Determination of Methamphetamine by High-Performance Liquid Chromatography in Odor-Adsorbent Material Used for Training Drug-Detection Animals
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Optimization of the Analytical Method
2.1.1. Selection of Detection Materials for Odor Adsorption
2.1.2. Selection of Detection Wavelength
2.1.3. Selection of Chromatographic Column and Mobile Phase
2.1.4. Optimization of Sample Pretreatment Methods
2.2. Method Validation
2.2.1. Selectivity
2.2.2. LOD and LOQ
2.2.3. Linearity and Range
2.2.4. Repeatability
2.2.5. Precision
2.2.6. Stability
2.2.7. Recovery
2.3. Application to Real Samples
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. Chromatographic Conditions
3.4. Preparation of Solutions
3.4.1. Preparation of Control Solution
3.4.2. Preparation of Test Solution
3.5. Method Validation
3.5.1. Selectivity Test
3.5.2. LOD and LOQ Tests
3.5.3. Linearity Test
3.5.4. Repeatability Test
3.5.5. Precision Test
3.5.6. Stability Test
3.5.7. Recovery Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prakash, M.D.; Tangalakis, K.; Antonipillai, J.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine: Effects on the brain, gut and immune system. Pharmacol. Res. 2017, 120, 60–67. [Google Scholar] [CrossRef]
- Paratz, E.D.; Cunningham, N.J.; MacIsaac, A.I. The Cardiac Complications of Methamphetamines. Heart Lung Circ. 2016, 25, 325–332. [Google Scholar] [CrossRef]
- Yu, S.; Zhu, L.; Shen, Q.; Bai, X.; Di, X. Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav. Neurol. 2015, 2015, 103969. [Google Scholar] [CrossRef]
- Darke, S.; Kaye, S.; McKetin, R.; Duflou, J. Major physical and psychological harms of methamphetamine use. Drug Alcohol. Rev. 2008, 27, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.; Symons, B.; Angell, J.; Ross, K.E.; Walker, S. Current practices underestimate environmental exposures to methamphetamine: Inhalation exposures are important. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kerry, G.L.; Ross, K.E.; Wright, J.L.; Walker, G.S. A Review of Methods Used to Detect Methamphetamine from Indoor Air and Textiles in Confined Spaces. Toxics 2022, 10, 710. [Google Scholar] [CrossRef]
- Bitter, J.L. The persistence of illicit drug smoke residues and their recovery from common household surfaces. Drug Test. Anal. 2017, 9, 603–612. [Google Scholar] [CrossRef]
- Kuhn, E.J.; Walker, G.S.; Whiley, H.; Wright, J.; Ross, K.E. Household Contamination with Methamphetamine: Knowledge and Uncertainties. Int. J. Environ. Res. Public. Health 2019, 16, 4676. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.; Walker, G.S.; Ross, K.E. Contamination of Homes with Methamphetamine: Is Wipe Sampling Adequate to Determine Risk? Int. J. Environ. Res. Public. Health 2019, 16, 3568. [Google Scholar] [CrossRef]
- Jezierski, T.; Adamkiewicz, E.; Walczak, M.; Sobczynska, M.; Gorecka-Bruzda, A.; Ensminger, J.; Papet, E. Efficacy of drug detection by fully-trained police dogs varies by breed, training level, type of drug and search environment. Forensic Sci. Int. 2014, 237, 112–118. [Google Scholar] [CrossRef]
- Poling, A.; Weetjens, B.; Cox, C.; Beyene, N.W.; Bach, H.; Sully, A. Using trained pouched rats to detect land mines: Another victory for operant conditioning. J. Appl. Behav. Anal. 2011, 44, 351–355. [Google Scholar] [CrossRef]
- Mahoney, A.; Durgin, A.; Poling, A.; Weetjens, B.; Cox, C.; Tewelde, T.; Gilbert, T. Mine Detection Rats: Effects of Repeated Extinction on Detection Accuracy. J. ERW Mine Action 2012, 16, 22. [Google Scholar]
- Greatbatch, I.; Gosling, R.J.; Allen, S. Quantifying Search Dog Effectiveness in a Terrestrial Search and Rescue Environment. Wilderness Environ. Med. 2015, 26, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Riezzo, I.; Neri, M.; Rendine, M.; Bellifemina, A.; Cantatore, S.; Fiore, C.; Turillazzi, E. Cadaver dogs: Unscientific myth or reliable biological devices? Forensic Sci. Int. 2014, 244, 213–221. [Google Scholar] [CrossRef] [PubMed]
- van Dam, A.; Schoon, A.; Wierda, S.F.; Heeringa, E.; Aalders, C.G. The use of crime scene detection dogs to locate semen stains on different types of fabric. Forensic Sci. Int. 2019, 302, 109907. [Google Scholar] [CrossRef]
- Lazarowski, L.; Waggoner, L.P.; Krichbaum, S.; Singletary, M.; Haney, P.; Rogers, B.; Angle, C. Selecting Dogs for Explosives Detection: Behavioral Characteristics. Front. Vet. Sci. 2020, 7, 597. [Google Scholar] [CrossRef]
- Cornu, J.N.; Cancel-Tassin, G.; Ondet, V.; Girardet, C.; Cussenot, O. Olfactory detection of prostate cancer by dogs sniffing urine: A step forward in early diagnosis. Eur. Urol. 2011, 59, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Rooney, N.J.; Guest, C.M.; Swanson, L.; Morant, S.V. How effective are trained dogs at alerting their owners to changes in blood glycaemic levels?: Variations in performance of glycaemia alert dogs. PLoS ONE 2019, 14, e210092. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, N.; Wan, T.; Harper, R.J.; Hsu, Y.L.; Chow, M.; Rose, S.; Furton, K.G. Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans. Anal. Bioanal. Chem. 2003, 376, 1212–1224. [Google Scholar] [CrossRef]
- Moser, A.Y.; Brown, W.Y.; Bizo, L.A.; Andrew, N.R.; Taylor, M.K. Biosecurity Dogs Detect Live Insects after Training with Odor-Proxy Training Aids: Scent Extract and Dead Specimens. Chem. Senses 2020, 45, 179–186. [Google Scholar] [CrossRef]
- Prada, P.A.; Curran, A.M.; Furton, K.G. The evaluation of human hand odor volatiles on various textiles: A comparison between contact and noncontact sampling methods. J. Forensic Sci. 2011, 56, 866–881. [Google Scholar] [CrossRef]
- Eckenrode, B.A.; Ramsey, S.A.; Stockham, R.A.; Van Berkel, G.J.; Asano, K.G.; Wolf, D.A. Performance evaluation of the Scent Transfer Unit (STU-100) for organic compound collection and release. J. Forensic Sci. 2006, 51, 780–789. [Google Scholar] [CrossRef]
- Wang, R.; Qi, X.; Zhao, L.; Liu, S.; Gao, S.; Ma, X.; Deng, Y. Ionic-liquid-based dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the forensic determination of methamphetamine in human urine. J. Sep. Sci. 2016, 39, 2444–2450. [Google Scholar] [CrossRef]
- Bagheri, H.; Zavareh, A.F.; Koruni, M.H. Graphene oxide assisted electromembrane extraction with gas chromatography for the determination of methamphetamine as a model analyte in hair and urine samples. J. Sep. Sci. 2016, 39, 1182–1188. [Google Scholar] [CrossRef]
- Chinaka, S.; Tanaka, S.; Takayama, N.; Komai, K.; Ohshima, T.; Ueda, K. Simultaneous chiral analysis of methamphetamine and related compounds by capillary electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 2000, 749, 111–118. [Google Scholar] [CrossRef]
- Cheong, J.C.; Suh, S.; Ko, B.J.; Lee, J.I.; Kim, J.Y.; Suh, Y.J.; In, M.K. Screening method for the detection of methamphetamine in hair using fluorescence polarization immunoassay. J. Anal. Toxicol. 2013, 37, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Brito, T.P.; de Aguiar, D.V.; Pereira, I.; Vaz, B.G. Determining Methamphetamine in Urine by Molecularly Imprinted PolymerAssisted Paper Spray Ionization Mass Spectrometry. J. Braz. Chem. Soc. 2021, 32, 269–276. [Google Scholar]
- Love, D.; Jones, N.S. Interpol Review of Drug Analysis 2019–2022. Forensic Sci. Int. Synerg. 2023, 6, 100299. [Google Scholar] [CrossRef] [PubMed]
- Masteri-Farahani, M.; Mashhadi-Ramezani, S.; Mosleh, N. Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 118021. [Google Scholar] [CrossRef] [PubMed]
- Biddle, T.J.; Wermuth, U.D.; Loughlin, W.A.; Cresswell, S.L.; White, A.R. Potential forensic markers from synthetic pathways to 1-phenyl-2-propanone from uncontrolled and controlled substances. Forensic Chem. 2022, 28, 100410. [Google Scholar] [CrossRef]
- Al-Dirbashi, O.Y.; Ikeda, K.; Takahashi, M.; Kuroda, N.; Ikeda, S.; Nakashima, K. Drugs of abuse in a non-conventional sample; detection of methamphetamine and its main metabolite, amphetamine in abusers’ clothes by HPLC with UV and fluorescence detection. Biomed. Chromatogr. 2001, 15, 457–463. [Google Scholar] [CrossRef]
- Martyny, J.W.; Arbuckle, S.L.; McCammon, C.S.; Erb, N.; Van Dyke, M. Methamphetamine contamination on environmental surfaces caused by simulated smoking of methamphetamine. J. Chem. Health Saf. 2008, 15, 25–31. [Google Scholar] [CrossRef]
- Serrano, K.A.; Martyny, J.W.; Kofford, S.; Contreras, J.R.; Van Dyke, M.V. Decontamination of clothing and building materials associated with the clandestine production of methamphetamine. J. Occup. Environ. Hyg. 2012, 9, 185–197. [Google Scholar] [CrossRef]
- Van Dyke, M.; Martyny, J.W.; Serrano, K.A. Methamphetamine residue dermal transfer efficiencies from household surfaces. J. Occup. Environ. Hyg. 2014, 11, 249–258. [Google Scholar] [CrossRef]
- Yuan, H.; Mester, Z.; Lord, H.; Pawliszyn, J. Automated in-tube solid-phase microextraction coupled with liquid chromatography-electrospray ionization mass spectrometry for the determination of selected benzodiazepines. J. Anal. Toxicol. 2000, 24, 718–725. [Google Scholar] [CrossRef]
- Ciesielski, A.L.; Wagner, J.R.; Alexander-Scott, M.; Smith, J.; Snawder, J. Surface Contamination Generated by “One-Pot” Methamphetamine Production. J. Chem. Health Saf. 2020, 28, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Madireddy, S.B.; Bodeddula, V.R.; Mansani, S.K.; Wells, M.; Boles, J.O. Wipe sampling of amphetamine-type stimulants and recreational drugs on selected household surfaces with analysis by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Hazard. Mater. 2013, 254–255, 46–56. [Google Scholar] [CrossRef]
- Concheiro, M.; Simões, S.M.D.S.; Quintela, Ó.; de Castro, A.; Dias, M.J.R.; Cruz, A.; López-Rivadulla, M. Fast LC–MS/MS method for the determination of amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB and PMA in urine. Forensic Sci. Int. 2007, 171, 44–51. [Google Scholar] [CrossRef]
- Wood, M.; De Boeck, G.; Samyn, N.; Morris, M.; Cooper, D.P.; Maes, R.A.; De Bruijn, E.A. Development of a rapid and sensitive method for the quantitation of amphetamines in human plasma and oral fluid by LC-MS-MS. J. Anal. Toxicol. 2003, 27, 78–87. [Google Scholar] [CrossRef]
- Strano-Rossi, S.; Botre, F.; Bermejo, A.M.; Tabernero, M.J. A rapid method for the extraction, enantiomeric separation and quantification of amphetamines in hair. Forensic Sci. Int. 2009, 193, 95–100. [Google Scholar] [CrossRef]
- Meng, P.; Zhu, D.; He, H.; Wang, Y.; Guo, F.; Zhang, L. Determination of Amphetamines in Hair by GC/MS after Small-volume Liquid Extraction and Microwave Derivatization. Anal. Sci. 2009, 25, 1115–1118. [Google Scholar] [CrossRef]
- Bjørk, M.K.; Nielsen, M.K.K.; Markussen, L.Ø.; Klinke, H.B.; Linnet, K. Determination of 19 drugs of abuse and metabolites in whole blood by high-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 396, 2393–2401. [Google Scholar] [CrossRef]
- Kataoka, H.; Lord, H.L.; Pawliszyn, J. Simple and Rapid Determination of Amphetamine, Methamphetamine, and Their Methylenedioxy Derivatives in Urine by Automated In-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography-Electrospray Ionization Mass Spectrometry. J. Anal. Toxicol. 2000, 24, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Morrison, G.; Shakila, N.V.; Parker, K. Accumulation of gas-phase methamphetamine on clothing, toy fabrics, and skin oil. Indoor Air 2015, 25, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Keasey, S.J. Testing for the Presence of Methamphetamine Residues on Clothing from Suspected Clandestine Labs; University of Alabama at Birmingham: Birmingham, AL, USA, 2011. [Google Scholar]
- Martyny, J.W.; Arbuckle, S.L.; McCammon, C.S.; Erb, N.; Van Dyke, M. Chemical concentrations and contamination associated with clandestine methamphetamine laboratories. J. Chem. Health Saf. 2007, 14, 40–52. [Google Scholar] [CrossRef]
- NIOSH. Methamphetamine and Illicit Drugs, Precursors and Adulterants on Wipes by Liquid-Liquid Extraction. In NIOSH Manual of Analytical Methods (NMAM); Centers for Disease Control and Prevention (CDC): Washington, DC, USA, 2011. [Google Scholar]
- Smith, M.L.; Vorce, S.P.; Holler, J.M.; Shimomura, E.; Magluilo, J.; Jacobs, A.J.; Huestis, M.A. Modern instrumental methods in forensic toxicology. J. Anal. Toxicol. 2007, 31, 237–253, 8A–9A. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.; Ahmed, A.; Edge, T.; Zhang, H. Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A 2014, 1357, 36–52. [Google Scholar] [CrossRef]
- Ouakhssase, A.; Chahid, A.; Choubbane, H.; Aitmazirt, A.; Addi, E.A. Optimization and validation of a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of aflatoxins in maize. Heliyon 2019, 5, e1565. [Google Scholar] [CrossRef] [PubMed]
- Alakhali, K.M. Method Validation for Analysis of Simvastatin in Human Plasma Using Liquid Chromatography Tandem Mass Spectrometry (LC-MS-MS). J. Clin. Diagn. Res. 2013, 7, 2739–2743. [Google Scholar] [CrossRef] [PubMed]
- Campone, L.; Piccinelli, A.L.; Celano, R.; Russo, M.; Valdes, A.; Ibanez, C.; Rastrelli, L. A fully automated method for simultaneous determination of aflatoxins and ochratoxin A in dried fruits by pressurized liquid extraction and online solid-phase extraction cleanup coupled to ultra-high-pressure liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 2899–2911. [Google Scholar] [CrossRef]
- Gray, N.; Musenga, A.; Cowan, D.A.; Plumb, R.; Smith, N.W. A simple high pH liquid chromatography–tandem mass spectrometry method for basic compounds: Application to ephedrines in doping control analysis. J. Chromatogr. A 2011, 1218, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, K.; Wang, Z.; He, G.; Chang, W. Quantification of Ephedrine Substances in Human Urine by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. Sci. 2022, 61, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Heyman, H.M.; Zhang, X.; Tang, K.; Baker, E.S.; Metz, T.O. Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; pp. 376–384. [Google Scholar]
- Reynolds, L.P.; Borowicz, P.P.; Caton, J.S.; Crouse, M.S.; Dahlen, C.R.; Ward, A.K. Developmental Programming of Fetal Growth and Development. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Taghvimi, A.; Dastmalchi, S.; Javadzadeh, Y. Application of Carbonic Nanosheets Based on Urea Precursors as Dispersive Solid Phase Extraction Adsorbent for Extraction of Methamphetamine from Urine Samples. Adv. Pharm. Bull. 2021, 11, 624–631. [Google Scholar] [CrossRef]
- U.S. Disbursing Officer Services; Food and Drug Administration; Center for Drug Evaluation and Research; Center For Veterinary Medicine. Bioanalytical-Method-Validation-Guidance-for-Industry; Food and Drug Administration: Rockville, MD, USA, 2018. [Google Scholar]
- Milosheska, D.; Roskar, R. Simple HPLC-UV Method for Therapeutic Drug Monitoring of 12 Antiepileptic Drugs and Their Main Metabolites in Human Plasma. Molecules 2023, 28, 7830. [Google Scholar] [CrossRef]
- Kwon, N.H.; Lee, Y.R.; Kim, H.S.; Cheong, J.C.; Kim, J.Y. Hybrid Solid-Phase Extraction for Selective Determination of Methamphetamine and Amphetamine in Dyed Hair by Using Gas Chromatography—Mass Spectrometry. Molecules 2019, 24, 2501. [Google Scholar] [CrossRef]
No. | Volume of the Control (μg) | Total Actual Test Volume (μg) | Recovery (%) | Average Recovery (%) | SD (%) | RSD (%) |
---|---|---|---|---|---|---|
1 | 41.6 | 36.7 | 88.3 | 88.9 | 0.7 | 2.9 |
2 | 41.6 | 37.3 | 89.6 | |||
3 | 41.6 | 37.0 | 89.0 | |||
4 | 20.8 | 17.8 | 85.5 | 85.5 | 0.3 | |
5 | 20.8 | 17.7 | 85.2 | |||
6 | 20.8 | 17.8 | 85.7 | |||
7 | 8.3 | 6.9 | 82.5 | 84.3 | 2.6 | |
8 | 8.3 | 7.3 | 87.3 | |||
9 | 8.3 | 6.9 | 83.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, N.; Chao, J.; Liu, X.; Li, H.; Jia, D.; Zhang, D.; Xie, L.; Zhou, Y.; Lang, W.; Shui, Y.; et al. Determination of Methamphetamine by High-Performance Liquid Chromatography in Odor-Adsorbent Material Used for Training Drug-Detection Animals. Molecules 2024, 29, 1091. https://doi.org/10.3390/molecules29051091
Sun N, Chao J, Liu X, Li H, Jia D, Zhang D, Xie L, Zhou Y, Lang W, Shui Y, et al. Determination of Methamphetamine by High-Performance Liquid Chromatography in Odor-Adsorbent Material Used for Training Drug-Detection Animals. Molecules. 2024; 29(5):1091. https://doi.org/10.3390/molecules29051091
Chicago/Turabian StyleSun, Ning, Jingjing Chao, Xiaochang Liu, Hao Li, Dongshun Jia, Dajun Zhang, Liuwei Xie, Yuanting Zhou, Wenxuan Lang, Yingyi Shui, and et al. 2024. "Determination of Methamphetamine by High-Performance Liquid Chromatography in Odor-Adsorbent Material Used for Training Drug-Detection Animals" Molecules 29, no. 5: 1091. https://doi.org/10.3390/molecules29051091
APA StyleSun, N., Chao, J., Liu, X., Li, H., Jia, D., Zhang, D., Xie, L., Zhou, Y., Lang, W., Shui, Y., & Zhu, Q. (2024). Determination of Methamphetamine by High-Performance Liquid Chromatography in Odor-Adsorbent Material Used for Training Drug-Detection Animals. Molecules, 29(5), 1091. https://doi.org/10.3390/molecules29051091