Experimental and Simulation Studies of Imidazolium Chloride Ionic Liquids with Different Alkyl Chain Lengths for Viscosity Reductions in Heavy Crude Oil: The Effect on Asphaltene Dispersion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Heavy Oil Viscosity Reduction by Ionic Liquids
2.2. Characterization of Asphaltene Structure
2.3. The Effect of Solubility Parameters on the Viscosity Reduction
2.4. Dispersion of Asphaltenes by Ionic Liquids
2.5. Interaction of Ionic Liquids with Asphaltenes
2.6. Spatial Distribution of Asphaltene Molecules
2.7. Radial Distribution Function
2.8. Viscosity Reduction Mechanism
3. Materials and Methods
3.1. Materials
3.2. Determination of the Viscosity of Heavy Crude Oil
3.3. Test of Asphaltene Precipitation
3.4. Particle Size Determination
3.5. Characterization of Asphaltenes
4. Molecular Dynamics Simulation Settings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Wang, H.; Blackbourn, G.; Ma, F.; He, Z.; Wen, Z.; Wang, Z.; Yang, Z.; Luan, T.; Wu, Z. Heavy Oils and Oil Sands: Global Distribution and Resource Assessment. Acta Geol. Sin. Engl. Ed. 2019, 93, 199–212. [Google Scholar] [CrossRef]
- Si, Y.; Zhu, Y.; Liu, T.; Xu, X.; Yang, J. Synthesis of a novel borate ester Anion-Nonionic surfactant and its application in viscosity reduction and emulsification of heavy crude oil. Fuel 2023, 333, 126453. [Google Scholar] [CrossRef]
- Sánchez, N.M.; de Klerk, A. Viscosity Mixing Rules for Bitumen at 1–10 wt % Solvent Dilution When Only Viscosity and Density Are Known. Energy Fuels 2020, 34, 8227–8238. [Google Scholar] [CrossRef]
- dos Santos, L.A.; Ribeiro, D.d.C.; Romero, O.J. Heavy oil transportation through steam heating: An analytical and numerical approach. J. Pet. Sci. Eng. 2020, 195, 107932. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Rodionova, G.; Simon, S.; Ilyin, S.O.; Arinina, M.P.; Kulichikhin, V.G.; Sjöblom, J. Some Compositional Viscosity Correlations for Crude Oils from Russia and Norway. Energy Fuels 2016, 30, 9322–9328. [Google Scholar] [CrossRef]
- Alrashidi, H.; Afra, S.; Nasr-El-Din, H.A. Application of natural fatty acids as asphaltenes solvents with inhibition and dispersion effects: A mechanistic study. J. Pet. Sci. Eng. 2019, 172, 724–730. [Google Scholar] [CrossRef]
- Enayat, S.; Tavakkoli, M.; Yen, A.; Misra, S.; Vargas, F.M. Review of the Current Laboratory Methods to Select Asphaltene Inhibitors. Energy Fuels 2020, 34, 15488–15501. [Google Scholar] [CrossRef]
- Ghloum, E.F.; Rashed, A.M.; Safa, M.A.; Sablit, R.C.; Al-Jouhar, S.M. Mitigation of asphaltenes precipitation phenomenon via chemical inhibitors. J. Pet. Sci. Eng. 2019, 175, 495–507. [Google Scholar] [CrossRef]
- Lin, Y.-J.; He, P.; Tavakkoli, M.; Mathew, N.T.; Fatt, Y.Y.; Chai, J.C.; Goharzadeh, A.; Vargas, F.M.; Biswal, S.L. Characterizing Asphaltene Deposition in the Presence of Chemical Dispersants in Porous Media Micromodels. Energy Fuels 2017, 31, 11660–11668. [Google Scholar] [CrossRef]
- Melendez-Alvarez, A.A.; Garcia-Bermudes, M.; Tavakkoli, M.; Doherty, R.H.; Meng, S.; Abdallah, D.S.; Vargas, F.M. On the evaluation of the performance of asphaltene dispersants. Fuel 2016, 179, 210–220. [Google Scholar] [CrossRef]
- Zhu, L.; Jing, X.; Wang, S.; Chen, J.; Xia, D.; Li, A. Screening and Evaluation of Types and Ratio of Monomers of Oil Soluble Viscosity Reducing Agent for Shengli Super Heavy Oil. Pet. Sci. Technol. 2015, 33, 452–459. [Google Scholar] [CrossRef]
- Pillai, P.; Maiti, M.; Mandal, A. Mini-review on Recent Advances in the Application of Surface-Active Ionic Liquids: Petroleum Industry Perspective. Energy Fuels 2022, 36, 7925–7939. [Google Scholar] [CrossRef]
- Somoza, A.; Arce, A.; Soto, A. Oil recovery tests with ionic liquids: A review and evaluation of 1-decyl-3-methylimidazolium triflate. Pet. Sci. 2022, 19, 1877–1887. [Google Scholar] [CrossRef]
- Song, F.; Zhou, J.; Jia, Z.; He, L.; Sui, H.; Li, X. Interfacial behaviors of ionic liquids in petroleum Production: A review. J. Mol. Liq. 2023, 382, 121864. [Google Scholar] [CrossRef]
- Guglielmero, L.; Mero, A.; Mezzetta, A.; Tofani, G.; D’Andrea, F.; Pomelli, C.S.; Guazzelli, L. Novel access to ionic liquids based on trivalent metal–EDTA complexes and their thermal and electrochemical characterization. J. Mol. Liq. 2021, 340, 117210. [Google Scholar] [CrossRef]
- Mezzetta, A.; Guglielmero, L.; Mero, A.; Tofani, G.; D’Andrea, F.; Pomelli, C.S.; Guazzelli, L. Expanding the Chemical Space of Benzimidazole Dicationic Ionic Liquids. Molecules 2021, 26, 4211. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.M.S.; Al-Lohedan, H.A. Alginate-based poly ionic liquids for the efficient demulsification of water in heavy crude oil emulsions. Fuel 2022, 320, 123949. [Google Scholar] [CrossRef]
- Li, X.; Kersten, S.R.A.; Schuur, B. Efficiency and Mechanism of Demulsification of Oil-in-Water Emulsions Using Ionic Liquids. Energy Fuels 2016, 30, 7622–7628. [Google Scholar] [CrossRef]
- Liu, H.; Xu, H.; Hua, M.; Chen, L.; Wei, Y.; Wang, C.; Wu, P.; Zhu, F.; Chu, X.; Li, H.; et al. Extraction combined catalytic oxidation desulfurization of petcoke in ionic liquid under mild conditions. Fuel 2020, 260, 116200. [Google Scholar] [CrossRef]
- Pillai, P.; Mandal, A. Synthesis and characterization of surface-active ionic liquids for their potential application in enhanced oil recovery. J. Mol. Liq. 2022, 345, 117900. [Google Scholar] [CrossRef]
- Tafur, N.; Munuzuri, A.P.; Soto, A. Improvement of a Surfactant Blend for Enhanced Oil Recovery in Carbonate Reservoirs by Means of an Ionic Liquid. Int. J. Mol. Sci. 2022, 24, 726. [Google Scholar] [CrossRef] [PubMed]
- Atta, A.M.; Ezzat, A.O.; Abdullah, M.M.; Hashem, A.I. Effect of Different Families of Hydrophobic Anions of Imadazolium Ionic Liquids on Asphaltene Dispersants in Heavy Crude Oil. Energy Fuels 2017, 31, 8045–8053. [Google Scholar] [CrossRef]
- Baghersaei, S.; Mokhtari, B.; Soulgani, B.S.; Pourreza, N.; Veiskarami, S. Investigation on Asphaltene Dispersion Activity of Tetrabutylammonium Carboxylate Ionic Liquids. Energy Fuels 2023, 37, 7085–7093. [Google Scholar] [CrossRef]
- Subramanian, D.; Wu, K.; Firoozabadi, A. Ionic liquids as viscosity modifiers for heavy and extra-heavy crude oils. Fuel 2015, 143, 519–526. [Google Scholar] [CrossRef]
- Shaban, S.; Dessouky, S.; Badawi, A.E.F.; El Sabagh, A.; Zahran, A.; Mousa, M. Upgrading and Viscosity Reduction of Heavy Oil by Catalytic Ionic Liquid. Energy Fuels 2014, 28, 6545–6553. [Google Scholar] [CrossRef]
- Headen, T.F.; Boek, E.S.; Jackson, G.; Totton, T.S.; Müller, E.A. Simulation of Asphaltene Aggregation through Molecular Dynamics: Insights and Limitations. Energy Fuels 2017, 31, 1108–1125. [Google Scholar] [CrossRef]
- Celia-Silva, L.G.; Vilela, P.B.; Morgado, P.; Lucas, E.F.; Martins, L.F.G.; Filipe, E.J.M. Preaggregation of Asphaltenes in the Presence of Natural Polymers by Molecular Dynamics Simulation. Energy Fuels 2020, 34, 1581–1591. [Google Scholar] [CrossRef]
- Eftekhari, A.; Amin, J.S.; Zendehboudi, S. A molecular dynamics approach to investigate effect of pressure on asphaltene self-aggregation. J. Mol. Liq. 2023, 376, 121347. [Google Scholar] [CrossRef]
- El-hoshoudy, A.N.; Ghanem, A.; Desouky, S.M. Imidazolium-based ionic liquids for asphaltene dispersion; experimental and computational studies. J. Mol. Liq. 2021, 324, 114698. [Google Scholar] [CrossRef]
- Xu, J.; Wang, N.; Xue, S.; Zhang, H.; Zhang, J.; Xia, S.; Han, Y. Insights into the mechanism during viscosity reduction process of heavy oil through molecule simulation. Fuel 2022, 310, 122270. [Google Scholar] [CrossRef]
- Song, S.; Zhang, H.; Sun, L.; Shi, J.; Cao, X.; Yuan, S. Molecular Dynamics Study on Aggregating Behavior of Asphaltene and Resin in Emulsified Heavy Oil Droplets with Sodium Dodecyl Sulfate. Energy Fuels 2018, 32, 12383–12393. [Google Scholar] [CrossRef]
- Jian, C.; Tang, T.; Bhattacharjee, S. Probing the Effect of Side-Chain Length on the Aggregation of a Model Asphaltene Using Molecular Dynamics Simulations. Energy Fuels 2013, 27, 2057–2067. [Google Scholar] [CrossRef]
- Shui, H.; Shen, B.; Gao, J. Study on the Structure of Heavy Oils. Pet. Sci. Technol. 2007, 15, 595–610. [Google Scholar] [CrossRef]
- Powers, D.P.; Sadeghi, H.; Yarranton, H.W.; van den Berg, F.G.A. Regular solution based approach to modeling asphaltene precipitation from native and reacted oils: Part 1, molecular weight, density, and solubility parameter distributions of asphaltenes. Fuel 2016, 178, 218–233. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Zhao, S.; Xu, C.; Chung, K.H. Solubility Parameters of Bitumen-Derived Narrow Vacuum Resid Fractions. Energy Fuels 2008, 23, 386–391. [Google Scholar] [CrossRef]
- Alavianmehr, M.M.; Hosseini, S.M.; Mohsenipour, A.A.; Moghadasi, J. Further property of ionic liquids: Hildebrand solubility parameter from new molecular thermodynamic model. J. Mol. Liq. 2016, 218, 332–341. [Google Scholar] [CrossRef]
- Carlisle, T.K.; Bara, J.E.; Gabriel, C.J.; Noble, R.D.; Gin, D.L. Interpretation of CO2 Solubility and Selectivity in Nitrile-Functionalized Room-Temperature Ionic Liquids Using a Group Contribution Approach. Ind. Eng. Chem. Res. 2008, 47, 7005–7012. [Google Scholar] [CrossRef]
- ASTM D2196-2015 Standard. Available online: https://www.astm.org/d2196-15.html (accessed on 23 February 2024).
- Loureiro, T.S.; Palermo, L.C.M.; Spinelli, L.S. Influence of precipitation conditions (n-heptane or carbon dioxide gas) on the performance of asphaltene stabilizers. J. Pet. Sci. Eng. 2015, 127, 109–114. [Google Scholar] [CrossRef]
- ASTM D6560-2000 Standard. Available online: https://www.astm.org/d6560-00.html (accessed on 23 February 2024).
- Abu-Melha, S. Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents. Molecules 2018, 23, 434. [Google Scholar] [CrossRef] [PubMed]
- He, R.-H.; Long, B.-W.; Lu, Y.-Z.; Meng, H.; Li, C.-X. Solubility of Hydrogen Chloride in Three 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids in the Pressure Range (0 to 100) kPa and Temperature Range (298.15 to 363.15) K. J. Chem. Eng. Data 2012, 57, 2936–2941. [Google Scholar] [CrossRef]
- Mac Dowell, N.; Llovell, F.; Sun, N.; Hallett, J.P.; George, A.; Hunt, P.A.; Welton, T.; Simmons, B.A.; Vega, L.F. New experimental density data and soft-SAFT models of alkylimidazolium ([C(n)C(1)im](+)) chloride (Cl(-)), methylsulfate ([MeSO(4)](-)), and dimethylphosphate ([Me(2)PO(4)](-)) based ionic liquids. J. Phys. Chem. B 2014, 118, 6206–6221. [Google Scholar] [CrossRef] [PubMed]
- Taherifard, H.; Raeissi, S. Estimation of the Densities of Ionic Liquids Using a Group Contribution Method. J. Chem. Eng. Data 2016, 61, 4031–4038. [Google Scholar] [CrossRef]
Structural Parameters | Value |
---|---|
fA | 0.57 |
fN | 0.06 |
fP | 0.37 |
σ | 0.41 |
L | 7.7 |
RN | 7.11 |
RA | 12.35 |
RT | 19.46 |
usw | 1089.3 |
Average molecular formula | C71H78S3NO2 |
Elements | Form | Binding Energy (eV) | Atomic Ratio (%) |
---|---|---|---|
O | C=O | 531.33 | 8.72 |
C-O | 532.17 | 50.40 | |
COO- | 532.58 | 40.88 | |
S | Aliphatic-S | 162.94 | 7.84 |
Thiophenes | 163.94 | 60.84 | |
Sulfoxide | 165.12 | 31.32 | |
N | Pyridinic-N | 398.54 | 45.06 |
Pyrrolic-N | 400.11 | 54.94 |
Material | δIL (MPa1/2) |
---|---|
Asphaltene | 20.60 |
[BMIM]Cl | 24.14 |
[OMIM]Cl | 21.76 |
[C12-MIM]Cl | 20.47 |
[C16-MIM]Cl | 19.62 |
Test | Results |
---|---|
Density (kg·m−3) at 20 °C | 973.40 |
Viscosity (mPa·s) at 50 °C | 15,000.00 |
Saturate and Aromatic (wt%) | 53.42 |
Resins (wt%) | 35.09 |
Asphaltene (wt%) | 10.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, C.; Zhu, Y.; Liu, G.; Liu, T.; Xu, X.; Yang, J. Experimental and Simulation Studies of Imidazolium Chloride Ionic Liquids with Different Alkyl Chain Lengths for Viscosity Reductions in Heavy Crude Oil: The Effect on Asphaltene Dispersion. Molecules 2024, 29, 1184. https://doi.org/10.3390/molecules29051184
Xiang C, Zhu Y, Liu G, Liu T, Xu X, Yang J. Experimental and Simulation Studies of Imidazolium Chloride Ionic Liquids with Different Alkyl Chain Lengths for Viscosity Reductions in Heavy Crude Oil: The Effect on Asphaltene Dispersion. Molecules. 2024; 29(5):1184. https://doi.org/10.3390/molecules29051184
Chicago/Turabian StyleXiang, Chaoyue, Yangwen Zhu, Guanghao Liu, Tao Liu, Xinru Xu, and Jingyi Yang. 2024. "Experimental and Simulation Studies of Imidazolium Chloride Ionic Liquids with Different Alkyl Chain Lengths for Viscosity Reductions in Heavy Crude Oil: The Effect on Asphaltene Dispersion" Molecules 29, no. 5: 1184. https://doi.org/10.3390/molecules29051184
APA StyleXiang, C., Zhu, Y., Liu, G., Liu, T., Xu, X., & Yang, J. (2024). Experimental and Simulation Studies of Imidazolium Chloride Ionic Liquids with Different Alkyl Chain Lengths for Viscosity Reductions in Heavy Crude Oil: The Effect on Asphaltene Dispersion. Molecules, 29(5), 1184. https://doi.org/10.3390/molecules29051184