Turco, V.; Gugliandolo, E.; Nava, V.; Potortì, A.G.; Cuzzocrea, S.; Di Bella, G.; Licata, P. Mineral Composition in Delactosed Dairy Products: Quality and Safety Status. Foods 2022, 11, 139. [Google Scholar] [CrossRef]
- Giri, A.; Bharti, V.K.; Kalia, S.; Kumar, B.; Chaurasia, O.P. Health Risk Assessment of Heavy Metals Through Cow Milk Consumption in Trans-Himalayan High-Altitude Region. Biol. Trace Elem. Res. 2021, 199, 4572–4581. [Google Scholar] [CrossRef]
- Zhang, P.; Georgiou, C.A.; Brusic, V. Elemental Metabolomics. Brief. Bioinform. 2018, 19, 524–536. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food Authentication: Techniques, Trends & Emerging Approaches. TrAC—Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar] [CrossRef]
- Aceto, M. The Use of ICP-MS in Food Traceability. In Advances in Food Traceability Techniques and Technologies; Elsevier: Amsterdam, The Netherlands, 2016; pp. 137–164. ISBN 978-0-08-100310-7. [Google Scholar]
- Drivelos, S.A.; Georgiou, C.A. Multi-Element and Multi-Isotope-Ratio Analysis to Determine the Geographical Origin of Foods in the European Union. TrAC—Trends Anal. Chem. 2012, 40, 38–51. [Google Scholar] [CrossRef]
- de Andrade, B.M.; Margalho, L.P.; Batista, D.B.; Lucena, I.O.; Kamimura, B.A.; Balthazar, C.F.; Brexó, R.P.; Pia, A.K.R.; Costa, R.A.S.; Cruz, A.G.; et al. Chemometric Classification of Brazilian Artisanal Cheeses from Different Regions According to Major and Trace Elements by ICP-OES. J. Food Compos. Anal. 2022, 109, 104519. [Google Scholar] [CrossRef]
- Magdas, D.A.; Feher, I.; Cristea, G.; Voica, C.; Tabaran, A.; Mihaiu, M.; Cordea, D.V.; Bâlteanu, V.A.; Dan, S.D. Geographical Origin and Species Differentiation of Transylvanian Cheese. Comparative Study of Isotopic and Elemental Profiling vs. DNA Results. Food Chem. 2019, 277, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, R.; Villoslada Hidalgo, M.D.C.; Vardè, M.; Kehrwald, N.M.; Barbante, C.; Cozzi, G. Trace and Rare Earth Elements Determination in Milk Whey from the Veneto Region, Italy. Food Control 2021, 121, 107595. [Google Scholar] [CrossRef]
- Danezis, G.P.; Pappas, A.C.; Tsiplakou, E.; Pappa, E.C.; Zacharioudaki, M.; Tsagkaris, A.S.; Papachristidis, C.A.; Sotirakoglou, K.; Zervas, G.; Georgiou, C.A. Authentication of Greek Protected Designation of Origin Cheeses through Elemental Metabolomics. Int. Dairy J. 2020, 104, 104599. [Google Scholar] [CrossRef]
- Nečemer, M.; Potočnik, D.; Ogrinc, N. Discrimination between Slovenian Cow, Goat and Sheep Milk and Cheese According to Geographical Origin Using a Combination of Elemental Content and Stable Isotope Data. J. Food Compos. Anal. 2016, 52, 16–23. [Google Scholar] [CrossRef]
- Di Donato, F.; Foschi, M.; Vlad, N.; Biancolillo, A.; Rossi, L.; D’archivio, A.A. Multi-Elemental Composition Data Handled by Chemometrics for the Discrimination of High-Value Italian Pecorino Cheeses. Molecules 2021, 26, 6875. [Google Scholar] [CrossRef] [PubMed]
- Santarcangelo, C.; Baldi, A.; Ciampaglia, R.; Dacrema, M.; Di Minno, A.; Pizzamiglio, V.; Tenore, G.C.; Daglia, M. Long-Aged Parmigiano Reggiano PDO: Trace Element Determination Targeted to Health. Foods 2022, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bermúdez, R.; López-Alonso, M.; Miranda, M.; Fouz, R.; Orjales, I.; Herrero-Latorre, C. Chemometric Authentication of the Organic Status of Milk on the Basis of Trace Element Content. Food Chem. 2018, 240, 686–693. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Filho, E.F.; Miranda, M.; Ferreiro, T.; Herrero-Latorre, C.; Castro Soares, P.; López-Alonso, M. Concentrations of Essential Trace and Toxic Elements Associated with Production and Manufacturing Processes in Galician Cheese. Molecules 2022, 27, 4938. [Google Scholar] [CrossRef]
- Aceto, M.; Musso, D.; Calà, E.; Arieri, F.; Oddone, M. Role of Lanthanides in the Traceability of the Milk Production Chain. J. Agric. Food Chem. 2017, 65, 4200–4208. [Google Scholar] [CrossRef]
- Danezis, G.P.; Georgiou, C.A. Elemental Metabolomics: Food Elemental Assessment Could Reveal Geographical Origin. Curr. Opin. Food Sci. 2022, 44, 100812. [Google Scholar] [CrossRef]
- Urgeghe, P.P.; Piga, C.; Addis, M.; Di Salvo, R.; Piredda, G.; Scintu, M.F.; Wolf, I.V.; Sanna, G. SPME/GC-MS Characterization of the Volatile Fraction of an Italian PDO Sheep Cheese to Prevalent Lypolitic Ripening: The Case of Fiore Sardo. Food Anal. Methods 2012, 5, 723–730. [Google Scholar] [CrossRef]
- Caredda, M.; Addis, M.; Ibba, I.; Leardi, R.; Scintu, M.F.; Piredda, G.; Sanna, G. Prediction of Fatty Acid Content in Sheep Milk by Mid-Infrared Spectrometry with a Selection of Wavelengths by Genetic Algorithms. LWT 2016, 65, 503–510. [Google Scholar] [CrossRef]
- Idda, I.; Spano, N.; Ciulu, M.; Nurchi, V.M.; Panzanelli, A.; Pilo, M.I.; Sanna, G. Gas Chromatography Analysis of Major Free Mono- and Disaccharides in Milk: Method Assessment, Validation, and Application to Real Samples. J. Sep. Sci. 2016, 39, 4577–4584. [Google Scholar] [CrossRef] [PubMed]
- Pulinas, L.; Spanu, C.; Idda, I.; Ibba, I.; Nieddu, G.; Virdis, S.; Scarano, C.; Piras, F.; Spano, N.; Sanna, G.; et al. Production of Farmstead Lactose-Free Pecorino Di Osilo and Ricotta Cheeses from Sheep’s Milk. Ital. J. Food Saf. 2017, 6, 1. [Google Scholar] [CrossRef]
- Idda, I.; Spano, N.; Addis, M.; Galistu, G.; Ibba, I.; Nurchi, V.M.; Pilo, M.I.; Scintu, M.F.; Piredda, G.; Sanna, G. Optimization of a Newly Established Gas-Chromatographic Method for Determining Lactose and Galactose Traces: Application to Pecorino Romano Cheese. J. Food Compos. Anal. 2018, 74, 89–94. [Google Scholar] [CrossRef]
- Piga, C.; Urgeghe, P.P.; Piredda, G.; Scintu, M.F.; Sanna, G. Assessment and Validation of Methods for the Determination of γ-Glutamyltransferase Activity in Sheep Milk. Food Chem. 2009, 115, 1519–1523. [Google Scholar] [CrossRef]
- Piga, C.; Urgeghe, P.P.; Piredda, G.; Scintu, M.F.; Sanna, G. Analytical Methods for the Evaluation of α-l-Fucosidase Activity in Sheep Milk. Food Anal. Methods 2010, 3, 17–21. [Google Scholar] [CrossRef]
- Piga, C.; Urgeghe, P.P.; Piredda, G.; Scintu, M.F.; Di Salvo, R.; Sanna, G. Thermal Inactivation and Variability of γ-Glutamyltransferase and α-l-Fucosidase Enzymatic Activity in Sheep Milk. LWT—Food Sci. Technol. 2013, 54, 152–156. [Google Scholar] [CrossRef]
- Dedola, A.S.; Piras, L.; Addis, M.; Pirisi, A.; Piredda, G.; Mara, A.; Sanna, G. New Analytical Tools for Unmasking Frauds in Raw Milk-Based Dairy Products: Assessment, Validation and Application to Fiore Sardo PDO Cheese of a RP-HPLC Method for the Evaluation of the α-l-Fucosidase Activity. Separations 2020, 7, 40. [Google Scholar] [CrossRef]
- Caredda, M.; Addis, M.; Ibba, I.; Leardi, R.; Scintu, M.F.; Piredda, G.; Sanna, G. Building of Prediction Models by Using Mid-Infrared Spectroscopy and Fatty Acid Profile to Discriminate the Geographical Origin of Sheep Milk. LWT 2017, 75, 131–136. [Google Scholar] [CrossRef]
- Zazzu, C.; Addis, M.; Caredda, M.; Scintu, M.F.; Piredda, G.; Sanna, G. Biogenic Amines in Traditional Fiore Sardo Pdo Sheep Cheese: Assessment, Validation and Application of an Rp-Hplc-Dad-Uv Method. Separations 2019, 6, 11. [Google Scholar] [CrossRef]
- Guiso, M.F.; Battacone, G.; Canu, L.; Deroma, M.; Langasco, I.; Sanna, G.; Tsiplakou, E.; Pulina, G.; Nudda, A. Essential and Toxic Mineral Content and Fatty Acid Profile of Colostrum in Dairy Sheep. Animals 2022, 12, 2730. [Google Scholar] [CrossRef] [PubMed]
- Spano, N.; Bortolu, S.; Addis, M.; Langasco, I.; Mara, A.; Pilo, M.I.; Sanna, G.; Urgeghe, P.P. An Analytical Protocol for the Differentiation and the Potentiometric Determination of Fluorine-Containing Fractions in Bovine Milk. Molecules 2023, 28, 1349. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, E.; Givelet, L.; Amlund, H.; Sloth, J.J.; Hansen, M. Risk Assessment of Rare Earth Elements, Antimony, Barium, Boron, Lithium, Tellurium, Thallium and Vanadium in Teas. EFSA J. 2022, 20, e200410. [Google Scholar] [CrossRef] [PubMed]
- Manuelian, C.L.; Currò, S.; Penasa, M.; Cassandro, M.; De Marchi, M. Characterization of Major and Trace Minerals, Fatty Acid Composition, and Cholesterol Content of Protected Designation of Origin Cheeses. J. Dairy Sci. 2017, 100, 3384–3395. [Google Scholar] [CrossRef]
- Coni, E.; Bocca, B.; Caroli, S. Minor and Trace Element Content of Two Typical Italian Sheep Dairy Products. J. Dairy Res. 1999, 66, 589–598. [Google Scholar] [CrossRef]
- Danezis, G.; Theodorou, C.; Massouras, T.; Zoidis, E.; Hadjigeorgiou, I.; Georgiou, C.A. Greek Graviera Cheese Assessment through Elemental Metabolomics—Implications for Authentication, Safety and Nutrition. Molecules 2019, 24, 670. [Google Scholar] [CrossRef]
- Recio, I.; de la Fuente, M.A.; Juárez, M.; Ramos, M. Bioactive Components in Sheep Milk. In Bioactive Components in Milk and Dairy Products; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 83–104. ISBN 978-0-8138-2150-4. [Google Scholar]
- de la Fuente, M.A.; Olano, A.; Juârez, M. Distribution of Calcium, Magnesium, Phosphorus, Zinc, Manganese, Copper and Iron between the Soluble and Colloïdal Phases of Ewe’s and Goat’s Milk. Lait 1997, 77, 515–520. [Google Scholar] [CrossRef]
- Polychroniadou, A.; Vafopoulou, A. Variations of Major Mineral Constituents of Ewe Milk during Lactation. J. Dairy Sci. 1985, 68, 147–150. [Google Scholar] [CrossRef]
- Pellegrini, O.; Remeuf, F.; Rivemal, M. Evolution of Physico-Chemical Characteristics and Renneting Properties of Ewe’s Milk Collected in the “Roquefort Area”. Lait 1994, 74, 425–442. [Google Scholar] [CrossRef]
- Martín-Hernández, M.C.; Amigo, L.; Martín-Álvarez, P.J.; Juárez, M. Differentiation of Milks and Cheeses According to Species Based on the Mineral Content. Eur. Food Res. Technol. 1992, 194, 541–544. [Google Scholar] [CrossRef]
- Timlin, M.; Tobin, J.T.; Brodkorb, A.; Murphy, E.G.; Dillon, P.; Hennessy, D.; O’donovan, M.; Pierce, K.M.; O’callaghan, T.F. The Impact of Seasonality in Pasture-Based Production Systems on Milk Composition and Functionality. Foods 2021, 10, 607. [Google Scholar] [CrossRef]
- Holt, C. Milk Salts|Interaction with Caseins. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 917–924. ISBN 978-0-12-374407-4. [Google Scholar]
- Fox, P.; McSweeney, P. Advanced Dairy Chemistry; Springer: Berlin/Heidelberg, Germany, 2009; pp. 351–389. ISBN 978-0-387-84864-8. [Google Scholar]
- Woodrow, J.; Sharpe, C.; Fudge, N.; Hoff, A.; Gagel, R.; Kovacs, C.S. Calcitonin Plays a Critical Role in Regulating Skeletal Mineral Metabolism during Lactation. Endocrinology 2006, 147, 4010–4021. [Google Scholar] [CrossRef] [PubMed]
- Liesegang, A.; Eicher, R.; Sassi, M.-L.; Risteli, J.; Kraenzlin, M.; Riond, J.-L.; Wanner, M. Biochemical Markers of Bone Formation and Resorption Around Parturition and during Lactation in Dairy Cows with High and Low Standard Milk Yields. J. Dairy Sci. 2000, 83, 1773–1781. [Google Scholar] [CrossRef]
- Gulati, A.; Galvin, N.; Lewis, E.; Hennessy, D.; O’Donovan, M.; McManus, J.J.; Fenelon, M.A.; Guinee, T.P. Outdoor Grazing of Dairy Cows on Pasture versus Indoor Feeding on Total Mixed Ration: Effects on Gross Composition and Mineral Content of Milk during Lactation. J. Dairy Sci. 2018, 101, 2710–2723. [Google Scholar] [CrossRef] [PubMed]
- Hettinga, K. Lactose in the Dairy Production Chain. In Lactose: Evolutionary Role, Health Effects, and Applications; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2019; pp. 231–266. ISBN 978-0-12-811720-0. [Google Scholar]
- Frédéric, G. The Minerals of Milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef]
- Ebringer, L.; Ferencik, M.; Krajcovic, J. Beneficial Health Effects of Milk and Fermented Dairy Products. Folia Microbiol. 2008, 53, 378–394. [Google Scholar] [CrossRef] [PubMed]
- Theobald, H. Dietary Calcium and Health. Nutr. Bull. 2005, 30, 237–277. [Google Scholar] [CrossRef]
- U.S. Department of Health & Human Services. National Institutes of Health Nutrient Recommendations and Databases. 2019. Available online: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx (accessed on 15 January 2024).
- European Union Council Directive 90/496/EEC on Nutrition Labelling Rules of Foodstuffs. 1990. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A31990L0496 (accessed on 15 January 2024).
- European Union Regulation (EC) No. 1924/2006 on Nutrition and Health Claims Made on Foods. 2006. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:404:0009:0025:En:PDF (accessed on 15 January 2024).
- European Union Regulation (EC) No. 432/2012 on the Compilation of a List of Permitted Health Claims on Food, Other Than Those Referring to the Reduction of Disease Risks and to the Development and Health of Children. 2012. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:136:0001:0040:en:PDF (accessed on 15 January 2024).
- Consorzio per la Tutela del Formaggio Pecorino Romano, Disciplinare Pecorino Romano DOP. 2009. Available online: https://www.pecorinoromano.com/pecorino-romano/disciplinare-e-norme (accessed on 15 January 2024).
- Consorzio per la Tutela del Formaggio Pecorino Sardo, Disciplinare Pecorino Sardo DOP. 1996. Available online: https://www.politicheagricole.it/flex/files/9/b/b/D.2baf7e91401d2f673d3e/Disciplinare_pecorino_sardo.pdf (accessed on 15 January 2024).
- Subramanian, A.; Rodriguez-Saona, L. Chemical and instrumental approaches to cheese analysis. Adv. Food Nutr. Res. 2010, 59, 167–213. [Google Scholar] [CrossRef]
- Mara, A.; Deidda, S.; Caredda, M.; Ciulu, M.; Deroma, M.; Farinini, E.; Floris, I.; Langasco, I.; Leardi, R.; Pilo, M.I.; et al. Multi-Elemental Analysis as a Tool to Ascertain the Safety and the Origin of Beehive Products: Development, Validation, and Application of an ICP-MS Method on Four Unifloral Honeys Produced in Sardinia, Italy. Molecules 2022, 27, 2009. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Conti, M.E.; Marconi, E.; Massimi, L.; Canepari, S. Effectiveness of Different Sample Treatments for the Elemental Characterization of Bees and Beehive Products. Molecules 2020, 25, 4263. [Google Scholar] [CrossRef]
- Currie, L.A. Nomenclature in Evaluation of Analytical Methods Including Detection and Quantification Capabilities (IUPAC Recommendations 1995). Anal. Chim. Acta 1999, 391, 105–126. [Google Scholar] [CrossRef]
- Appendix F, Guidelines for Standard Method Performance Requirements, AOAC Official Methods of Analysis. 2016. Available online: https://www.aoac.org/wp-content/uploads/2019/08/app_f.pdf (accessed on 15 January 2024).
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool Software). Available online: http://gruppochemiometria.it/index.php/software (accessed on 15 January 2024).
Element | Pecorino Sardo PDO | Pecorino Romano PDO | |||||
---|---|---|---|---|---|---|---|
Min | Mean ± st.dev. | Max | Min | Mean ± st.dev. | Max | ||
Macro (mg kg−1) | Ca | 10,000 | 14,000 ± 1000 | 16,000 | 10,000 | 14,000 ± 1000 | 16,000 |
K | 1000 | 1300 ± 200 | 1600 | 700 | 1000 ± 100 | 1300 | |
Mg | 600 | 700 ± 50 | 800 | 500 | 600 ± 40 | 800 | |
Na | 5000 | 8000 ± 1000 | 11,000 | 17,000 | 25,000 ± 5000 | 38,000 | |
P | 8000 | 9000 ± 500 | 10,000 | 7000 | 9000 ± 700 | 10,000 | |
S | 500 | 700 ± 100 | 1000 | 500 | 1000 ± 200 | 1400 | |
Trace elements (μg kg−1) | Zn | 37,000 | 56,000 ± 9000 | 78,000 | 18,000 | 47,000 ± 7500 | 60,000 |
Fe | 2600 | 7000 ± 3000 | 14,300 | 2400 | 6000 ± 950 | 8500 | |
Mn | 560 | 850 ± 100 | 1250 | 310 | 800 ± 100 | 1150 | |
Cu | 600 | 1200 ± 500 | 2100 | 500 | 1000 ± 350 | 1800 | |
Se | 210 | 340 ± 90 | 530 | 220 | 400 ± 100 | 580 | |
Rb | 1000 | 1700 ± 500 | 2600 | 600 | 1600 ± 500 | 2600 | |
Sr | 7800 | 13,400 ± 2500 | 17,900 | 4400 | 14,300 ± 2500 | 20,500 | |
Al | 200 | 6000 ± 3000 | 13,900 | 2500 | 6000 ± 2000 | 11,300 | |
B | <54 | 2000 ± 2000 | 7100 | <54 | 8000 ± 8000 | 30,000 | |
Co | 0.9 | 4 ± 1 | 9 | 1.3 | 4 ± 1 | 6 | |
Ni | <10 | 30 ± 10 | 60 | <10 | 27 ± 5 | 40 | |
Cr | <3.1 | 40 ± 20 | 95 | <3.1 | 20 ± 10 | 50 | |
V | 5 | 10 ± 5 | 21 | 7 | 15 ± 5 | 24 | |
Li | <55 | <55 | <55 | <55 | <55 | <55 | |
Ag | <1.6 | 5 ± 5 | 8 | <1.6 | 5 ± 5 | 10 | |
Toxic elements (μg kg−1) | As | <3.3 | 6 ± 1 | 8.4 | 5.7 | 8 ± 1 | 10.8 |
Cd | 0.5 | 1 ± 0.5 | 1.7 | 0.5 | 1.2 ± 0.5 | 1.9 | |
Hg | <30 | <30 | <30 | <30 | <30 | <30 | |
Pb | <3.4 | 20 ± 10 | 40 | <3.4 | 20 ± 10 | 45 | |
Sn | <2.4 | 20 ± 10 | 54 | <2.4 | 10 ± 10 | 32 | |
Sb | <3.6 | 12 ± 5 | 16 | <3.6 | 10 ± 5 | 18 | |
Tl | <0.5 | 1.9 ± 0.5 | 2.3 | <0.5 | <0.5 | <0.5 | |
Te | <1.2 | 130 ± 50 | 220 | <1.2 | 9 ± 5 | 15 | |
Bi | <0.5 | <0.5 | <0.5 | <0.5 | 2 ± 1 | 2.8 | |
U | <0.19 | 1 ± 1 | 5.2 | <0.19 | 2 ± 1 | 7.1 |
Confusion Matrix | |||||
---|---|---|---|---|---|
Training | Romano | Sardo | Testing | Romano | Sardo |
Romano | 67 | 3 | Romano | 32 | 0 |
Sardo | 1 | 69 | Sardo | 2 | 21 |
Accuracy | |||||
Romano | Sardo | Total | Romano | Sardo | Total |
95.7% | 98.6% | 97.1% | 100% | 91.3% | 95.7% |
Step | Time (min) | Temperature (°C) | |
---|---|---|---|
1 | Heating | 25 | 240 |
2 | Holding | 10 | 240 |
3 | Cooling | ca. 30 | <40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mara, A.; Caredda, M.; Addis, M.; Sanna, F.; Deroma, M.; Georgiou, C.A.; Langasco, I.; Pilo, M.I.; Spano, N.; Sanna, G. Elemental Fingerprinting of Pecorino Romano and Pecorino Sardo PDO: Characterization, Authentication and Nutritional Value. Molecules 2024, 29, 869. https://doi.org/10.3390/molecules29040869
Mara A, Caredda M, Addis M, Sanna F, Deroma M, Georgiou CA, Langasco I, Pilo MI, Spano N, Sanna G. Elemental Fingerprinting of Pecorino Romano and Pecorino Sardo PDO: Characterization, Authentication and Nutritional Value. Molecules. 2024; 29(4):869. https://doi.org/10.3390/molecules29040869
Chicago/Turabian StyleMara, Andrea, Marco Caredda, Margherita Addis, Francesco Sanna, Mario Deroma, Constantinos A. Georgiou, Ilaria Langasco, Maria I. Pilo, Nadia Spano, and Gavino Sanna. 2024. "Elemental Fingerprinting of Pecorino Romano and Pecorino Sardo PDO: Characterization, Authentication and Nutritional Value" Molecules 29, no. 4: 869. https://doi.org/10.3390/molecules29040869
APA StyleMara, A., Caredda, M., Addis, M., Sanna, F., Deroma, M., Georgiou, C. A., Langasco, I., Pilo, M. I., Spano, N., & Sanna, G. (2024). Elemental Fingerprinting of Pecorino Romano and Pecorino Sardo PDO: Characterization, Authentication and Nutritional Value. Molecules, 29(4), 869. https://doi.org/10.3390/molecules29040869