Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Model
2.2. Numerical Calculations
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, K.; Zhu, Y.; Liu, Z.; Xue, D. State of the Art in Crystallization of LiNbO3 and Their Applications. Molecules 2021, 26, 7044. [Google Scholar] [CrossRef]
- Tiwari, R.P.; Birajdar, B.; Ghosh, R.K. Strain engineering of ferroelectric KNbO3 for bulk photovoltaic applications: An insight from density functional theory calculations. J. Phys. Condens. Matter 2019, 31, 505502. [Google Scholar] [CrossRef]
- Zhang, F.; Kang, H.; Lin, Y.; Guan, L.; Aslan, H.; Zhang, M.; Niu, L.; Dong, M. Studying the Pyroelectric Effects of LiNbO3 Modified Composites. Nanoscale Res. Lett. 2020, 15, 106. [Google Scholar] [CrossRef]
- Min, K.; Huang, F.; Lu, X.; Kan, Y.; Zhang, J.; Peng, S.; Liu, Y.; Su, J.; Zhang, C.; Liu, Z.; et al. Room-temperature multiferroic properties of Co-doped KNbO3 ceramics. Solid State Commun. 2012, 152, 304–306. [Google Scholar] [CrossRef]
- Golovina, I.S.; Shanina, B.D.; Kolesnik, S.P.; Geifman, I.N.; Andriiko, A.A. Magnetic properties of nanocrystalline KNbO3. J. Appl. Phys. 2013, 114, 174106. [Google Scholar] [CrossRef]
- Diaz-Moreno, C.A.; Farias-Mancilla, R.; Elizalde-Galindo, J.T.; Gonzalez-Hernandez, J.; Hurtado-Macias, A.; Bahena, D.; Jose-Yacaman, M.; Ramos, M. Structural Aspects LiNbO3 Nanoparticles and Their Ferromagnetic Properties. Materials 2014, 7, 7217–7225. [Google Scholar] [CrossRef]
- Zamarron-Montes, L.; Espinosa-Gonzalez, D.; Espinosa-Magana, F. Study of electronic and magnetic properties of Mn-doped KNbO3: A first-principles approach. Solid State Commun. 2024, 377, 115394. [Google Scholar] [CrossRef]
- Lin, L.; Hu, C.; Huang, J.; Yan, L.; Zhang, M.; Chen, R.; Tao, K.; Zhang, Z. Magnetism and optical properties of LiNbO3 doped with (Fe,Ni,Ga): First-principles calculations. J. Appl. Phys. 2021, 130, 053901. [Google Scholar] [CrossRef]
- Diao, C.L.; Zheng, H.W. The preparation and surface photovoltage characterization of KNbO3 powder. J. Mater. Sci. Mater. Electr. 2015, 26, 3108–3111. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ramraj, R.B.; Ramamurthi, K.; Raman, S. Influence of Cr-doping on structural, morphological, optical, dielectric and magnetic properties of KNbO3 ceramics. Mater. Chem. Phys. 2018, 213, 130–139. [Google Scholar]
- Zhang, X.; Qi, R.; Dong, S.; Yang, S.; Jing, C.; Sun, L.; Chen, Y.; Hong, X.; Yang, P.; Yue, F.; et al. Modulation of Ferroelectric and Optical Properties of La-Co-Doped KNbO3 Ceramics. Nanomaterials 2021, 11, 2273. [Google Scholar] [CrossRef]
- Maarouf, A.A.; Gogova, D.; Fadlallah, M.M. Metal Doped KNbO3 for Visible Light Photocatalytic Water Splitting: A First Principles Investigation. Appl. Phys. Lett. 2021, 119, 063901. [Google Scholar] [CrossRef]
- Raturi, A.; Mittal, P.; Choudhary, S. Electronic and optical properties of lithium niobate ( LiNbO3) under tensile and compressive strain for optoelectronic applications: Insights from DFT-computations. Mater. Sci. Semicond. Proc. 2022, 144, 106606. [Google Scholar] [CrossRef]
- Liang, Y.; Shao, G. First principles study for band engineering of KNbO3 with 3d transition metal substitution. RSC Adv. 2019, 9, 7551. [Google Scholar] [CrossRef]
- Zainuddin, L.W.; Samat, M.H.; Zaki, N.H.M.; Badrudin, F.W.; Osman, N.; Jani, A.M.M.; Hassan, O.H.; Taib, M.F.M. Electronic and optical properties of Au and Ag doped LiNbO3 from first principles study. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Jameel, M.H.; Rehman, A.; Roslan, M.S.; Agam, M.A. To investigate the structural, electronic, optical and magnetic properties of Sr-doped KNbO3 for perovskite solar cell applications: A DFT study. Phys. Scr. 2023, 98, 055802. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, D.; Hu, M.; Saeed, S.; Liu, H.; Kong, Y.; Zhang, L.; Xu, J. Effect of Defects on Spontaneous Polarization in Pure and Doped LiNbO3: First-Principles Calculations. Materials 2019, 12, 100. [Google Scholar] [CrossRef]
- Zanatta, A.R. The optical bandgap of lithium niobate ( LiNbO3) and its dependence with temperature. Results Phys. 2022, 39, 105736. [Google Scholar] [CrossRef]
- Guithi, K.; Sekrafi, H.E.; Kharrat, A.B.J.; Khirouni, K.; Boujelben, W. Synthesis, structural and optical characterization of LiNbO3 material for optical applications. J. Opt. 2023, 52, 1494–1506. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Palatnikov, M.N.; Teplyakova, N.A.; Syuy, A.V.; Kile, E.O.; Shtarev, D.S. Photoelectric Fields and Band Gap in Doped Lithium Niobate Crystals. Inorg. Mater. 2018, 54, 581–584. [Google Scholar] [CrossRef]
- Mazkad, D.; Lazar, N.; Benzaouak, A.; Moussadik, A.; Hitar, M.E.H.; Touach, N.; Mahi, M.E.; Lotfi, E.M. Photocatalytic properties insight of Sm-doped LiNbO3 in ferroelectric Li1-xNbSm0.3xO3 system. J. Environ. Chem. Eng. 2023, 11, 109732. [Google Scholar] [CrossRef]
- Hossain, M.M. First-principles study on the structural, elastic, electronic and optical properties of LiNbO3. Heliyon 2019, 5, e01436. [Google Scholar] [CrossRef] [PubMed]
- Thiel, C.W.; Sun, Y.; Macfarlane, R.M.; Boettger, T.; Cone, R.L. Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories. J. Phys. B 2012, 45, 124013. [Google Scholar] [CrossRef]
- Li, H.; Hao, Y.; Lin, Z.; He, X.; Cai, J.; Gong, X.; Gu, Y.; Zhang, R.; Cheng, H.; Zhang, B. (K,Na)NbO3 lead-free piezoceramics prepared by microwave sintering and solvothermal powder synthesis. Solid State Commun. 2022, 353, 114871. [Google Scholar] [CrossRef]
- Huang, D.H.; Yang, J.S.; Cao, Q.L.; Wan, M.J.; Li, Q.; Sun, L.; Wang, F.H. Effect of Mg and Fe Doping on Optical Absorption of LiNbO3 Crystal through First Principles Calculations. Chin. Phys. Lett. 2014, 31, 037103. [Google Scholar] [CrossRef]
- Kruczek, M.; Talik, E.; Kania, A. Electronic structure of AgNbO3 and NaNbO3 studied by X-ray photoelectron spectroscopy. Solid State Commun. 2006, 137, 469–473. [Google Scholar] [CrossRef]
- Fu, D.; Endo, M.; Taniguchi, H.; Taniyama, T.; Itoh, M. AgNbO3: A lead-free material with large polarization and electromechanical response. Appl. Phys. Lett. 2007, 90, 252907. [Google Scholar] [CrossRef]
- Kuganathan, N.; Chroneos, A. Structural, defect, transport and dopant properties of AgNbO3. ChemNanoMat 2020, 6, 1337–1345. [Google Scholar] [CrossRef]
- Khor, C.M.; Khan, M.M.; Khan, A.; Khan, M.Y.; Harunsani, M.H. La-substituted AgNbO3 for photocatalytic degradation of Rhodamine B and methylene blue dyes. React. Kinet. Mech. Catal. 2022, 135, 1687–1701. [Google Scholar] [CrossRef]
- Han, K.; Luo, N.; Jing, Y.; Wang, X.; Peng, B.; Liu, L.; Hu, C.; Zhou, H.; Wei, Y.; Chen, X.; et al. Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics. Ceram. Int. 2019, 45, 5559–5565. [Google Scholar] [CrossRef]
- Vig, A.S.; Rani, N.; Gupta, A.; Pandey, O.P. Influence of Ca-doped NaNbO3 and its heterojunction with g-C3N4 on the photoredox performance. Sol. Energy 2019, 185, 469–479. [Google Scholar]
- Gillani, S.S.A.; Ali, M.N.; Hussain, T.; Shakil, M.; Ahmad, R.; Shuaib, U.; Zia, A. Cubic to tetragonal structural phase transformation in NaNbO3 with peculiar Mg and Ca doping and its repercussions on optoelectronic properties. Optik 2021, 247, 168017. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Zhao, L.; Lee, K.-Y.; Liu, Q.; Studer, A.; Hinterstein, M.; Zhang, S.; Li, J.-F. Enhanced antiferroelectric phase stability in La-doped AgNbO3: Perspectives from the microstructure to energy storage properties. J. Mater. Chem. A 2019, 7, 2225–2232. [Google Scholar] [CrossRef]
- Nain, R.; Dwivedi, R.K. Effect of tuning of charge defects by K, Ba, La doping on structural and electrical behaviour of NaNbO3. Mater. Chem. Phys. 2023, 306, 127999. [Google Scholar] [CrossRef]
- Wang, Q.; Go, S.-X.; Liu, C.; Li, M.; Zhu, Y.; Li, L.; Lee, J.K.; Loke, D.K. Understanding Distortions and Vacancies in Wurtzite AlScN Ferroelectric Memory Materials. AIP Adv. 2022, 12, 125303. [Google Scholar]
- Eklund, K.; Karttunen, A.J. Pyroelectric Effect in Tetragonal Ferroelectrics BaTiO3 and KNbO3 Studied with Density Functional Theory. J. Phys. Chem. C 2023, 127, 21806–21815. [Google Scholar] [CrossRef]
- Fuchikami, N. Magnetic Anisotropy of Magnetoplumbite BaFe12O19. J. Phys. Soc. Jpn. 1965, 20, 760. [Google Scholar] [CrossRef]
- Zeng, F.; Sheng, P.; Tang, G.S.; Pan, F.; Yan, W.S.; Hu, F.C.; Zou, Y.; Huang, Y.Y.; Jiang, Z.; Guo, D. Electronic structure and magnetism of Fe-doped LiNbO3. Mater. Chem. Phys. 2012, 136, 783–788. [Google Scholar] [CrossRef]
- Ait brahim, I.; Bekkioui, N.; Lamouri, R.; Tahiri, M.; Ez-Zahraouy, H. Ab initio Calculations on the Electronic Properties of Fe-doped LiNbO3 Through Modified Becke-Johnson Exchange Potential. J. Supercond. Novel Magn. 2021, 34, 1933–1939. [Google Scholar] [CrossRef]
- Mamoun, S.; Merad, A.E.; Guilbert, L. Energy band gap and optical properties of Lithium Niobate from ab initio calculations. Comp. Mater. Sci. 2013, 79, 125. [Google Scholar] [CrossRef]
- Zainuddin, L.W.; Samat, M.H.; Badrudin, F.W.; Hassan, O.H.; Taib, M.F.M. Effect of Mn Incorporated into LiNbO3 Crystal Structure on the Electronic and Optical Properties Using First-Principles Study. Defect Diffus. Forum 2023, 425, 15–20. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Y.; Yan, J.; Chen, Y. Effect of doping Zn on the optical and electrical properties of LiNbO3 films. Phys. B 2021, 611, 412981. [Google Scholar] [CrossRef]
- Wang, J.; Peng, Z.; Wang, J.; Wu, D.; Yang, Z.; Chao, X. Band gap tunning to enhance photovoltaic response in NaNbO3-based bulk ferroelectrics. Scr. Mater. 2022, 221, 114976. [Google Scholar] [CrossRef]
- Song, B.; Wang, X.; Xin, C.; Zhang, L.; Song, B.; Zhang, Y.; Wang, Y.; Wang, J.; Liu, Z.; Sui, Y.; et al. Multiferroic properties of Ba/Ni co-doped KNbO3 with narrow band-gap. J. Alloys Comp. 2017, 703, 67–72. [Google Scholar] [CrossRef]
- Ye, J.; Sun, X.; Wu, Z.; Liu, J.; An, Y. Evidence of the oxygen vacancies-induced room temperature ferromagnetism in multiferroic Co-doped LiNbO3 films. J. Alloys Comp. 2018, 768, 750–755. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolova, I.N.; Apostolov, A.T.; Wesselinowa, J.M. Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications. Molecules 2024, 29, 1011. https://doi.org/10.3390/molecules29051011
Apostolova IN, Apostolov AT, Wesselinowa JM. Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications. Molecules. 2024; 29(5):1011. https://doi.org/10.3390/molecules29051011
Chicago/Turabian StyleApostolova, Iliana N., Angel T. Apostolov, and Julia M. Wesselinowa. 2024. "Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications" Molecules 29, no. 5: 1011. https://doi.org/10.3390/molecules29051011
APA StyleApostolova, I. N., Apostolov, A. T., & Wesselinowa, J. M. (2024). Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications. Molecules, 29(5), 1011. https://doi.org/10.3390/molecules29051011