Changes in the Main Physicochemical Properties and Electrochemical Fingerprints in the Production of Sea Buckthorn Juice by Pectinase Treatment
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Reagents and Instruments
3.2. Determination of Juice Yield
3.3. Preparation Process of Sea Buckthorn Juice
3.4. Determination of Soluble Solid Content, Soluble Dietary Fiber, and Pectin Content in Sea Buckthorn Juice
3.5. Electrochemical Fingerprints Recording
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corbu, A.R.; Rotaru, A.; Nour, V. Edible Vegetable Oils Enriched with Carotenoids Extracted from By-Products of Sea Buckthorn (Hippophae rhamnoides ssp. Sinensis): The Investigation of Some Characteristic Properties, Oxidative Stability and the Effect on Thermal Behaviour. J. Therm. Anal. Calorim. 2020, 142, 735–747. [Google Scholar] [CrossRef]
- Gâtlan, A.-M.; Gutt, G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. Int. J. Environ. Res. Public. Health 2021, 18, 8986. [Google Scholar] [CrossRef]
- Kant, V.; Mehta, M.; Varshneya, C. Antioxidant Potential and Total Phenolic Contents of Seabuckthorn (Hippophae rhamnoides) Pomace. Free Radic. Antioxid. 2012, 2, 79–86. [Google Scholar] [CrossRef]
- Chen, A.; Feng, X.; Dorjsuren, B.; Chimedtseren, C.; Damda, T.-A.; Zhang, C. Traditional Food, Modern Food and Nutritional Value of Sea Buckthorn (Hippophae rhamnoides L.): A Review. J. Future Foods 2023, 3, 191–205. [Google Scholar] [CrossRef]
- Chen, L.; Qu, H.; Bai, S.; Yan, L.; You, M.; Gou, W.; Li, P.; Gao, F. Effect of Wet Sea Buckthorn Pomace Utilized as an Additive on Silage Fermentation Profile and Bacterial Community Composition of Alfalfa. Bioresour. Technol. 2020, 314, 123773. [Google Scholar] [CrossRef]
- Ge, X.; Tang, N.; Huang, Y.; Chen, X.; Dong, M.; Rui, X.; Zhang, Q.; Li, W. Fermentative and Physicochemical Properties of Fermented Milk Supplemented with Sea Buckthorn (Hippophae Eleagnaceae L.). LWT 2022, 153, 112484. [Google Scholar] [CrossRef]
- He, L.; Chen, N.; Lv, H.; Wang, C.; Zhou, W.; Zhang, Q.; Chen, X. Ensiling Characteristics, Physicochemical Structure and Enzymatic Hydrolysis of Steam-Exploded Hippophae: Effects of Calcium Oxide, Cellulase and Tween. Bioresour. Technol. 2020, 295, 122268. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, C.; Shi, H.; Zhou, W.; Zhang, Q.; Chen, X. Combination of Steam Explosion Pretreatment and Anaerobic Alkalization Treatment to Improve Enzymatic Hydrolysis of Hippophae rhamnoides. Bioresour. Technol. 2019, 289, 121693. [Google Scholar] [CrossRef]
- Janceva, S.; Andersone, A.; Lauberte, L.; Bikovens, O.; Nikolajeva, V.; Jashina, L.; Zaharova, N.; Telysheva, G.; Senkovs, M.; Rieksts, G.; et al. Sea Buckthorn (Hippophae rhamnoides) Waste Biomass after Harvesting as a Source of Valuable Biologically Active Compounds with Nutraceutical and Antibacterial Potential. Plants 2022, 11, 642. [Google Scholar] [CrossRef]
- Khan, Z.S.; Sodhi, N.S.; Fayaz, S.; Bakshi, R.A.; Siddiqi, R.A.; Dar, B.N.; Mishra, H.N.; Dhillon, B. Valorization of Sea Buckthorn Seed Protein to Hydrolysates: Impact on Morphological, Structural, Functional, and Antioxidant Properties. JSFA Rep. 2023, 3, 222–232. [Google Scholar] [CrossRef]
- Korkus, E.; Szustak, M.; Dąbrowski, G.; Czaplicki, S.; Kadłubowski, S.; Koziołkiewicz, M.; Konopka, I.; Gendaszewska-Darmach, E. The Insulinotropic Activity of Oleosomes Prepared from Various Sea Buckthorn Cultivars in Mouse and Human Pancreatic β Cell Lines. NFS J. 2023, 31, 142–154. [Google Scholar] [CrossRef]
- LeiLei, Z.; Ting, J.; LiXia, Z.; Xiao, M.; JinMei, K. Study on preparation technology of polypeptides from seabuckthorn leaves. Food Ferment. Technol. 2019, 55, 30–34. [Google Scholar]
- Li, Y.; Lee, X.; Guo, J.; Feng, J.; Xu, C.; Bai, Y.; Guo, S.; Wang, F. Study on the Enrichment of Palmitoleic Acid in Sn-2 Monoester from Sea-Buckthorn Fruit Oil. Food Sci. Technol. 2023, 43, e107722. [Google Scholar] [CrossRef]
- Liu, X.; Lv, M.; Maimaitiyiming, R.; Chen, K.; Tuerhong, N.; Yang, J.; Aihaiti, A.; Wang, L. Development of Fermented Sea Buckthorn (Hippophae rhamnoides L.) Juice and Investigation of Its Antioxidant and Antimicrobial Activity. Front. Nutr. 2023, 10, 1120748. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yang, W.; Kallio, H.; Yang, B. Health Promoting Properties and Sensory Characteristics of Phytochemicals in Berries and Leaves of Sea Buckthorn (Hippophaë rhamnoides). Crit. Rev. Food Sci. Nutr. 2022, 62, 3798–3816. [Google Scholar] [CrossRef]
- Mathew, S.; Grey, C.; Rumpunen, K.; Adlercreutz, P. Analysis of Carbonyl Compounds in Sea Buckthorn for the Evaluation of Triglyceride Oxidation, by Enzymatic Hydrolysis and Derivatisation Methodology. Food Chem. 2011, 126, 1399–1405. [Google Scholar] [CrossRef]
- Moldovan, C.; Babotă, M.; Mocan, A.; Menghini, L.; Cesa, S.; Gavan, A.; Sisea, C.; Vodnar, D.C.; Dias, M.I.; Pereira, C.; et al. Optimization of the Drying Process of Autumn Fruits Rich in Antioxidants: A Study Focusing on Rosehip (Rosa canina L.) and Sea Buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) and Their Bioactive Properties. Food Funct. 2021, 12, 3939–3953. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Wang, L.; Lv, J.; Chen, Z.; Brennan, M.; Ma, Q.; Wang, W.; Liu, W.; Wang, J.; Brennan, C. Phenolics from Sea Buckthorn (Hippophae rhamnoides L.) Modulate Starch Digestibility through Physicochemical Modifications Brought about by Starch—Phenolic Molecular Interactions. LWT 2022, 165, 113682. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, J.; Li, J.; Zhang, P.; Tang, F.; Shan, C. Influence of Lactic Acid Bacteria on Physicochemical Indexes, Sensory and Flavor Characteristics of Fermented Sea Buckthorn Juice. Food Biosci. 2022, 46, 101519. [Google Scholar] [CrossRef]
- Lyu, X.; Wang, X.; Wang, Q.; Ma, X.; Chen, S.; Xiao, J. Encapsulation of Sea Buckthorn (Hippophae rhamnoides L.) Leaf Extract via an Electrohydrodynamic Method. Food Chem. 2021, 365, 130481. [Google Scholar] [CrossRef]
- Munkhbayar, D.; Ariuntungalag, J.; Delgersuuri, G.; Badamkhand, D. Enzymatic Technology for Sea Buckthorn Oil Extraction and Its Biochemical Analysis. Mong. J. Chem. 2014, 15, 62–65. [Google Scholar] [CrossRef]
- Rösch, D.; Krumbein, A.; Mügge, C.; Kroh, L.W. Structural Investigations of Flavonol Glycosides from Sea Buckthorn (Hippophaë rhamnoides) Pomace by NMR Spectroscopy and HPLC-ESI-MSn. J. Agric. Food Chem. 2004, 52, 4039–4046. [Google Scholar] [CrossRef]
- Schubertová, S.; Krepsová, Z.; Janotková, L.; Potočňáková, M.; Kreps, F. Exploitation of Sea Buckthorn Fruit for Novel Fermented Foods Production: A Review. Processes 2021, 9, 749. [Google Scholar] [CrossRef]
- Sevenich, R.; Gratz, M.; Hradecka, B.; Fauster, T.; Teufl, T.; Schottroff, F.; Chytilova, L.S.; Hurkova, K.; Tomaniova, M.; Hajslova, J.; et al. Differentiation of Sea Buckthorn Syrups Processed by High Pressure, Pulsed Electric Fields, Ohmic Heating, and Thermal Pasteurization Based on Quality Evaluation and Chemical Fingerprinting. Front. Nutr. 2023, 10, 912824. [Google Scholar] [CrossRef]
- Shen, C.; Wang, T.; Guo, F.; Sun, K.; Wang, B.; Wang, J.; Zhang, Z.; Zhang, X.; Zhao, Y.; Chen, Y. Structural Characterization and Intestinal Protection Activity of Polysaccharides from Sea Buckthorn (Hippophae rhamnoides L.) Berries. Carbohydr. Polym. 2021, 274, 118648. [Google Scholar] [CrossRef]
- Tang, M.; Guo, J.; Shen, Z. Rapid Detection of Carbendazim Residue in Tea by Machine Learning Assisted Electrochemical Sensor. J. Food Meas. Charact. 2023, 17, 6363–6369. [Google Scholar] [CrossRef]
- Su, J.; Su, X. Determination of Tartrazine in Sports Drinks by a Disposable Electrochemical Sensor Modified with Co2O3. J. Food Meas. Charact. 2023, 17, 5856–5863. [Google Scholar] [CrossRef]
- Dou, L.; Han, H.; Yang, B.; Lin, C.; Pan, S.; Li, Q.; Yan, P.; Zhao, D.; Chang, X.; Li, J. Rapid Determination of Quercetin and Caffeic Acid in Honeysuckle Tea by High Efficiency Electrochemical Sensor. J. Food Meas. Charact. 2023, 17, 5821–5827. [Google Scholar] [CrossRef]
- Tkacz, K.; Chmielewska, J.; Turkiewicz, I.P.; Nowicka, P.; Wojdyło, A. Dynamics of Changes in Organic Acids, Sugars and Phenolic Compounds and Antioxidant Activity of Sea Buckthorn and Sea Buckthorn-Apple Juices during Malolactic Fermentation. Food Chem. 2020, 332, 127382. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef] [PubMed]
- Tudor, C.; Bohn, T.; Iddir, M.; Dulf, F.V.; Focşan, M.; Rugină, D.O.; Pintea, A. Sea Buckthorn Oil as a Valuable Source of Bioaccessible Xanthophylls. Nutrients 2020, 12, 76. [Google Scholar] [CrossRef]
- Visan, S.; Soritau, O.; Tatomir, C.; Baldasici, O.; Balacescu, L.; Balacescu, O.; Muntean, P.; Gherasim, C.; Pintea, A. The Bioactive Properties of Carotenoids from Lipophilic Sea Buckthorn Extract (Hippophae rhamnoides L.) in Breast Cancer Cell Lines. Molecules 2023, 28, 4486. [Google Scholar] [CrossRef]
- Xiang, H.; Waterhouse, D.-S.; Liu, P.; Waterhouse, G.I.N.; Li, J.; Cui, C. Pancreatic Lipase-Inhibiting Protein Hydrolysate and Peptides from Seabuckthorn Seed Meal: Preparation Optimization and Inhibitory Mechanism. LWT 2020, 134, 109870. [Google Scholar] [CrossRef]
- Xiao, P.; Liu, S.; Kuang, Y.; Jiang, Z.; Lin, Y.; Xie, Z.; Liu, E.-H. Network Pharmacology Analysis and Experimental Validation to Explore the Mechanism of Sea Buckthorn Flavonoids on Hyperlipidemia. J. Ethnopharmacol. 2021, 264, 113380. [Google Scholar] [CrossRef]
- Yang, B.; Linko, A.-M.; Adlercreutz, H.; Kallio, H. Secoisolariciresinol and Matairesinol of Sea Buckthorn (Hippophaë rhamnoides L.) Berries of Different Subspecies and Harvesting Times. J. Agric. Food Chem. 2006, 54, 8065–8070. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, X.; Yuen, M.; Yuen, T.; Yuen, H.; Wang, M.; Smith, D.; Peng, Q. Effects of Ball Milling Combined with Cellulase Treatment on Physicochemical Properties and in Vitro Hypoglycemic Ability of Sea Buckthorn Seed Meal Insoluble Dietary Fiber. Front. Nutr. 2022, 8, 820672. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.; Mu, Y.; Xie, S.; Meng, D.; Zheng, Y.; Meng, X.; Lv, Z. Impact of UHT Processing on Volatile Components and Chemical Composition of Sea Buckthorn (Hippophae rhamnoides) Pulp: A Prediction of the Biochemical Pathway Underlying Aroma Compound Formation. Food Chem. 2022, 390, 133142. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why Is Sea Buckthorn (Hippophae rhamnoides L.) so Exceptional? A Review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Jurevičiūtė, I.; Keršienė, M.; Bašinskienė, L.; Leskauskaitė, D.; Jasutienė, I. Characterization of Berry Pomace Powders as Dietary Fiber-Rich Food Ingredients with Functional Properties. Foods 2022, 11, 716. [Google Scholar] [CrossRef] [PubMed]
- Kakko, T.; Damerau, A.; Nisov, A.; Puganen, A.; Tuomasjukka, S.; Honkapää, K.; Tarvainen, M.; Yang, B. Quality of Protein Isolates and Hydrolysates from Baltic Herring (Clupea harengus membras) and Roach (Rutilus rutilus) Produced by pH-Shift Processes and Enzymatic Hydrolysis. Foods 2022, 11, 230. [Google Scholar] [CrossRef]
- Lin, J.; Xiang, H.; Sun-Waterhouse, D.; Cui, C.; Wang, W. Deep Eutectic Solvents and Alkaline Extraction of Protein from Seabuckthorn Seed Meal: A Comparison Study. Food Sci. Hum. Wellness 2022, 11, 1028–1035. [Google Scholar] [CrossRef]
- Siddiqui, H.; Sultan, Z.; Yousuf, O.; Malik, M.; Younis, K. A Review of the Health Benefits, Functional Properties, and Ultrasound-Assisted Dietary Fiber Extraction. Bioact. Carbohydr. Diet. Fibre 2023, 30, 100356. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G. Application of Pulsed Electric Field in the Production of Juice and Extraction of Bioactive Compounds from Blueberry Fruits and Their By-Products. J. Food Sci. Technol. 2015, 52, 5898–5905. [Google Scholar] [CrossRef] [PubMed]
- Prosky, L.; Asp, N.-G.; Schweizer, T.F.; Devries, J.W.; Furda, I. Determination of Insoluble and Soluble Dietary Fiber in Foods and Food Products: Collaborative Study. J. AOAC Int. 1992, 75, 360–367. [Google Scholar] [CrossRef]
Test | A (°C) | B (h) | C (%) | D (Blank) | Juice Yield (%) |
---|---|---|---|---|---|
S1 | 1 (50) | 1 (1) | 1 (0.2) | 1 | 60.61 |
S2 | 1 | 2 (3) | 2 (0.3) | 2 | 63.70 |
S3 | 1 | 3 (5) | 3 (0.4) | 3 | 63.45 |
S4 | 2 (60) | 1 | 2 | 3 | 62.33 |
S5 | 2 | 2 | 3 | 1 | 63.21 |
S6 | 2 | 3 | 1 | 2 | 63.47 |
S7 | 3 (70) | 1 | 3 | 2 | 59.05 |
S8 | 3 | 2 | 1 | 3 | 61.50 |
S9 | 3 | 3 | 2 | 1 | 61.48 |
K1 | 62.55 | 60.57 | 61.80 | 62.11 | |
K2 | 63.32 | 63.13 | 62.55 | 62.08 | |
K3 | 60.70 | 62.50 | 62.21 | 62.41 | |
R | 2.67 | 2.44 | 0.62 | 0.37 | |
Best level | A2 | B2 | C2 | D3 |
Test | tinduction (s) | tstop (s) | toscillation (s) | τoscillation (s) | ΔEmax (V) | ΔEstrat (V) | ΔEstop (V) |
---|---|---|---|---|---|---|---|
S1 | 322.15 | 1477.52 | 1170.40 | 9.23 | 0.0780 | 0.9211 | 0.7170 |
S2 | 250.42 | 1432.51 | 1182.23 | 10.55 | 0.0705 | 0.9380 | 0.7395 |
S3 | 252.51 | 1488.15 | 1233.51 | 9.61 | 0.0833 | 0.9421 | 0.7355 |
S4 | 341.50 | 1436.33 | 1095.52 | 9.12 | 0.0741 | 0.9285 | 0.7651 |
S5 | 313.75 | 1710.40 | 1420.51 | 10.50 | 0.0862 | 0.9257 | 0.7422 |
S6 | 285.70 | 1525.81 | 1240.33 | 9.05 | 0.0917 | 0.9442 | 0.7205 |
S7 | 262.65 | 2215.50 | 1950.55 | 13.53 | 0.1033 | 0.9551 | 0.7241 |
S8 | 600.95 | 1783.06 | 1481.06 | 12.51 | 0.0803 | 0.9242 | 0.7691 |
S9 | 298.17 | 1390.48 | 1091.57 | 9.33 | 0.0688 | 0.9251 | 0.7431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, K. Changes in the Main Physicochemical Properties and Electrochemical Fingerprints in the Production of Sea Buckthorn Juice by Pectinase Treatment. Molecules 2024, 29, 1035. https://doi.org/10.3390/molecules29051035
Guo K. Changes in the Main Physicochemical Properties and Electrochemical Fingerprints in the Production of Sea Buckthorn Juice by Pectinase Treatment. Molecules. 2024; 29(5):1035. https://doi.org/10.3390/molecules29051035
Chicago/Turabian StyleGuo, Kaihua. 2024. "Changes in the Main Physicochemical Properties and Electrochemical Fingerprints in the Production of Sea Buckthorn Juice by Pectinase Treatment" Molecules 29, no. 5: 1035. https://doi.org/10.3390/molecules29051035
APA StyleGuo, K. (2024). Changes in the Main Physicochemical Properties and Electrochemical Fingerprints in the Production of Sea Buckthorn Juice by Pectinase Treatment. Molecules, 29(5), 1035. https://doi.org/10.3390/molecules29051035