Research Progress of Ozone/Peroxymonosulfate Advanced Oxidation Technology for Degrading Antibiotics in Drinking Water and Wastewater Effluent: A Review
Abstract
:1. Introduction
2. Study on the Application of O3/PMS Advanced Oxidation Technology in the Treatment of Water Body Containing Antibiotics
2.1. Proposal of O3/PMS Advanced Oxidation Technology
2.2. Reaction Mechanism of O3/PMS Advanced Oxidation Technology
2.3. Research Status of O3/PMS Advanced Oxidation Technology for Treatment of Antibiotics in Drinking Water and Wastewater Effluent
2.3.1. Treatment Efficacy of O3/PMS Advanced Oxidation Technology for Antibiotics in Drinking Water and Wastewater Effluent
2.3.2. Inhibition of By-Product Generation in O3/PMS System by Adding Carbon Materials
3. Conclusions
4. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K.H. Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. [Google Scholar] [CrossRef]
- Wiszniowski, J.; Robert, D.; Surmacz-Gorska, J.; Miksch, K.; Weber, J.V. Landfill leachate treatment methods: A review. Environ. Chem. Lett. 2006, 4, 51–61. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; Von Gunten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, 3463–3470. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yu, Y.; Liang, L.; Duan, X.; Li, R.; Lu, X.; Yan, B.; Li, N.; Wang, S. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review. J. Hazard. Mater. 2021, 408, 124461. [Google Scholar] [CrossRef] [PubMed]
- Anjali, R.; Shanthakumar, S. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. J. Environ. Manag. 2019, 246, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Liu, J.; Shangguan, W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chin. J. Catal. 2020, 41, 1440–1450. [Google Scholar] [CrossRef]
- Hiller, C.X.; Hübner, U.; Fajnorova, S.; Schwartz, T.; Drewes, J.E. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. Sci. Total Environ. 2019, 685, 596–608. [Google Scholar] [CrossRef]
- Salcedo, D.E.; Lee, J.H.; Ha, U.H.; Kim, S.P. The effects of antibiotics on the biofilm formation and antibiotic resistance gene transfer. Desalin. Water. Treat. 2014, 54, 3582–3588. [Google Scholar] [CrossRef]
- Du, L.; Liu, W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 2011, 32, 309–327. [Google Scholar] [CrossRef]
- Zhang, S.H.; Lv, X.; Han, B.; Gu, X.; Wang, P.F.; Wang, C.; He, Z. Prevalence of antibiotic resistance genes in antibiotic-resistant Escherichia coli isolates in surface water of Taihu Lake Basin, China. Environ. Sci. Pollut. Res. 2015, 22, 11412–11421. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Guo, C.; Luo, Y.; Lv, J.; Zhang, Y.; Lin, H.; Wang, L.; Xu, J. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China. Environ. Pollut. 2016, 213, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Lekunberri, I.; Villagrasa, M.; Balcazar, J.L.; Borrego, C.M. Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. Sci. Total Environ. 2017, 601–602, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Fatta-Kassinos, D.; Vasquez, M.I.; Kummerer, K. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 2011, 85, 693–709. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhong, Y.; Shao, Z. Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis. Trends Chem. 2019, 1, 410–424. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Wu, W.T.; Zhang, L.L.; Li, Z.F.; Wang, C.X.; Yu, C.S.; Wang, Q.G. Research progress of advanced oxidation technology in degradation of antibiotics and removal of antibiotic resistance. Chem. Ind. Eng. Prog. 2021, 40, 4551–4561. (In Chinese) [Google Scholar]
- Yang, Y.; Jiang, J.; Lu, X.; Ma, J.; Liu, Y. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process. Environ. Sci. Technol. 2015, 49, 7330–7339. [Google Scholar] [CrossRef]
- Chen, Y.J.; Fan, T.Y.; Wang, L.P.; Cheng, T.W.; Chen, S.S.; Yuan, M.H.; Cheng, S. Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature. Sustainability 2020, 12, 1518. [Google Scholar] [CrossRef]
- Miklos, D.B.; Wang, W.L.; Linden, K.G.; Drewes, J.E.; Hübner, U. Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation. Chem. Eng. J. 2019, 362, 537–547. [Google Scholar] [CrossRef]
- Zou, J.P.; Chen, Y.; Liu, S.S.; Xing, Q.J.; Dong, W.H.; Luo, X.B.; Dai, W.L.; Xiao, X.; Luo, J.M.; Crittenden, J. Electrochemical oxidation and advanced oxidation processes using a 3D hexagonal Co3O4 array anode for 4-nitrophenol decomposition coupled with simultaneous CO2 conversion to liquid fuels via a flower-like CuO cathode. Water Res. 2019, 150, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeldt, E.J.; Linden, K.G.; Canonica, S.; Von Gunten, U. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Res. 2006, 40, 3695–3704. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, Q.; Feng, W.; Zhang, X. Application Progress of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Drinking Water. Sustainability 2022, 14, 11718. [Google Scholar] [CrossRef]
- Hansen, K.M.S.; Spiliotopoulou, A.; Chhetri, R.K.; Escolà Casas, M.; Bester, K.; Andersen, H.R. Ozonation for source treatment of pharmaceuticals in hospital wastewater—Ozone lifetime and required ozone dose. Chem. Eng. J. 2016, 290, 507–514. [Google Scholar] [CrossRef]
- Zheng, J.; Su, C.; Zhou, J.; Xu, L.; Qian, Y.; Chen, H. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chem. Eng. J. 2017, 317, 309–316. [Google Scholar] [CrossRef]
- Camel, V.; Bermond, A. The use of ozone and associated oxidation processes in drinking water treatment. Water Res. 1998, 32, 3208–3222. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Yuan, Z.; Sui, M.; Yuan, B.; Li, P.; Wang, J.; Qin, J.; Xu, G. Degradation of ibuprofen using ozone combined with peroxymonosulfate. Environ. Sci. Water Res. Technol. 2017, 3, 960–969. [Google Scholar] [CrossRef]
- Von Sonntag, C.; Von Sonntag, U. Chemistry of Ozone in Water and Wastewater Treatment; IWA Publishing: London, UK, 2012; pp. 225–248. [Google Scholar]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Piras, F.; Santoro, O.; Pastore, T.; Pio, I.; De Dominicis, E.; Gritti, E.; Caricato, R.; Lionetto, M.G.; Mele, G.; Santoro, D. Controlling micropollutants in tertiary municipal wastewater by O3/H2O2, granular biofiltration and UV254/H2O2 for potable reuse applications. Chemosphere 2020, 239, 124635. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, Z.; Li, K.; Huang, T.; Ma, J.; Wen, G. Degradation of Micropollutants and Formation of Oxidation By-Products during the Ozone/Peroxymonosulfate System: A Critical Review. Water 2021, 13, 3126. [Google Scholar] [CrossRef]
- Neta, P.; Hule, R.E. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Lutze, H.V.; Bircher, S.; Rapp, I.; Kerlin, N.; Bakkour, R.; Geisler, M.; Von Sonntag, C.; Schmidt, T.C. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter. Environ. Sci. Technol. 2015, 49, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Gara, P.M.D.; Bosio, G.N.; Gonzalez, M.C.; Mártire, D.O. Kinetics of the sulfate radical-mediated photo-oxidation of humic substances. Int. J. Chem. Kinet. 2007, 40, 19–24. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Cong, J.; Wen, G.; Huang, T.; Deng, L.; Ma, J. Study on enhanced ozonation degradation of para-chlorobenzoic acid by peroxymonosulfate in aqueous solution. Chem. Eng. J. 2015, 264, 399–403. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Li, X.; Li, L. The relation of interface electron transfer and PMS activation by the H-bonding interaction between composite metal and MCM-48 during sulfamethazine ozonation. Chem. Eng. J. 2020, 398, 125529. [Google Scholar] [CrossRef]
- Ghauch, A.; Ayoub, G.; Naim, S. Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chem. Eng. J. 2013, 228, 1168–1181. [Google Scholar] [CrossRef]
- Ji, Y.; Ferronato, C.; Salvador, A.; Yang, X.; Chovelon, J.M. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ. 2014, 472, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Mahdi Ahmed, M.; Barbati, S.; Doumenq, P.; Chiron, S. Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination. Chem. Eng. J. 2012, 197, 440–447. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Ma, W.; Wang, J.; Xu, H.; Li, K.; Huang, T.; Ma, J.; Wen, G. Adding CuCo2O4-GO to inhibit bromate formation and enhance sulfamethoxazole degradation during the ozone/peroxymonosulfate process: Efficiency and mechanism. Chemosphere 2022, 286, 131829. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Yang, W.; Liu, Y.; Zhang, W.; Wang, Z.; Nie, J.; Li, G.; Liang, H. Removal of manganese, ferrous and antibiotics from groundwater simultaneously using peroxymonosulfate-assisted in-situ oxidation/coagulation integrated with ceramic membrane process. Sep. Purif. Technol. 2020, 252, 117492. [Google Scholar] [CrossRef]
- Lu, H.; Feng, W.; Li, Q. Degradation Efficiency Analysis of Sulfadiazine in Water by Ozone/Persulfate Advanced Oxidation Process. Water 2022, 14, 2476. [Google Scholar] [CrossRef]
- Hartmann, A.; Golet, E.M.; Gartiser, S.; Alder, A.C.; Koller, T.; Widmer, R.M. Primary DNA Damage But Not Mutagenicity Correlates with Ciprofloxacin Concentrations in German Hospital Wastewaters. Sep. Purif. Technol. 1999, 36, 115–119. [Google Scholar] [CrossRef]
- Li, S.; Fan, X.; Gu, M.; Cagnetta, G.; Huang, J.; Yu, G. Confined-space strategy for anchoring catalytic nanoparticles on Si-OH by ball milling for enhanced O3/PMS oxidation of ciprofloxacin. Chem. Eng. J. 2022, 429, 132318. [Google Scholar] [CrossRef]
- Silva, V.; Silva, C.; Soares, P.; Garrido, E.M.; Borges, F.; Garrido, J. Isothiazolinone Biocides: Chemistry, Biological, and Toxicity Profiles. Molecules 2020, 25, 991. [Google Scholar] [CrossRef]
- Li, A.; Wu, Q.Y.; Tian, G.P.; Hu, H.Y. Effective degradation of methylisothiazolone biocide using ozone: Kinetics, mechanisms, and decreases in toxicity. J. Environ. Manag. 2016, 183, 1064–1071. [Google Scholar] [CrossRef]
- Yang, Z.W.; Wang, W.L.; Lee, M.Y.; Wu, Q.Y.; Guan, Y.T. Synergistic effects of ozone/peroxymonosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors. Environ. Pollut. 2022, 294, 118626. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.L.; Le, M.T.; Nguyen, L.H. Synthesising nanocomposite Co2SnO4@rGO for peroximonosulphate activation in a hybrid ozonation system to effectively degrade cefalexin from wastewater. Environ. Sci. 2023, 65, 50–58. [Google Scholar]
- Gholikandi, G.B.; Mollazadeh, A.; Farimaniraad, H.; Masihi, H. Using Peroxymonosulfate-Ozone Advanced Oxidation For The Treated Wastewater Disinfection and Amoxicillin Micro-Pollutant Removal Simultaneously. Res. Sq. 2021, 1–18. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, B.; Gao, B.; Cheng, N.; Feng, Q.; Chen, M.; Wang, S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. J. Hazard. Mater. 2023, 442, 130075. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Li, J.; Zhang, C.; Qin, F.; Luo, H.; Huang, C.; Qin, D.; Ouyang, Z. Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. Environ. Pollut. 2022, 300, 118939. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Wang, P.; Zhou, X.; Zhang, N.; Zhang, R.; Wei, X.; Peng, S. Cobalt oxide/polypyrrole derived Co/NC to activate peroxymonosulfate for benzothiazole degradation: Enhanced conversion efficiency of PMS to free radicals. J. Water Process Eng. 2024, 57, 104639. [Google Scholar]
- Liu, Z.; Wen, G.; Ni, Y.; Wang, S.; Wang, S.; Yu, Y.; Huang, T.; Ma, J. Inhibition of bromate formation in the ozone/peroxymonosulfate process by ammonia, ammonia-chlorine and chlorine-ammonia pretreatment: Comparisons with ozone alone. Sep. Purif. Technol. 2021, 278, 119600. [Google Scholar] [CrossRef]
- Wen, G.; Qiang, C.; Feng, Y.; Huang, T.; Ma, J. Bromate formation during the oxidation of bromide-containing water by ozone/peroxymonosulfate process: Influencing factors and mechanisms. Chem. Eng. J. 2018, 352, 316–324. [Google Scholar] [CrossRef]
- Wen, G.; Wang, S.; Wang, T.; Feng, Y.; Chen, Z.; Lin, W.; Huang, T.; Ma, J. Inhibition of bromate formation in the O3/PMS process by adding low dosage of carbon materials: Efficiency and mechanism. Chem. Eng. J. 2020, 402, 126207. [Google Scholar] [CrossRef]
- Ling, L.; Deng, Z.; Fang, J.; Shang, C. Bromate control during ozonation by ammonia-chlorine and chlorine-ammonia pretreatment: Roles of bromine-containing haloamines. Chem. Eng. J. 2020, 389, 123447. [Google Scholar] [CrossRef]
- Lim, H.J.; Kim, D.J.; Rigby, K.; Chen, W.; Xu, H.; Wu, X.; Kim, J.H. Peroxymonosulfate-Based Electrochemical Advanced Oxidation: Complication by Oxygen Reduction Reation. Environ. Sci. Technol. 2023, 57, 19054–19063. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, C.; Zhang, X.; Hui, B. Charcoal-based block catalyst boosts peroxymonosulfate activation for ciprofloxacin degradation. Sep. Purif. Technol. 2024, 329, 125194. [Google Scholar] [CrossRef]
- Wang, J.; Long, X.; Zhang, I.; Huang, R. Pulsed versus direct current electrochemical co-catalytic peroxymonosulfate-based system: Elevated degradation and energy efficiency with enhanced oxidation mechanisms. J. Hazard. Mater. 2023, 458, 132004. [Google Scholar] [CrossRef] [PubMed]
Process | Advantages | Disadvantages | References |
---|---|---|---|
O3/PMS oxidation | Simple equipment, mild reaction conditions, and normal temperature and pressure operation; the production of two active free radicals, strong oxidation ability, high efficiency and stronger applicability. | Weak mineralization ability, and the running in weak alkaline environment. | [19] |
Fenton oxidation | Friendly to the environment, occupies a small space, high oxidation efficiency and strong oxidation ability. | High treatment cost, harsh operating conditions and the running in strong acid conditions. | [20] |
Photochemical catalytic oxidation | Green and environment-friendly lighting, little impact on water quality, low operating cost and long service life. | Needs to be combined with other technologies to achieve better results: such as UV/H2O2, and UV/PDS; ultraviolet light beam with built-in light tube harmful to human body. | [21] |
Electrochemical oxidation | Simple electrolysis device, convenient operation and control, the oxidization of pollutants by the anode, and the changes of the anode material to destroy different types of organic matter. | Excessive energy consumption, low reactor efficiency and high equipment cost. | [22] |
O3/H2O2 oxidation | Fast oxidation speed and high oxidation efficiency. | Complex equipment, high energy consumption, high cost and easy to produce bromate. | [23] |
Equation | Serial Number |
---|---|
(1) | |
(2) | |
(3) | |
(4) | |
(5) | |
(6) | |
(7) |
Equation | Reaction Rate Constant (L·mol−1·s−1) | Serial Number |
---|---|---|
(8) | ||
none | (9) | |
none | (10) | |
(11) | ||
(12) | ||
(13) | ||
none | (14) | |
none | (15) | |
none | (16) | |
none | (17) | |
none | (18) | |
(19) | ||
(20) | ||
none | (21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Chen, X.; Cong, Q.; Li, Q.; Wang, X.; Zhong, S.; Deng, H.; Yan, B. Research Progress of Ozone/Peroxymonosulfate Advanced Oxidation Technology for Degrading Antibiotics in Drinking Water and Wastewater Effluent: A Review. Molecules 2024, 29, 1170. https://doi.org/10.3390/molecules29051170
Lu H, Chen X, Cong Q, Li Q, Wang X, Zhong S, Deng H, Yan B. Research Progress of Ozone/Peroxymonosulfate Advanced Oxidation Technology for Degrading Antibiotics in Drinking Water and Wastewater Effluent: A Review. Molecules. 2024; 29(5):1170. https://doi.org/10.3390/molecules29051170
Chicago/Turabian StyleLu, Hai, Xinglin Chen, Qiao Cong, Qingpo Li, Xiaoyan Wang, Shuang Zhong, Huan Deng, and Bojiao Yan. 2024. "Research Progress of Ozone/Peroxymonosulfate Advanced Oxidation Technology for Degrading Antibiotics in Drinking Water and Wastewater Effluent: A Review" Molecules 29, no. 5: 1170. https://doi.org/10.3390/molecules29051170
APA StyleLu, H., Chen, X., Cong, Q., Li, Q., Wang, X., Zhong, S., Deng, H., & Yan, B. (2024). Research Progress of Ozone/Peroxymonosulfate Advanced Oxidation Technology for Degrading Antibiotics in Drinking Water and Wastewater Effluent: A Review. Molecules, 29(5), 1170. https://doi.org/10.3390/molecules29051170