Novel Scaffold Agonists of the α2A Adrenergic Receptor Identified via Ensemble-Based Strategy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Potential Agonists Identified Using the Ensemble-Based Screening Strategy
2.2. The Biological Activities of Candidate Compounds in PKA Redistribution and cAMP Assay
2.3. SY-15 and SY-17 Act as Bitopic α2A-AR Agonists by Occupying the Orthosite and Exosite Simultaneously
3. Materials and Methods
3.1. Protein Preparation
3.2. Molecular Dynamics Simulation
3.3. Virtual Screening
3.4. MM/GBSA Binding Free Energy (ΔG)
3.5. Visual Inspection Screening
3.6. Protein Kinase A (PKA) Redistribution Assay In Vitro
3.7. cAMP Assay In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pettinger, W.A.; Jackson, E.K. α (2)-Adrenoceptors: Challenges and Opportunities-Enlightenment from the Kidney. Cardiovasc. Ther. 2020, 2020, 2478781. [Google Scholar] [CrossRef]
- Xu, J.; Cao, S.; Hübner, H.; Weikert, D.; Chen, G.; Lu, Q.; Yuan, D.; Gmeiner, P.; Liu, Z.; Du, Y. Structural insights into ligand recognition, activation, and signaling of the α(2A) adrenergic receptor. Sci. Adv. 2022, 8, eabj5347. [Google Scholar] [CrossRef]
- Chhatar, S.; Lal, G. Role of adrenergic receptor signalling in neuroimmune communication. Curr. Res. Immunol. 2021, 2, 202–217. [Google Scholar] [CrossRef]
- Tsivitis, A.; Wang, A.; Murphy, J.; Khan, A.; Jin, Z.; Moore, R.; Tateosian, V.; Bergese, S. Anesthesia, the developing brain, and dexmedetomidine for neuroprotection. Front. Neurol. 2023, 14, 1150135. [Google Scholar] [CrossRef]
- Schwinn, D.A.; Correa-Sales, C.; Page, S.O.; Maze, M. Functional effects of activation of alpha-1 adrenoceptors by dexmedetomidine: In vivo and in vitro studies. J. Pharmacol. Exp. Ther. 1991, 259, 1147–1152. [Google Scholar] [PubMed]
- Wainscott, D.B.; Little, S.P.; Yin, T.; Tu, Y.; Rocco, V.P.; He, J.X.; Nelson, D.L. Pharmacologic characterization of the cloned human trace amine-associated receptor1 (TAAR1) and evidence for species differences with the rat TAAR1. J. Pharmacol. Exp. Ther. 2007, 320, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Fink, E.A.; Xu, J.; Hübner, H.; Braz, J.M.; Seemann, P.; Avet, C.; Craik, V.; Weikert, D.; Schmidt, M.F.; Webb, C.M.; et al. Structure-based discovery of nonopioid analgesics acting through the α(2A)-adrenergic receptor. Science 2022, 377, eabn7065. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Zhou, Q.; Xu, Y.; Guo, Y.; Chen, X.; Yao, D.; Han, G.W.; Liu, Z.J.; Stevens, R.C.; Zhong, G.; et al. Structural Basis of the Diversity of Adrenergic Receptors. Cell Rep. 2019, 29, 2929–2935.e4. [Google Scholar] [CrossRef] [PubMed]
- Valant, C.; Lane, J.R.; Sexton, P.M.; Christopoulos, A. The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 153–178. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, J.Y.; Hsieh, C.J.; Taylor, M.; Luedtke, R.R.; Mach, R.H. Design and Synthesis of Conformationally Flexible Scaffold as Bitopic Ligands for Potent D(3)-Selective Antagonists. Int. J. Mol. Sci. 2022, 24, 432. [Google Scholar] [CrossRef]
- Faouzi, A.; Wang, H.; Zaidi, S.A.; DiBerto, J.F.; Che, T.; Qu, Q.; Robertson, M.J.; Madasu, M.K.; El Daibani, A.; Varga, B.R.; et al. Structure-based design of bitopic ligands for the µ-opioid receptor. Nature 2023, 613, 767–774. [Google Scholar] [CrossRef]
- Totrov, M.; Abagyan, R. Flexible ligand docking to multiple receptor conformations: A practical alternative. Curr. Opin. Struct. Biol. 2008, 18, 178–184. [Google Scholar] [CrossRef]
- Wells, M.M.; Tillman, T.S.; Mowrey, D.D.; Sun, T.; Xu, Y.; Tang, P. Ensemble-based virtual screening for cannabinoid-like potentiators of the human glycine receptor α1 for the treatment of pain. J. Med. Chem. 2015, 58, 2958–2966. [Google Scholar] [CrossRef]
- Singh, V.K.; Coumar, M.S. Ensemble-based virtual screening: Identification of a potential allosteric inhibitor of Bcr-Abl. J. Mol. Model. 2017, 23, 218. [Google Scholar] [CrossRef]
- Yan, J.; Sun, S.; Zhang, W.; Li, P.; Zheng, Z. Combined scaffold hopping, molecular screening with dynamic simulation to screen potent CRBN ligands. J. Cell. Biochem. 2021, 122, 1207–1215. [Google Scholar] [CrossRef]
- Hein, L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res. 2006, 326, 541–551. [Google Scholar] [CrossRef]
- Wang, J.Y.; Weng, W.C.; Wang, T.Q.; Liu, Y.; Qiu, D.L.; Wu, M.C.; Chu, C.P. Noradrenaline depresses facial stimulation-evoked cerebellar MLI-PC synaptic transmission via α2-AR/PKA signaling cascade in vivo in mice. Sci. Rep. 2023, 13, 15908. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, Y.; Yong, Z.; Chen, M.; Zhang, Y.; Su, R.; Gong, Z. Thienorphine induces antinociception without dependence through activation of κ- and δ-, and partial activation of μ- opioid receptor. Brain Res. 2020, 1748, 147083. [Google Scholar] [CrossRef]
- Proudman, R.G.W.; Akinaga, J.; Baker, J.G. The signaling and selectivity of α-adrenoceptor agonists for the human α2A, α2B and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacol. Res. Perspect. 2022, 10, e01003. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Delano, W.L.; Lam, J.W. PyMOL: A Communications Tool for Computational Models. Abstr Pap Am Chem Soc. 2005, 230, U1371–U1372. [Google Scholar]
- Delano, W.L. Use of PYMOL as a Communcations Tool for Molecular Science. Abstr Pap Am Chem Soc. 2004, 228, U313–U314. [Google Scholar]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided. Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Mark, P.; Nilsson, L. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations. J. Comput. Chem. 2002, 23, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Melchionna, S.; Ciccotti, G.; Holian, B.L. Constant pressure molecular dynamics algorithms—Comment. J. Chem. Phys. 1996, 105, 346–347. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Shan, Y.; Klepeis, J.L.; Eastwood, M.P.; Dror, R.O.; Shaw, D.E. Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. J. Chem. Phys. 2005, 122, 54101. [Google Scholar] [CrossRef] [PubMed]
- Fischer, N.M.; van Maaren, P.J.; Ditz, J.C.; Yildirim, A.; van der Spoel, D. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions. J. Chem. Theory Comput. 2015, 11, 2938–2944. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, Y. Nonequilibrium Molecular Dynamics Simulation of Nanobubble Growth and Annihilation in Liquid Water. Nanoscale Microscale Thermophys. Eng. 2013, 17, 79–91. [Google Scholar] [CrossRef]
- Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided. Mol. Des. 2007, 21, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, H.; Gou, R.; Luo, D.; Liu, Z.; Zhu, F.; Xue, W. Structure-Based Discovery of a Novel Allosteric Inhibitor against Human Dopamine Transporter. J. Chem. Inf. Model. 2023, 63, 4458–4467. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, P.; Wang, Z.; Chen, M.; Fu, F.; Su, R. Hsp90β positively regulates μ-opioid receptor function. Life Sci. 2020, 252, 117676. [Google Scholar] [CrossRef]
No. | Compound Name | Docking Score (kcal/mol) | MM/GBSA dG Bind (kcal/mol) |
---|---|---|---|
1 | SY-1 | −8.442 | −60.09 |
2 | SY-2 | −8.515 | −56.44 |
3 | SY-3 | −8.592 | −37.35 |
4 | SY-4 | −9.945 | −69.46 |
5 | SY-5 | −9.997 | −64.42 |
6 | SY-6 | −10.191 | −81.83 |
7 | SY-7 | −9.097 | −77.21 |
8 | SY-8 | −9.020 | −70.94 |
9 | SY-9 | −9.002 | −58.34 |
10 | SY-10 | −8.690 | −61.14 |
11 | SY-11 | −9.169 | −56.19 |
12 | SY-12 | −9.904 | −66.14 |
13 | SY-13 | −9.575 | −77.31 |
14 | SY-14 | −8.896 | −72.72 |
15 | SY-15 | −9.872 | −50.98 |
16 | SY-16 | −9.836 | −53.23 |
17 | SY-17 | −9.450 | −54.95 |
18 | SY-18 | −9.447 | −32.94 |
19 | SY-19 | −9.248 | −53.99 |
20 | SY-20 | −9.009 | −40.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Li, P.; Wang, J.; Zhao, D.; Yang, T.; Zhou, P.; Su, R.; Zheng, Z.; Li, S. Novel Scaffold Agonists of the α2A Adrenergic Receptor Identified via Ensemble-Based Strategy. Molecules 2024, 29, 1097. https://doi.org/10.3390/molecules29051097
Sun S, Li P, Wang J, Zhao D, Yang T, Zhou P, Su R, Zheng Z, Li S. Novel Scaffold Agonists of the α2A Adrenergic Receptor Identified via Ensemble-Based Strategy. Molecules. 2024; 29(5):1097. https://doi.org/10.3390/molecules29051097
Chicago/Turabian StyleSun, Shiyang, Pengyun Li, Jiaqi Wang, Dongsheng Zhao, Tingting Yang, Peilan Zhou, Ruibin Su, Zhibing Zheng, and Song Li. 2024. "Novel Scaffold Agonists of the α2A Adrenergic Receptor Identified via Ensemble-Based Strategy" Molecules 29, no. 5: 1097. https://doi.org/10.3390/molecules29051097
APA StyleSun, S., Li, P., Wang, J., Zhao, D., Yang, T., Zhou, P., Su, R., Zheng, Z., & Li, S. (2024). Novel Scaffold Agonists of the α2A Adrenergic Receptor Identified via Ensemble-Based Strategy. Molecules, 29(5), 1097. https://doi.org/10.3390/molecules29051097