Progress in Lewis-Acid-Templated Diels–Alder Reactions
Abstract
:1. Introduction
2. Synthesis of Bicyclic 𝛾-Lactones through the Diels–Alder Reaction
2.1. Bicyclic γ-Lactones as Intermediates in Natural Product Synthesis
2.2. Diels–Alder Reactions That Produce Bicyclic γ-Lactones
3. Selective IMDA Reactions of Pentadienyl Acrylates
3.1. Stereo-Directing Strategy
3.2. Diels–Alder/Lactonization Cascade Strategy
4. Template Effects in the Diels–Alder Reaction
4.1. Silicon-Tethered Diels–Alder Reactions
4.2. Boron-Templated Diels–Alder Reactions
4.3. Magnesium-Templated Diels–Alder Reactions
4.4. Aluminum-Templated Diels–Alder Reactions
4.5. Zinc-Templated Diels–Alder Reactions
5. Lewis-Acid-Templated Diels–Alder Reactions
5.1. Aluminum Lewis-Acid-Templated Diels–Alder Reactions
5.2. Titanium Lewis-Acid-Mediated Diels–Alder Reactions
5.3. Magnesium Lewis-Acid-Templated Diels–Alder Reactions
5.4. Bimetallic Lewis-Acid-Templated Diels–Alder Reactions
6. Catalytic Chiral-Lewis-Acid-Templated Diels–Alder Reactions
6.1. Lewis-Acid-Templated Diels–Alder Reactions Using H8-BINOL
6.2. Catalytic Lewis-Acid-Templated Diels–Alder Reactions
6.3. Scope and Limitation of the Catalytic Lewis-Acid-Templated Diels–Alder Reaction
7. Application of Lewis-Acid-Templated Diels–Alder Reactions to Natural Product Synthesis
7.1. Nicolaou’s Total Synthesis of Abyssomicin C
7.2. Roush’s Stereoselective Synthesis of the Hirsutellone Core
7.3. Jin’s Synthesis of Truncated Superstolide A
7.4. Ishihara’s Synthesis of the Upper Segment of Spirolides A and B
7.5. Landais’s Synthesis of the Spirocyclic Core of Demethylspirolide C and Gymnodimine
7.6. Gao’s Total Synthesis of Farnesin
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; the International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Waldmann, H. Nature Inspired Small Molecules for Chemical Biology. Isr. J. Chem. 2019, 59, 41–51. [Google Scholar] [CrossRef]
- Chen, Y.; de Lomana, M.G.; Friedrich, N.-O.; Kirchmair, J. Characterization of the Chemical Space of Known and Readily Obtainable Natural Products. J. Chem. Inf. Model. 2018, 58, 1518–1532. [Google Scholar] [CrossRef]
- Gong, L.-Z. Asymmetric Organo-Metal Catalysis: Concepts, Principles, and Applications; Wiley-VCH: Weinheim, Germany, 2021. [Google Scholar]
- Akiyama, T.; Ojima, I. (Eds.) Catalytic Asymmetric Synthesis, 4th ed.; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Berkessel, A.; Gröger, H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Yu, M.; Wang, E.; Kyle, A.F.; Jakubec, P.; Dixon, D.J.; Schrock, R.R.; Hoveyda, A.H. Synthesis of macrocyclic natural products by catalyst-controlled stereoselective ring-closing metathesis. Nature 2011, 479, 88–93. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J. All-carbon 3+2 cycloaddition in natural product synthesis. Beilstein J. Org. Chem. 2020, 16, 3015–3031. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Romero, E.O.; Pyser, J.B.; Narayan, A. Chemoenzymatic Total Synthesis of Natural Products. Acc. Chem. Res. 2021, 54, 1374–1384. [Google Scholar] [CrossRef]
- Bakanas, I.; Lusi, R.F.; Wiesler, S.; Cooke, J.H.; Sarpong, R. Strategic application of C-H oxidation in natural product total synthesis. Nat. Rev. Chem. 2023, 7, 783–799. [Google Scholar] [CrossRef]
- Roush, W.R. Intramolecular Diels-Alder Reactions. In Comprehensive Organic Synthesis; Trost, B.M., Fleming, I., Paquette, L.A., Eds.; Pergamon: Oxford, UK, 1991; Volume 5, pp. 513–550. [Google Scholar]
- Tanner, D.; Ascic, E. Intramolecular and Transannular Diels-Alder Reactions. In Comprehensive Organic Synthesis, 2nd ed.; Knochel, P., Molander, G.A., Eds.; Elsevier: Oxford, UK, 2014; Volume 5, pp. 466–571. [Google Scholar]
- Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels–Alder Reaction in Total Synthesis. Angew. Chem. Int. Ed. 2002, 41, 1668–1698. [Google Scholar] [CrossRef]
- Takao, K.; Munakata, R.; Tadano, K. Recent Advances in Natural Product Synthesis by Using Intramolecular Diels–Alder Reactions. Chem. Rev. 2005, 105, 4779. [Google Scholar] [CrossRef] [PubMed]
- Juhl, M.; Tanner, D. Recent applications of intramolecular Diels–Alder reactions to natural product synthesis. Chem. Soc. Rev. 2009, 38, 2983–2992. [Google Scholar] [CrossRef]
- Heasley, B. Stereocontrolled Preparation of Fully Substituted Cyclopentanes: Relevance to Total Synthesis. Eur. J. Org. Chem. 2009, 2009, 1477–1489. [Google Scholar] [CrossRef]
- Heravi, M.M.; Vavsari, V.F. Recent applications of intramolecular Diels–Alder reaction in total synthesis of natural products. RSC Adv. 2015, 5, 50890–50912. [Google Scholar] [CrossRef]
- Sara, A.A.; Um-e-Farwa, U.-e.-F.; Saeed, A.; Kalesse, M. Recent Applications of the Diels–Alder Reaction in the Synthesis of Natural Products (2017–2020). Synthesis 2022, 54, 975–998. [Google Scholar] [CrossRef]
- Grieco, P.A.; Ravi, P.; Nargund, R.P. Synthetic studies on diterpenes from a termite soldier: Total synthesis of (±)-biflora-4,10(19),15-triene. Tetrahedron Lett. 1986, 27, 4813–4816. [Google Scholar] [CrossRef]
- White, J.D.; Nolen, E.G., Jr.; Miller, C.H. Stereochemical transcription via the intramolecular Diels-Alder reaction. Enantioselective synthesis of the nucleus of (+)-pillaromycinone. J. Org. Chem. 1986, 51, 1150–1155. [Google Scholar] [CrossRef]
- White, J.D.; Demnitz, F.W.J.; Xu, Q.; Martin, W.H.C. Synthesis of an Advanced Intermediate for (+)-Pillaromycinone. Staunton-Weinreb Annulation Revisited. Org. Lett. 2008, 10, 2833–2836. [Google Scholar] [CrossRef] [PubMed]
- Arseniyadis, S.; Brondi-Alves, R.; Yashunsky, D.V.; Potier, P.; Toupet, L. Formal total synthesis of an A-seco mevinic acid. Tetrahedron 1997, 53, 1003–1014. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Chen, J.S. Abyssomicin C and atrop-Abysomicin C. In Classics in Total Synthesis III: Further Targets, Strategies, Methods; Wiley-VCH: Weinheim, Germany, 2011; pp. 320–343. [Google Scholar]
- Nicolaou, K.C.; Harrison, S.T. Total Synthesis of Abyssomicin C and atrop-Abyssomicin C. Angew. Chem. Int. Ed. 2006, 45, 3256–3260. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Harrison, S.T. Total Synthesis of Abyssomicin C, Atrop-abyssomicin C, and Abyssomicin D: Implications for Natural Origins of Atrop-abyssomicin C. J. Am. Chem. Soc. 2007, 129, 429–440. [Google Scholar] [CrossRef]
- Rath, J.-P.; Kinast, S.; Maier, M.E. Synthesis of the Fully Functionalized Core Structure of the Antibiotic Abyssomicin C. Org. Lett. 2005, 7, 3089–3092. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, G.T.; Roush, W.R. Stereoselective synthesis of the decahydrofluorene core of the hirsutellones. Tetrahedron Lett. 2011, 52, 2072–2075. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ahmed, K.B.R.; Huang, P.; Jin, Z. Design, Synthesis, and Biological Evaluation of Truncated Superstolide A. Angew. Chem. Int. Ed. 2013, 52, 3446–3449. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Yang, Z.; Liu, J.J.; Ueno, H.; Nantermet, P.G.; Guy, R.K.; Claiborne, C.F.; Renaud, J.; Couladouros, E.A.; Paulvannan, K.; et al. Total synthesis of taxol. Nature 1994, 367, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Nantermet, P.G.; Ueno, H.; Guy, R.K.; Couladouros, E.A.; Sorensen, E.J. Total Synthesis of Taxol. 1. Retrosynthesis, Degradation, and Reconstitution. J. Am. Chem. Soc. 1995, 117, 624–633. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Liu, J.J.; Yang, Z.; Ueno, H.; Sorensen, E.J.; Claiborne, C.F.; Guy, R.K.; Hwang, C.K.; Nakada, M.; Nantermet, P.G. Total Synthesis of Taxol. 2. Construction of A and C Ring Intermediates and Initial Attempts to Construct the ABC Ring System. J. Am. Chem. Soc. 1995, 117, 634–644. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Yang, Z.; Liu, J.J.; Nantermet, P.G.; Claiborne, C.F.; Renaud, J.; Guy, R.K.; Shibayama, K. Total Synthesis of Taxol. 3. Formation of Taxol’s ABC Ring Skeleton. J. Am. Chem. Soc. 1995, 117, 645–652. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Ueno, H.; Liu, J.J.; Nantermet, P.G.; Yang, Z.; Renaud, J.; Paulvannan, K.; Chadha, R. Total Synthesis of Taxol. 4. The Final Stages and Completion of the Synthesis. J. Am. Chem. Soc. 1995, 117, 653–659. [Google Scholar] [CrossRef]
- Abbasov, M.E.; Alvariño, R.; Chaheine, C.M.; Alonso, E.; Sánchez, J.A.; Conner, M.L.; Alfonso, A.; Jaspars, M.; Botana, L.M.; Romo, D. Simplified immunosuppressive and neuroprotective agents based on gracilin A. Nat. Chem. 2019, 11, 342–350. [Google Scholar] [CrossRef]
- Miller, N.A.; Willis, A.C.; Sherburn, M.S. Formal total synthesis of triptolide. Chem. Commun. 2008, 1226–1228. [Google Scholar] [CrossRef]
- Wong, L.S.-M.; Sherburn, M.S. IMDA-Radical Cyclization Approach to (+)-Himbacine. Org. Lett. 2003, 5, 3603–3606. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, J.; Usui, F.; Kurose, T.; Baba, T.; Kawaguchi, Y.; Watanabe, Y.; Hatakeyama, S. Synthetic Studies on Spirolides A and B: Formation of the Upper Carbon Framework Based on a Lewis Acid Template-Catalyzed Diels–Alder Reaction. Chem. Eur. J. 2019, 25, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Guthertz, A.; Lusseau, J.; Desvergnes, V.; Massip, S.; Landais, Y. An Approach towards the Synthesis of the Spiroimine Fragment of 13-Desmethylspirolide C and Gymnodimine A. Chem. Eur. J. 2019, 25, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Que, Y.; Shao, H.; He, H.; Gao, S. Total Synthesis of Farnesin through an Excited-State Nazarov Reaction. Angew. Chem. Int. Ed. 2020, 59, 7444–7449. [Google Scholar] [CrossRef] [PubMed]
- Cayzer, T.N.; Wong, L.S.-M.; Turner, P.; Paddon-Row, M.N.; Sherburn, M.S. Optimising Stereoselectivity in Intramolecular Diels-Alder Reactions of Pentadienyl Acrylates: Synthetic and Computational Investigations into the ‘Steric Directing Group’ Approach. Chem. Eur. J. 2002, 8, 739–750. [Google Scholar] [CrossRef]
- Paddon-Row, M.N.; Longshaw, A.I.; Willis, A.C.; Sherburn, M.S. On the Effect of Tether Composition on cis/trans Selectivity in Intramolecular Diels–Alder Reactions. Chem. Asian J. 2009, 4, 126–134. [Google Scholar] [CrossRef]
- Smith, D.A.; Sakan, K.; Houk, K.N. Stereoselectivities of thermal and Lewis acid catalyzed intramolecular Diels-Alder reactions of internally activated dienophiles to form 5–11 membered rings. Tetrahedron Lett. 1986, 27, 4877–4880. [Google Scholar] [CrossRef]
- White, J.D.; Demnitz, F.W.J.; Oda, H.; Hassler, C.; Snyder, J.P. Conformational study of the intramolecular Diels–Alder reaction of a pentadienyl acrylate. Theoretical evaluation of kinetic and thermodynamic control. Org. Lett. 2000, 2, 3313–3316. [Google Scholar] [CrossRef]
- Boeckman, R.K.; Barta, T.E. Stereocontrol in the Intramolecular Diels–Alder Reaction. 7. Use of the Trimethylsilyl Group as a Removable Stereocontrol Element To Provide Greatly Enhanced Levels of Diastereoselection. J. Org. Chem. 1985, 50, 3421–3423. [Google Scholar] [CrossRef]
- Roush, W.R.; Kageyama, M. Enantioselective synthesis of the bottom-half of chlorothricolide. Tetrahedron Lett. 1985, 26, 4327. [Google Scholar] [CrossRef]
- Roush, W.R.; Riva, R. Enantioselective synthesis of the bottom half of chlorothricolide. 2. A comparative study of substituent effects on the stereoselectivity of the key intramolecular Diels-Alder reaction. J. Org. Chem. 1988, 53, 710. [Google Scholar] [CrossRef]
- Abbasov, M.E.; Hudson, B.M.; Tantillo, D.J.; Romo, D. Acylammonium Salts as Dienophiles in Diels–Alder/Lactonization Organocascades. J. Am. Chem. Soc. 2014, 136, 4492. [Google Scholar] [CrossRef] [PubMed]
- Tamao, K.; Kobayashi, K.; Ito, Y. An intramolecular Diels-Alder reaction of vinylsilanes. J. Am. Chem. Soc. 1989, 111, 6478–6480. [Google Scholar] [CrossRef]
- Stork, G.; Chan, T.Y.; Breault, G.A. The temporary silicon connection in the control of the regiochemistry of 4 + 2 cycloadditions. J. Am. Chem. Soc. 1992, 114, 7578–7579. [Google Scholar] [CrossRef]
- Sieburth, S.M.; Fensterbank, L. An intramolecular Diels-Alder reaction of vinylsilanes. J. Org. Chem. 1992, 57, 5279–5281. [Google Scholar] [CrossRef]
- Shea, K.; Zandi, K.S.; Staab, A.J.; Carr, R. Disposable tethers in type 2 intramolecular Diels-Alder cycloaddition reactions. Applications in stereochemical control. Tetrahedron Lett. 1990, 31, 5885–5888. [Google Scholar] [CrossRef]
- Shea, K.; Staab, A.J.; Zandi, K.S. Pericyclic umpolung. Reversal of regioselectivity in the Diels-Alder reaction. Tetrahedron Lett. 1991, 32, 2715–2718. [Google Scholar] [CrossRef]
- Craig, D.; Reader, J.C. A novel strategy for regio- and stereocontrol in 4 + 2 cycloadditions. Intramolecular diels-alder reaction of a silyl acetal triene. Tetrahedron Lett. 1990, 31, 6585–6588. [Google Scholar] [CrossRef]
- Carlson, P.R.; Burns, A.S.; Shimizu, E.A.; Wang, S.; Rychnovsky, S.D. Silacycle-Templated Intramolecular Diels–Alder Cyclizations for the Diastereoselective Construction of Complex Carbon Skeletons. Org. Lett. 2021, 23, 2183–2188. [Google Scholar] [CrossRef]
- Burns, A.S.; Rychnovsky, S.D. Total Synthesis and Structure Revision of (–)-Illisimonin A, a Neuroprotective Sesquiterpenoid from the Fruits of Illicium simonsii. J. Am. Chem. Soc. 2019, 141, 13295–13300. [Google Scholar] [CrossRef]
- Gillard, J.W.; Fortin, R.; Grimm, E.L.; Maillard, M.; Tjepkema, M.; Bernstein, M.A.; Glaser, R. The unsymmetrical silaketal as a neutral, removable tether for effecting intramolecular Diels-Alder reactions. Tetrahedron Lett. 1991, 32, 1145–1148. [Google Scholar] [CrossRef]
- Fensterbank, L.; Malacria, M.; Sieburth, S.M.N. Intramolecular Reactions of Temporarily Silicon-Tethered Molecules. Synthesis 1997, 1997, 813–854. [Google Scholar] [CrossRef]
- Bols, M.; Skrydstrup, T. Silicon-Tethered Reactions. Chem. Rev. 1995, 95, 1253–1277. [Google Scholar] [CrossRef]
- Narasaka, K.; Shimada, S.; Osoda, K.; Iwasawa, N. Phenylboronic Acid as a Template in the Diels-Alder Reaction. Synthesis 1991, 1991, 1171–1172. [Google Scholar] [CrossRef]
- Koerner, M.; Rickborn, B. Base-catalyzed reactions of anthrones with dienophiles. J. Org. Chem. 1990, 55, 2662–2672. [Google Scholar] [CrossRef]
- Shimada, S.; Osoda, K.; Narasaka, K. Boron Compound as a Trapping Reagent of a-Hydroxy o-Quinodimethanes in the Diels-Alder Reaction. Bull. Chem. Soc. Jpn. 1993, 66, 1254–1257. [Google Scholar] [CrossRef]
- Stork, G.; Chan, T.Y. Temporary Magnesium and Aluminum Connections in 4 + 2 Cycloadditions. J. Am. Chem. Soc. 1995, 117, 6595–6596. [Google Scholar] [CrossRef]
- Bertozzi, F.; Olsson, R.; Fredj, T. Temporary in situ aluminum and zinc tethering in Diels-Alder reactions. Org. Lett. 2000, 2, 1283–1286. [Google Scholar] [CrossRef] [PubMed]
- Bienaymé, H.; Longeau, A. Internally Lewis acid-catalyzed Diels-Alder cycloadditions. Tetrahedron 1997, 53, 9637–9646. [Google Scholar] [CrossRef]
- Bienaymé, H. Enantioselective Diels–Alder Cycloaddition by Preorganization on a Chiral Lewis Acid Template. Angew. Chem. Int. Ed. Engl. 1997, 36, 2670–2673. [Google Scholar] [CrossRef]
- Ward, D.E.; Abaee, M.S. Intramolecular Diels–Alder Reaction by Self-Assembly of the Components on a Lewis Acid Template. Org. Lett. 2000, 2, 3937–3940. [Google Scholar] [CrossRef]
- Barriault, L.; Thomas, J.D.O.; Clément, R. Highly Stereoselective Hydroxy-Directed Diels–Alder Reaction. J. Org. Chem. 2003, 68, 2317–2323. [Google Scholar] [CrossRef] [PubMed]
- Barriault, L.; Ang, P.J.A.; Lavigne, R.M.A. Rapid Assembly of the Bicyclo5.3.1undecenone Core of Penostatin F: A Successive Diels–Alder/Claisen Reaction Strategy with an Efficient Stereochemical Relay. Org. Lett. 2004, 6, 1317–1319. [Google Scholar] [CrossRef] [PubMed]
- Beingessner, R.L.; Farand, J.A.; Barriault, L. Progress toward the Total Synthesis of (±)-Havellockate. J. Org. Chem. 2010, 75, 6337–6346. [Google Scholar] [CrossRef]
- Zografos, A.L.; Yiotakis, A.; Georgiadis, D. Rapid Access to the Tricyclic Spirotetronic Core of Abyssomicins. Org. Lett. 2005, 7, 4515–4518. [Google Scholar] [CrossRef]
- Ward, D.E.; Souweha, M.S. Catalytic Enantioselective Diels–Alder Reaction by Self-Assembly of the Components on a Lewis Acid Template. Org. Lett. 2005, 7, 3533–3536. [Google Scholar] [CrossRef]
- Ishihara, J.; Nakadachi, S.; Watanabe, Y.; Hatakeyama, S. Lewis Acid Template-Catalyzed Asymmetric Diels-Alder Reaction. J. Org. Chem. 2015, 80, 2037–2041. [Google Scholar] [CrossRef]
- Bister, B.; Bischoff, D.; Ströbele, M.; Riedlinger, J.; Reicke, A.; Wolter, F.; Bull, A.T.; Zähner, H.; Fiedler, H.-P.; Süssmuth, R.D. Abyssomicin C—A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthetic pathway. Angew. Chem. Int. Ed. 2004, 43, 2574–2576. [Google Scholar] [CrossRef] [PubMed]
- Riedlinger, J.; Reicke, A.; Zähner, H.; Krismer, B.; Bull, A.T.; Maldonado, L.A.; Ward, A.C.; Goodfellow, M.; Bister, B.; Bischoff, D.; et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J. Antibiot. 2004, 57, 271–279. [Google Scholar] [CrossRef]
- Fiedle, H.-P. Abyssomicins—A 20-Year Retrospective View. Mar. Drugs 2021, 19, 299. [Google Scholar] [CrossRef]
- Isaka, M.; Rugseree, N.; Maithip, P.; Kongsaeree, P.; Prabpai, S.; Thebtaranonth, Y. Hirsutellones A–E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron 2005, 61, 5577–5583. [Google Scholar] [CrossRef]
- D’Auria, M.V.; Debitus, C.; Paloma, L.G.; Minale, L.; Zampella, A. Superstolide A: A Potent Cytotoxic Macrolide of a New Type From the New Caledonian Deep Water Marine Sponge Neosiphonia Superstes. J. Am. Chem. Soc. 1994, 116, 6658–6663. [Google Scholar] [CrossRef]
- D’Auria, M.V.; Paloma, L.G.; Minale, L.; Zampella, A.; Debitus, C. A Novel Cytotoxic Macrolide, Superstolide B, Related to Superstolide a, From the New Caledonian Marine Sponge Neosiphonia Superstes. J. Nat. Prod. 1994, 57, 1595–1597. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Curtis, J.M.; Oshima, Y.; Quilliam, M.A.; Walter, J.A.; Watson-Wright, W.M.; Wright, J.L. Spirolides B and D, two novel macrocycles isolated from the digestive glands of shellfish. J. Chem. Soc. Chem. Commun. 1995, 2159–2161. [Google Scholar] [CrossRef]
- Hu, T.; Burton, I.W.; Cembella, A.D.; Curtis, J.M.; Quilliam, M.A.; Walter, J.A.; Wright, J.L.C. Characterization of spirolides a, c, and 13-desmethyl c, new marine toxins isolated from toxic plankton and contaminated shellfish. J. Nat. Prod. 2001, 64, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Uemura, D.; Chou, T.; Haino, T.; Nagatsu, A.; Fukusawa, S.; Zheng, S.; Chen, H. Pinnatoxin A: A toxic amphoteric macrocycle from the Okinawan bivalve Pinna muricata. J. Am. Chem. Soc. 1995, 117, 1155–1156. [Google Scholar] [CrossRef]
- Seki, T.; Satake, M.; Mackenzie, L.; Kaspar, H.F.; Yasumoto, T. Gymnodimine, a new marine toxin of unpresented structure isolated from New Zealand oysters and the dinoflagellate, Gymnodinium sp. Tetrahedron Lett. 1995, 36, 7093–7096. [Google Scholar] [CrossRef]
- Bourne, Y.; Radić, Z.; Aráoz, R.; Talley, T.T.; Benoit, E.; Servent, D.; Taylor, P.; Molgó, J.; Marchot, P. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism. Proc. Natl. Acad. Sci. USA 2010, 107, 6076–6081. [Google Scholar] [CrossRef]
- Bourne, Y.; Sulzenbacher, G.; Radić, Z.; Aráoz, R.; Reynaud, M.; Benoit, E.; Zakarian, A.; Servent, D.; Molgó, J.; Taylor, P.; et al. Marine macrocyclic imines, pinnatoxins A and G: Structural determinants and functional properties to distinguish neuronal α7 from muscle α12βγδ nAChRs. Structure 2015, 23, 1106–1115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishihara, J. Progress in Lewis-Acid-Templated Diels–Alder Reactions. Molecules 2024, 29, 1187. https://doi.org/10.3390/molecules29051187
Ishihara J. Progress in Lewis-Acid-Templated Diels–Alder Reactions. Molecules. 2024; 29(5):1187. https://doi.org/10.3390/molecules29051187
Chicago/Turabian StyleIshihara, Jun. 2024. "Progress in Lewis-Acid-Templated Diels–Alder Reactions" Molecules 29, no. 5: 1187. https://doi.org/10.3390/molecules29051187
APA StyleIshihara, J. (2024). Progress in Lewis-Acid-Templated Diels–Alder Reactions. Molecules, 29(5), 1187. https://doi.org/10.3390/molecules29051187