Enzymatic Synthesis of Structured Lipids Enriched with Medium- and Long-Chain Triacylglycerols via Pickering Emulsion-Assisted Interfacial Catalysis: A Preliminary Exploration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Pickering Emulsion
2.2. Fatty Acids and TAG Profiles of MCT and Camellia Oil
2.3. Optimization of Synthesis Conditions for Structured MLCT
2.3.1. Effect of Weight Ratio of MCT to Camellia Oil on MLCT Content
2.3.2. Effect of Enzyme Dosage on MLCT Content
2.3.3. Effect of PBS Dosage and pH on MLCT Content
2.3.4. Effect of Reaction Temperature on MLCT Content
2.3.5. Structural Characterization of the Enzyme
2.4. Molecular Dynamics Simulation
2.5. Reaction Kinetics
2.6. Triacylglycerol Compositions in Two Systems
3. Materials and Methods
3.1. Materials
3.2. Lipase-Catalyzed Trans-Esterification of MCT and Camellia Oil
3.2.1. Construction of Pickering Emulsion Reaction System
3.2.2. Optimization of Lipase-Catalyzed Trans-Esterification
3.3. Enzymatic Kinetic Study
3.4. Analysis of Reaction Products
3.4.1. Isolation of Reaction Products
3.4.2. Analysis of Triacylglycerol Composition
3.5. Structural Characterization of Lipase
3.6. Molecular Dynamics Simulation
3.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, C.; Liu, Y.; Wang, J.; Zhang, R.; Zhang, Y.; Zhang, J.; Zhang, Y.; Zheng, Z.; Yu, X.; Jing, H.; et al. Consumption of medium- and long-chain triacylglycerols decreases body fat and blood triglyceride in Chinese hypertriglyceridemic subjects. Eur. J. Clin. Nutr. 2009, 63, 879–886. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Tang, T.K.; Phuah, E.T.; Karim, N.A.A.; Alitheen, N.B.M.; Tan, C.P.; Razak, I.S.A.; Lai, O.M. Structural difference of palm based Medium- and Long-Chain Triacylglycerol (MLCT) further reduces body fat accumulation in DIO C57BL/6J mice when consumed in low fat diet for a mid-term period. Food Res. Int. 2018, 103, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Bornscheuer, U.T. Enzymes in Lipid Modification. Annu. Rev. Food Sci. Technol. 2018, 9, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Secundo, F.; Sun, J.A.; Mao, X.Z. Advances in enzyme biocatalysis for the preparation of functional lipids. Biotechnol. Adv. 2022, 61, 108036. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Jacoby, J.J.; Jiang, Y.; Zhang, Y.; Yu, L.L. Effects of medium- and long-chain triacylglycerols on lipid metabolism and gut microbiota composition in C57BL/6J mice. J. Agric. Food Chem. 2017, 65, 6599–6607. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.M.B.; Binks, B.P. Catalysis in Pickering emulsions. Soft Matter 2020, 16, 10221–10243. [Google Scholar] [CrossRef]
- Binks, B.P.; Rodriguez, A.M.B.; Schober, L.; Hinzmann, A.; Gröger, H. Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n-Octanaloxime in Pickering Emulsions. Angew. Chem. Int. Ed. 2021, 60, 1450–1457. [Google Scholar]
- Liu, W.; Luo, X.; Yang, T.; Huang, Y.; Zhao, M.; Yu, J.; Feng, F.; Wei, W. Ultrasound enhanced butyric acid-lauric acid designer lipid synthesis: Based on artificial neural network and changes in enzymatic structure. Ultrason. Sonochem. 2022, 88, 106100. [Google Scholar] [CrossRef]
- Guimaraes, M.; Mateus, N.; de Freitas, V.; Branco, L.C.; Cruz, L. Microwave-Assisted Synthesis and Ionic Liquids: Green and Sustainable Alternatives toward Enzymatic Lipophilization of Anthocyanin Monoglucosides. J. Agric. Food Chem. 2020, 68, 7387–7392. [Google Scholar] [CrossRef]
- Ni, L.; Yu, C.; Wei, Q.B.; Liu, D.M.; Qiu, J.S. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew. Chem. Int. Ed. 2022, 61, e202115885. [Google Scholar] [CrossRef]
- Guan, T.; Liu, B.; Wang, R.; Huang, Y.; Luo, J.; Li, Y. The enhanced fatty acids flavor release for low-fat cheeses by carrier immobilized lipases on O/W Pickering emulsions. Food Hydrocoll. 2021, 116, 106651. [Google Scholar] [CrossRef]
- Liu, X.B.; Mao, Y.H.; Yu, S.Y.; Zhang, H.; Hu, K.C.; Zhu, L.Y.; Ji, J.B.; Wang, J.L. An efficient and recyclable Pickering magnetic interface biocatalyst: Application in biodiesel production. Green Chem. 2021, 23, 966–972. [Google Scholar] [CrossRef]
- Li, W.; Faisal, S.; Guo, X.; Li, S.S.; Shi, A.M.; Jiao, B.; Wang, Q. The preparation of Diacylglycerol-rich soybean oil by acetylated modification of arachin nanoparticles for W/O Pickering emulsion system. Food Chem. 2023, 426, 136615. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, H.; Mao, X. Cellulose nanofibril-stabilized Pickering emulsion as a high-performance interfacial biocatalysis system for the synthesis of phosphatidylserine. Food Chem. 2022, 399, 133865. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Du, X.; Meng, X.; Qiu, D.; Qiao, Y. A three-tiered colloidosomal microreactor for continuous flow catalysis. Nat. Commun. 2021, 12, 6113–6121. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhang, Y.; Wang, J.; Huang, F.; Zheng, M. Magnetic Switchable Pickering Interfacial Biocatalysis: One-Pot Cascade Synthesis of Phytosterol Esters from High-Acid Value Oil. ACS Sustain. Chem. Eng. 2021, 9, 12070–12078. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, X.; Shi, H.; Liang, L.; Xue, N.; Wang, J.H.; Yang, H. Pickering-Droplet-Derived MOF Microreactors for Continuous-Flow Biocatalysis with Size Selectivity. J. Am. Chem. Soc. 2021, 143, 16641–16652. [Google Scholar] [CrossRef] [PubMed]
- Ghide, M.K.; Li, K.; Wang, J.; Abdulmalek, S.A.; Yan, Y. Immobilization of Rhizomucor miehei lipase on magnetic multiwalled carbon nanotubes towards the synthesis of structured lipids rich in sn-2 palmitic acid and sn-1,3 oleic acid (OPO) for infant formula use. Food Chem. 2022, 390, 133171. [Google Scholar] [CrossRef]
- Cortes-Clerget, M.; Yu, J.; Kincaid, J.R.A.; Walde, P.; Gallou, F.; Lipshutz, B.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend. Chem. Sci. 2021, 12, 4237–4266. [Google Scholar] [CrossRef] [PubMed]
- Kitanosono, T.; Kobayashi, S. Reactions in Water Involving the “On-Water” Mechanism. Chem. Eur. J. 2020, 26, 9408–9429. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Marciello, M.; Estevez-Gay, M.; Rodriguez, P.E.D.S.; Morato, Y.L.; Iglesias-Fernandez, J.; Huang, X.; Osuna, S.; Filice, M.; Sanchez, S. Enzyme Conformation Influences the Performance of Lipase-powered Nanomotors. Angew. Chem. Int. Ed. 2020, 59, 21080–21087. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Fu, C.W.; Aguila, B.; Perman, J.; Wang, S.; Huang, H.Y.; Xiao, F.S.; Ma, S.Q. Pore Environment Control and Enhanced Performance of Enzymes Infiltrated in Covalent Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Luo, Z.; Lu, X. Biomimetic Mineralization Inducing Lipase–Metal–Organic Framework Nanocomposite for Pickering Interfacial Biocatalytic System. ACS Sustain. Chem. Eng. 2019, 7, 7127–7139. [Google Scholar] [CrossRef]
- Shi, T.; Wu, G.; Jin, Q.; Wang, X. Detection of camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC-MS fingerprints. Food Chem. 2021, 352, 129422. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Wei, W.; Wang, X.; Jin, Q. Biosynthesis of structured lipids enriched with medium and long-chain triacylglycerols for human milk fat substitute. LWT-Food Sci. Technol. 2020, 128, 109255. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, C.; Zhang, Y.; Wei, W.; Jin, Q.; Xu, Z.; Tao, G.; Wang, X. Identification and quantification of triacylglycerols in human milk fat using ultra-performance convergence chromatography and quadrupole time-of-flight mass spectrometery with supercritical carbon dioxide as a mobile phase. Food Chem. 2019, 275, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Lou, F.; Tao, G.; Liu, R.; Chang, M.; Jin, Q.; Wang, X. Composition and Structure of Single Cell Oil Produced by Schizochytrium limacinum SR31. J. Am. Oil Chem. Soc. 2016, 93, 1337–1346. [Google Scholar] [CrossRef]
- Zhang, Y.; Ettelaie, R.; Binks, B.P.; Yang, H. Highly Selective Catalysis at the Liquid–Liquid Interface Microregion. ACS Catal. 2021, 11, 1485–1494. [Google Scholar] [CrossRef]
- Stourac, J.; Vavra, O.; Kokkonen, P.; Filipovic, J.; Pinto, G.; Brezovsky, J.; Damborsky, J.; Bednar, D. Caver Web 1.0: Identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 2019, 47, 414–422. [Google Scholar] [CrossRef]
Km (mM) | Vmax (mM/min) | Vmax/Km (min−1) | |
---|---|---|---|
Water-free system | 1.768 | 5.018 | 2.837 |
PE system | 0.259 | 5.136 | 19.802 |
Peak Number | [M + NH4]+ | Composition | Relative Content (%) | |
---|---|---|---|---|
Water-Free | Pickering Emulsion | |||
1 | 488.39 | 8:0/8:0/8:0 | 2.26 ± 0.06 | 2.18 ± 0.03 |
2 | 516.4 | 8:0/10:0/8:0 | 4.19 ± 0.82 | 4.06 ± 0.83 |
3 | 544.45 | 8:0/10:0/8:0 | 4.80 ± 1.13 | 3.99 ± 0.67 |
4 | 572.48 | 10:0/10:0/10:0 | 1.70 ± 0.22 | 1.57 ± 0.02 |
5 | 624.5 | 8:0/18:2/8:0 | 2.23 ± 0.06 | 2.11 ± 0.03 |
6 | 600.52 | 8:0/16:0/8:0 | 2.63 ± 0.31 | 2.31 ± 0.32 |
7 | 626.5 | 8:0/18:1/8:0 | 11.26 ± 1.46 | 10.74 ± 2.01 |
8 | 652.5 | 10:0/18:2/8:0 | 1.15 ± 0.06 | 2.29 ± 0.18 |
9 | 628.5 | 10:0/16:0/8:0 | 0.68 ± 0.01 | 1.01 ± 0.03 |
10 | 628.5 | 8:0/10:0/16:0 | 0.37 ± 0.00 | nd |
11 | 654.5 | 8:0/18:1/10:0 | 13.13 ± 1.49 | 13.53 ± 2.88 |
12 | 622.5 | 8:0/18:3/8:0 | 0.22 ± 0.01 | 0.21 ± 0.01 |
13 | 680.5 | 10:0/18:2/10:0 | 1.51 ± 0.03 | 1.46 ± 0.06 |
14 | 656.5 | 10:0/16:0/10:0 | 1.24 ± 0.02 | 1.22 ± 0.26 |
15 | 650.5 | 10:0/18:3/8:0 | 0.25 ± 0.00 | 0.24 ± 0.00 |
16 | 682.5 | 10:0/18:1/10:0 | 6.96 ± 1.83 | 6.33 ± 1.41 |
17 | 684.5 | 10:0/18:0/10:0 | 0.74 ± 0.45 | 1.18 ± 0.03 |
18 | 736.6 | 16:0/18:2/8:0 | 1.28 ± 0.02 | 1.16 ± 0.01 |
19 | 758.6 | 8:0/18:2/18:3 | 0.29 ± 0.01 | 0.27 ± 0.00 |
20 | 788.6 | 18:2/10:0/18:2 | 0.61 ± 0.00 | 2.64 ± 0.03 |
21 | 762.6 | 18:1/10:0/18:2 | 3.68 ± 0.06 | 3.16 ± 0.36 |
22 | 738.6 | 16:0/8:0/18:1 | 3.77 ± 0.83 | 3.46 ± 0.06 |
23 | 764.6 | 18:1/8:0/18:1 | 10.83 ± 1.92 | 9.34 ± 1.95 |
24 | 760.8 | 18:2/8:0/18:2 | 1.21 ± 0.03 | 1.31 ± 0.02 |
25 | 790.6 | 18:2/10:0/18:1 | 1.54 ± 0.02 | 1.56 ± 0.03 |
26 | 792.7 | 18:1/10:0/18:1 | 5.09 ± 0.96 | 4.50 ± 0.87 |
27 | 766.6 | 18:1/10:0/16:0 | 1.32 ± 0.02 | 1.22 ± 0.44 |
28 | 896.7 | 18:2/18:2/18:2 | 1.09 ± 0.36 | 1.16 ± 0.21 |
29 | 872.7 | 18:2/16:0/18:2 | 0.74 ± 0.01 | 0.69 ± 0.01 |
30 | 794.7 | 18:1/18:0/10:0 | 0.76 ± 0.00 | 1.05 ± 0.03 |
31 | 898.7 | 18:2/18:1/18:2 | 1.52 ± 0.01 | 1.51 ± 0.06 |
32 | 876.8 | 18:1/16:0/18:1 | 1.78 ± 0.03 | 1.46 ± 0.02 |
33 | 902.8 | 18:1/18:1/18:1 | 5.46 ± 0.32 | 4.25 ± 0.06 |
34 | 900.8 | 18:1/18:2/18:1 | 2.64 ± 0.62 | 2.16 ± 0.34 |
35 | 874.8 | 18:2/18:1/16:0 | 1.01 ± 0.04 | 1.08 ± 0.03 |
36 | 904.8 | 18:1/18:0/18:1 | 0.07 ± 0.00 | 0.79 ± 0.01 |
38 | 736.6 | 16:0/8:0/18:2 | nd | 1.18 ± 0.03 |
39 | 794.7 | 10:0/18:1/18:0 | nd | 1.06 ± 0.00 |
40 | 788.6 | 18:3/10:0/18:1 | nd | 0.57 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Cui, Z.; Jin, J.; Cheng, X.; Wu, G.; Wang, X.; Jin, Q. Enzymatic Synthesis of Structured Lipids Enriched with Medium- and Long-Chain Triacylglycerols via Pickering Emulsion-Assisted Interfacial Catalysis: A Preliminary Exploration. Molecules 2024, 29, 915. https://doi.org/10.3390/molecules29040915
Dong Z, Cui Z, Jin J, Cheng X, Wu G, Wang X, Jin Q. Enzymatic Synthesis of Structured Lipids Enriched with Medium- and Long-Chain Triacylglycerols via Pickering Emulsion-Assisted Interfacial Catalysis: A Preliminary Exploration. Molecules. 2024; 29(4):915. https://doi.org/10.3390/molecules29040915
Chicago/Turabian StyleDong, Zhe, Ziheng Cui, Jun Jin, Xinyi Cheng, Gangcheng Wu, Xingguo Wang, and Qingzhe Jin. 2024. "Enzymatic Synthesis of Structured Lipids Enriched with Medium- and Long-Chain Triacylglycerols via Pickering Emulsion-Assisted Interfacial Catalysis: A Preliminary Exploration" Molecules 29, no. 4: 915. https://doi.org/10.3390/molecules29040915
APA StyleDong, Z., Cui, Z., Jin, J., Cheng, X., Wu, G., Wang, X., & Jin, Q. (2024). Enzymatic Synthesis of Structured Lipids Enriched with Medium- and Long-Chain Triacylglycerols via Pickering Emulsion-Assisted Interfacial Catalysis: A Preliminary Exploration. Molecules, 29(4), 915. https://doi.org/10.3390/molecules29040915