Antibacterial and Anticandidal Activity of the Nanostructural Composite of a Spirothiazolidine-Derivative Assembled on Silver Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Confirmation of the Structure of P16
2.2. Nanostructure Formation of the P16 with AgNPs (P16-AgNPs)
2.3. Antibacterial Activity of P16 and P16-AgNPs
3. Materials and Experimental Techniques
3.1. Synthesis of 5-Amino-3-(4-fluorophenyl)-N-hexadecyl-7-(4-methylphenyl)-2-H-spiro[cyclohexane-1,2’-[1,3]thiazolo [4,5-b]pyridine]-6-carbonitrile (P16)
3.1.1. Synthesis of 4-(4-Fluorophenyl)-1-thia-4-azaspiro [4,5]decan-3-one (Compound 1)
3.1.2. Synthesis of 5’-Amino-3’-(4-fluorophenyl)-7’-(4-methylphenyl)-3’H-spiro[cyclohexane-1,2’-[1,3]thiazolo [4,5-b]pyridine]-6’-carbonitrile (Compound 2)
3.1.3. 5-Amino-3-(4-fluorophenyl)-N-hexadecyl-7-(4-methylphenyl)-2-H-spiro[cyclohexane-1,2’-[1,3]thiazolo [4,5-b]pyridine]-6-carbonitrile (P16)
3.2. Synthesis of Silver Nanoparticles (AgNPs)
3.3. Nanostructure of AgNPs with Compound P16 (P16-AgNPs)
3.4. Experimental Techniques
3.4.1. Confirmation of the Chemical Structure of P16
3.4.2. Confirmation the Nanostructure of AgNPs with P16 (P16-AgNPs)
3.5. Antibacterial Properties of the Synthesized P16 and P16-AgNPs
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avirdi, E.; Hooshmand, S.E.; Sepahvand, H.; Vishwanathan, V.; Bahadur, I.; Katata-Seru, L.M.; Varma, R.S. Ionic liquids-assisted greener preparation of silver nanoparticles. Curr. Opin. Green Sustain. Chem. 2021, 33, 100581. [Google Scholar] [CrossRef]
- Rezki, N.; Al-Sodies, S.A.; Aouad, M.R.; Bardaweel, S.; Messali, M.; El Ashry, E.S.H. An eco-friendly ultrasound-assisted synthesis of novel fluorinated pyridinium saltsbased hydrazones and antimicrobial and antitumor screening. Int. J. Mol. Sci. 2016, 17, 766. [Google Scholar] [CrossRef]
- Kovaleva, K.; Yarovaya, O.; Ponomarev, K.; Cheresiz, S.; Azimirad, A.; Chernyshova, I.; Azimirad, A.; Chernyshova, I.; Zakharenko, A.; Konev, V.; et al. Design, synthesis, and molecular docking study of new tyrosyl-dna phosphodiesterase 1 (TDP1) inhibitors combining resin acids and adamantane moieties. Pharmaceuticals 2021, 14, 422. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Abu-Elghait, M.; El-Shahat, M. Engineering titanium-organic framework decorated silver molybdate and silver vanadate as antimicrobial, anticancer agents, and photo-induced hydroxylation reactions. J. Photochem. Photobiol. A Chem. 2022, 423, 113572. [Google Scholar] [CrossRef]
- El-Sayed, A.A.; El-Shahat, M.; Rabie, S.T.; Flefel, E.M.; Abd-Elshafy, D.N. New pyrimidine and fused pyrimidine derivatives: Synthesis and anti Hepatitis A virus (HAV) evaluation. Int. J. Pharm. 2015, 5, 69–79. [Google Scholar]
- Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mohammadi-Khanaposhtani, M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; et al. Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents. New J. Chem. 2018, 42, 17268–17278. [Google Scholar] [CrossRef]
- El-Sayed, W.A.; Abdel-Monem, Y.K.; Yousif, N.M.; Tawfek, N.; Shaaban, M.T.; Abdel-Rahman, A.A.H. Antimicrobial activity of new 2, 4-disubstituted thiazolidinone derivatives. Z. Für Naturforschung C 2009, 64, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Tomar, I.; Singhal, S.; Jha, K.K. Facile synthesis of thiazolidinones bearing thiophene nucleus as antimicrobial agents. Der. Pharm. Chem. 2012, 4, 489–496. [Google Scholar]
- Sathish, M.; Sakla, A.P.; Nachtigall, F.M.; Santos, L.S.; Shankaraiah, N. TCCA-mediated oxidative rearrangement of tetrahydro-β-carbolines: Facile access to spirooxindoles and the total synthesis of (±)-coerulescine and (±)-horsfiline. RSC Adv. 2021, 11, 16537–16546. [Google Scholar] [CrossRef]
- Xi, Y.K.; Zhang, H.; Li, R.X.; Kang, S.Y.; Li, J.; Li, Y. Total synthesis of spirotryprostatins through organomediated intramolecular umpolung cyclization. Chem.–A Eur. J. 2019, 25, 3005–3009. [Google Scholar] [CrossRef]
- Song, H.; Song, J.; Yan, L.; He, W.; Wang, P.; Xu, Y.; Wei, H.; Xie, W. A concise synthesis of (-)-dihydrospirotryprostatin B via tandem Michael addition. Tetrahedron Lett. 2021, 85, 153486. [Google Scholar] [CrossRef]
- Hui, Y.; Zhang, Y.; Luo, Y.; Li, J.; Wang, Y.; Gao, T.; Zhang, S. Facile synthesis of spiro thiazolidinone via cyclic ketones, amines and thioglycolic acid by MCM-41-Schiff base-CuSO4·5H2O. Res. Chem. Intermed. 2021, 47, 521–532. [Google Scholar] [CrossRef]
- Al-Romaizan, A.N. Synthesis, Characteristic and Antimicrobial Activity of Some New Spiro [indol-thiazolidon-2, 4-diones] and Bis (5-fluorospiro [indoline-3, 2′-thiazolidine]-2, 4′-dione) Probes. Int. J. Org. Chem. 2020, 10, 77–87. [Google Scholar] [CrossRef]
- El-Remaily, M.A.E.A.A.A.; El Hady, O.M.; Salah Abo Zaid, H.; Abd El-Raheem, E.M.M. Synthesis and in vitro antibacterial activity of some novel fused pyridopyrimidine derivatives. J. Heterocycl. Chem. 2016, 53, 1304–1309. [Google Scholar] [CrossRef]
- Bodryakov, A.N.; Aliev, A.Y.; Rustamova, S.I. Biological activity of new sulfur-containing derivatives of nitrogen heterocycles, containing carbodithiotate group and quaternized nitrogen atom. Научнo-практический журнал 2020, 4, 25. [Google Scholar]
- Sharma, P.K.; Amin, A.; Kumar, M. A review: Medicinally important nitrogen sulphur containing heterocycles. Open Med. Chem. J. 2020, 14, 49–64. [Google Scholar] [CrossRef]
- Flefel, E.M.; El-Sofany, W.I.; El-Shahat, M.; Naqvi, A.; Assirey, E. Synthesis, molecular docking and in vitro screening of some newly synthesized triazolopyridine, pyridotriazine and pyridine–pyrazole hybrid derivatives. Molecules 2018, 23, 2548. [Google Scholar] [CrossRef]
- Azizi, N.; Haghayegh, M.S. Greener and Additive-Free Reactions in Deep Eutectic Solvent: One-Pot, Three-Component Synthesis of Highly Substituted Pyridines. ChemistrySelect 2017, 2, 8870–8873. [Google Scholar] [CrossRef]
- Patel, P.N.; Desai, D.H.; Patel, N.C.; Deshmukh, A.G. Efficient multicomponent processes for synthesis of novel poly-nuclear hetero aryl substituted terpyridine scaffolds: Single crystal XRD study. J. Mol. Struct. 2022, 1250, 131737. [Google Scholar] [CrossRef]
- Edrisi, M.; Azizi, N. Sulfonic acid-functionalized graphitic carbon nitride composite: A novel and reusable catalyst for the one-pot synthesis of polysubstituted pyridine in water under sonication. J. Iran. Chem. Soc. 2020, 17, 901–910. [Google Scholar] [CrossRef]
- Du, L.; Gong, Y.; Han, J.; Xin, X.; Luo, H.; Tian, Y.; Li, B. Cascade 8π electrocyclization/benzannulation to access highly substituted phenylpyridines. Org. Lett. 2021, 23, 7966–7971. [Google Scholar] [CrossRef]
- Emam, H.E.; El-Shahat, M.; Hasanin, M.S.; Ahmed, H.B. Potential military cotton textiles composed of carbon quantum dots clustered from 4–(2, 4–dichlorophenyl)–6–oxo–2–thioxohexahydropyrimidine–5–carbonitrile. Cellulose 2021, 28, 9991–10011. [Google Scholar] [CrossRef]
- Singh, R.; Ahmad Ganaie, S.; Singh, A.; Chaudhary, A. Carbon-SO3H catalyzed expedient synthesis of new spiro-[indeno [1, 2-b] quinoxaline-[11, 2′]-thiazolidine]-4′-ones as biologically important scaffold. Synth. Commun. 2019, 49, 80–93. [Google Scholar] [CrossRef]
- Hamzehloueian, M.; Sarrafi, Y.; Darroudi, M.; Arani, M.A.; Darestani, R.N.; Safari, F.; Foroumadi, A. Synthesis, antibacterial and anticancer activities evaluation of new 4-thiazolidinone-indolin-2-one analogs. Biointerface Res. Appl. Chem. 2022, 12, 8094–8104. [Google Scholar]
- Flefel, E.M.; El-Sofany, W.I.; Awad, H.M.; El-Shahat, M. First synthesis for bis-spirothiazolidine derivatives as a novel heterocyclic framework and their biological activity. Mini Rev. Med. Chem. 2020, 20, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Abhinit, M.; Ghodke, M.; Pratima, N.A. Exploring potential of 4-thiazolidinone: A brief review. Int. J. Pharm. Pharm. Sci. 2009, 1, 47–64. [Google Scholar]
- Balzarini, J.; Orzeszko, B.; Maurin, J.K.; Orzeszko, A. Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem. 2007, 42, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chong, C.R.; Shi, L.; Yoshimoto, T.; Sullivan Jr, D.J.; Liu, J.O. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc. Natl. Acad. Sci. USA 2006, 103, 14548–14553. [Google Scholar] [CrossRef] [PubMed]
- Flefel, E.M.; Sayed, H.H.; Hashem, A.I.; Shalaby, E.A.; El-Sofany, W.; Abdel-Megeid, F.M. Pharmacological evaluation of some novel synthesized compounds derived from spiro (cyclohexane-1, 2′-thiazolidines). Med. Chem. Res. 2014, 23, 2515–2527. [Google Scholar] [CrossRef]
- Flefel, E.M.; El-Sayed, W.A.; Mohamed, A.M.; El-Sofany, W.I.; Awad, H.M. Synthesis and anticancer activity of new 1-thia-4-azaspiro [4.5] decane, their derived thiazolopyrimidine and 1, 3, 4-thiadiazole thioglycosides. Molecules 2017, 22, 170. [Google Scholar] [CrossRef]
- Flefel, E.M.; El-Sofany, W.I.; Al-Harbi, R.A.; El-Shahat, M. Development of a novel series of anticancer and antidiabetic: Spirothiazolidines analogs. Molecules 2019, 24, 2511. [Google Scholar] [CrossRef]
- Holla, B.S.; Malini, K.V.; Rao, B.S.; Sarojini, B.K.; Kumari, N.S. Synthesis of some new 2, 4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agents. Eur. J. Med. Chem. 2003, 38, 313–318. [Google Scholar] [CrossRef]
- Taranalli, A.D.; Thimmaiah, N.V.; Srinivas, S.; Saravanan, E.; Bhat, A.R. Anti-inflammatory, analgesic and anti ulcer activity of certain thiazolidinones. Asian J. Pharm. Clin. Res. 2009, 2, 209–211. [Google Scholar]
- Amin, K.M.; Rahman, D.E.A.; Al-Eryani, Y.A. Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents. Bioorganic Med. Chem. 2008, 16, 5377–5388. [Google Scholar] [CrossRef]
- Agarwal, A.; Lata, S.; Saxena, K.K.; Srivastava, V.K.; Kumar, A. Synthesis and anticonvulsant activity of some potential thiazolidinonyl 2-oxo/thiobarbituric acids. Eur. J. Med. Chem. 2006, 41, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.K.; Kumar, A. Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4 (3H)-ones as potential anticonvulsant agents. Eur. J. Med. Chem. 2002, 37, 873–882. [Google Scholar]
- El-Sofany, W.I.; Flefel, E.M.; Darwesh, O.M.; El-Shahat, M. Boosting the antimicrobial performance based on new fused spirothiazolidine framework analogs. J. Iran. Chem. Soc. 2022, 19, 4223–4236. [Google Scholar] [CrossRef]
- Mathew, A.; Sajanlal, P.R.; Pradeep, T. A fifteen atom silver cluster confined in bovine serum albumin. J. Mater. Chem. 2011, 21, 11205–11212. [Google Scholar] [CrossRef]
- Azzam EM, S.; Kandile, N.G.; Badawi, A.M.; Sami, R.M. Influence in the Surface Activity for Some Cationic Thiol Surfactants Using Their Nanostructures. J. Dispers. Sci. Technol. 2011, 32, 1325–1331. [Google Scholar] [CrossRef]
- Azzam, E.M.; Sami, R.M.; Alenezi, K.M.; Haque, A.; El Moll, H.; Soury, R.A.; Ismail, A.R. Inhibition of Sulfate-Reducing Bacteria by Para-amino-N-((1-Alkylpyridin-1-Ium Bromide)-4-Yl) Benzamide Surfactants and Surfactant-Coated Silver Nanoparticles. J. Surfactants Deterg. 2022, 25, 125–131. [Google Scholar] [CrossRef]
- Shaban, S.M.; Aiad, I.; Ismail, A.R. Surface parameters and biological activity of N-(3-(dimethyl benzyl ammonio) propyl) alkanamide chloride cationic surfactants. J. Surfactants Deterg. 2016, 19, 501–510. [Google Scholar] [CrossRef]
- Murguía, M.C.; Vaillard, V.A.; Sánchez, V.G.; Di Conza, J.; Grau, R.J. Synthesis, surface-active properties, and antimicrobial activities of new double-chain Gemini surfactants. J. Oleo Sci. 2008, 57, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Maruthamuthu, S.; Kumar, B.D.; Ramachandran, S.; Anandkumar, B.; Palanichamy, S.; Chandrasekaran, M.; Subramanian, P.; Palaniswamy, N. Microbial corrosion in petroleum product transporting pipelines. Ind. Eng. Chem. Res. 2011, 50, 8006–8015. [Google Scholar] [CrossRef]
- Haldar, J.; Kondaiah, P.; Bhattacharya, S. Synthesis and antibacterial properties of novel hydrolyzable cationic amphiphiles. Incorporation of multiple head groups leads to impressive antibacterial activity. J. Med. Chem. 2005, 48, 3823–3831. [Google Scholar] [CrossRef]
- Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. J. Appl. Microbiol. 2005, 99, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues de Almeida, N.; Han, Y.; Perez, J.; Kirkpatrick, S.; Wang, Y.; Sheridan, M.C. Design, synthesis, and nanostructure-dependent antibacterial activity of cationic peptide amphiphiles. ACS Appl. Mater. Interfaces 2018, 11, 2790–2801. [Google Scholar] [CrossRef]
- Inácio, Â.S.; Domingues, N.S.; Nunes, A.; Martins, P.T.; Moreno, M.J.; Estronca, L.M.; Fernandes, R.; Moreno, A.J.M.; Borrego, M.J.; Gome, J.P.; et al. Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: Mechanisms of action and clinical implications in antibacterial prophylaxis. J. Antimicrob. Chemother. 2016, 71, 641–654. [Google Scholar] [CrossRef]
- Jones, M.N. Surfactants in membrane solubilisation. Int. J. Pharm. 1999, 177, 137–159. [Google Scholar] [CrossRef]
- Snoussi, M.; Noumi, E.; Hajlaoui, H.; Bouslama, L.; Hamdi, A.; Saeed, M.; Alreshidi, M.; Adnan, M.; Al-Rashidi, A.; Aouadi, K.; et al. Phytochemical profiling of Allium subhirsutum L. aqueous extract with antioxidant, antimicrobial, antibiofilm, and anti-quorum sensing properties: In vitro and in silico studies. Plants 2022, 11, 495. [Google Scholar] [CrossRef]
Clinical Bacterial Strains | P16 Mean GIZ ± SD (mm) | P16-AgNPs Mean GIZ ± SD (mm) | Ampicillin (10 µg/disc) Mean GIZ ± SD (mm) |
P. aeruginosa (249) | 7.00 ± 0.00 bB | 11.67 ± 0.58 aC | 6.00 ± 0.00 aA |
E. coli (141) | 6.00 ± 0.00 aA | 11.33 ± 0.58 aB | 6.00 ± 0.00 aA |
Ent. cloacae (235) | 6.00 ± 0.00 aA | 11.33 ± 0.58 aB | 6.00 ± 0.00 aA |
S. epidermidis (BC 161) | 6.00 ± 0.00 aA | 12.33 ± 0.58 abB | 6.00 ± 0.00 aA |
Methicillin-Resistant S. aureus (217) | 7.00 ± 0.00 bA | 12.67 ± 0.58 abB | 6.00 ± 0.00 aA |
Candida Strains | P16 Mean GIZ ± SD (mm) | P16-AgNPs Mean GIZ ± SD (mm) | Amphotericin B (10 mg/mL; 10 µL/disc) Mean ± SD (mm) |
C. utilis ATCC 9255 | 10.33 ± 0.58 cA | 13.33 ± 0.58 bcC | 11.67 ± 0.58 bB |
C. tropicalis ATCC 1362 | 10.33 ± 0.58 cA | 14.00 ± 1.00 cB | 14.33 ± 0.58 cB |
C. albicans ATCC 20402 | 11.67 ± 0.58 dA | 18.00 ± 1.00 dC | 14.33 ± 0.58 cB |
Clinical Bacterial Strains | P16 (ppm/mL) | P16-AgNPs (ppm/mL) | ||||
MIC | MBC | MBC/MIC Ratio | MIC | MBC | MBC/MIC Ratio | |
P. aeruginosa (249) | 62.5 | 1000 | 16; Bacteriostatic | 31.25 | 250 | 8; Bacteriostatic |
E. coli (141) | 62.5 | 1000 | 16; Bacteriostatic | 31.25 | 250 | 8; Bacteriostatic |
Ent. cloacae (235) | 62.5 | 250 | 4; Bactericidal | 31.25 | 125 | 4; Bactericidal |
S. epidermidis (BC 161) | 31.25 | 250 | 8; Bacteriostatic | 15.62 | 125 | 8; Bacteriostatic |
Methicillin-Resistant S. aureus (217) | 62.5 | 1000 | 16; Bacteriostatic | 3.81 | 15.62 | 4; Bactericidal |
Candida Strains | P16 (ppm/mL) | P16-AgNPs (ppm/mL) | ||||
MIC | MFC | MFC/MIC Ratio | MIC | MFC | MFC/MIC Ratio | |
C. utilis ATCC 9255 | 250 | 1000 | 4; Fungicidal | 125 | 250 | 2; Fungicidal |
C. tropicalis ATCC 1362 | 250 | 1000 | 4; Fungicidal | 125 | 250 | 2; Fungicidal |
C. albicans ATCC 20402 | 62.5 | 250 | 4; Fungicidal | 15.62 | 62.5 | 4; Fungicidal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, O.A.O.; Azzam, E.M.S.; Alhar, M.S.; Alanazi, K.D.; Aljuhani, S.A.A.; Elsofany, W.I. Antibacterial and Anticandidal Activity of the Nanostructural Composite of a Spirothiazolidine-Derivative Assembled on Silver Nanoparticles. Molecules 2024, 29, 1139. https://doi.org/10.3390/molecules29051139
Alshammari OAO, Azzam EMS, Alhar MS, Alanazi KD, Aljuhani SAA, Elsofany WI. Antibacterial and Anticandidal Activity of the Nanostructural Composite of a Spirothiazolidine-Derivative Assembled on Silver Nanoparticles. Molecules. 2024; 29(5):1139. https://doi.org/10.3390/molecules29051139
Chicago/Turabian StyleAlshammari, Odeh A. O., Eid. M. S. Azzam, Munirah S. Alhar, Kaseb D. Alanazi, Sara A. A. Aljuhani, and Walaa I. Elsofany. 2024. "Antibacterial and Anticandidal Activity of the Nanostructural Composite of a Spirothiazolidine-Derivative Assembled on Silver Nanoparticles" Molecules 29, no. 5: 1139. https://doi.org/10.3390/molecules29051139
APA StyleAlshammari, O. A. O., Azzam, E. M. S., Alhar, M. S., Alanazi, K. D., Aljuhani, S. A. A., & Elsofany, W. I. (2024). Antibacterial and Anticandidal Activity of the Nanostructural Composite of a Spirothiazolidine-Derivative Assembled on Silver Nanoparticles. Molecules, 29(5), 1139. https://doi.org/10.3390/molecules29051139