Highly Efficient DSSCs Sensitized Using NIR Responsive Bacteriopheophytine-a and Its Derivatives Extracted from Rhodobacter Sphaeroides Photobacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Optical Characterization of Bhcl and Its Cationic Derivatives
2.2. Photovoltaic Performance
2.3. Atomic Force Microscopic Studies
2.4. Electrochemical Investigations
3. Materials and Methods
3.1. Chemicals
3.2. Characterization
3.3. Isolation of Bacteriopheophytine-a (Bhcl) from Rh. Sphaeroides
3.4. Synthesis of Cationic Derivatives of Bhcl
3.5. Electrochemical Techniques
3.6. Device Fabrication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, H.; Wu, L.; Gao, Y.; Ma, T. Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. A 2018, 219, 188–194. [Google Scholar] [CrossRef]
- Geetam, R.; Anil, K.; Perapong, T.; Bhupendra, G. Natural dyes for dye sensitized solar cell: A review. Renew. Sustain. Energy Rev. 2017, 69, 705–718. [Google Scholar]
- Napitupulu, N.D.; Rahman, N. Plant Leaf Chlorophyll Based DSSC Solar Cell with ITO Transparent nanoparticle Alloy. Int. J. Heat Technol. 2023, 41, 462–468. [Google Scholar]
- Parisi, M.L.; Maranghi, S.; Basosi, R. The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach. Renew. Sust. Energ. Rev. 2014, 39, 124–138. [Google Scholar] [CrossRef]
- Takagi, K.; Magaino, S.; Saito, H.; Aoki, T.; Aoki, D. Measurements and evaluation of dye-sensitized solar cell performance. J. Photochem. Photobiol. C. 2013, 14, 1–12. [Google Scholar] [CrossRef]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Highly-efcient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef]
- Leonardo, R.B.; Higor, O.; Arcano, M.B.; Rajendran, S.B.; Sebastian, R.; Caue, R.; Ana, L.F. Evaluation of Solar Conversion Efficiency in Dye-sensitized Solar Cells Using Natural Dyes Extracted from Alpinia purpurata and Alstroemeria Flower Petals as Novel Photosensitizers. Colorants 2023, 2, 618–631. [Google Scholar]
- Robledo, A.G.F.; Enríquez, J.P.; Avendaño, C.A.M. Characterization of natural dyes on ZnO and TiO2 thin films for applications in DSSC. J. Mater. Sci. Mater. Electron. 2023, 34, 980. [Google Scholar] [CrossRef]
- Nasim, S.; Monas, S.; Rabia, G.; Khalid, J.; Mahroze, M.; Aneel, P.; Abdul, G. Fabrication of DSSC based on Capsicum annuum and Tamarindus indica plant seeds extract as natural photosensitizers. Solar Energy 2023, 257, 314–323. [Google Scholar]
- Rajaramanan, T.; Heidari Gourji, F.; Elilan, Y. Natural sensitizer extracted from Mussaenda erythrophylla for dye-sensitized solar cell. Sci. Rep. 2023, 13, 13844. [Google Scholar] [CrossRef]
- Tadesse, S.; Abebe, A.; Chebude, Y.; Garcia, I.V.; Yohannes, T. Natural dye-sensitized solar cells using pigments extracted from Syzygium guineense. J. Photonics Energy 2012, 2, 027001. [Google Scholar] [CrossRef]
- Sabra, Y.; Talal, K.; Najla, A.; Khurshid, A. Porphyrin-Anhydride Co-Sensitization Strategy for Enhanced Photovoltaic Performance in DSSC: A Combined Experimental and Theoretical Approach. Polyhedron 2023, 246, 116675. [Google Scholar]
- Arof, A.K.; Ping, T.L. Chlorophyll as photosensitizer in dye-sensitized solar cells. Chlorophyll 2017, 7, 105–121. [Google Scholar]
- Conrad, F.; Wilke, D.; Caroline, M.B.; Johannes, S.; Franz, P.M. Synthesis of Donor Substituted Chlorophyll Derivatives for Application in Dye Sensitized Solar Cells. EurJOC 2023, 26, 202300816. [Google Scholar]
- Kannangara, C.G. Biochemistry and molecular biology of chlorophyll synthesis. Photosynth. Appar. 2012, 7, 301. [Google Scholar]
- Kavin, P.; Wasan, M.; Bhalang, S.; Samuk, P.; Vittaya, A. Dye-sensitized solar cells based on purple corn sensitizers. Appl. Surf. Sci. 2016, 380, 101–107. [Google Scholar]
- Yuxiao, C.; Wenjie, Z.; Shin, O.; Xiao, F.W.; Hitoshi, T. Fabrication and performance of all-solid-state dye-sensitized solar cells using synthetic carboxylated and pyridylated chlorophyll derivatives. J. Photochem. Photobiol. A 2018, 353, 625–630. [Google Scholar]
- Aung, S.H.; Yan, H.; Than, Z.O.; Gerrit, B. Kinetic study of carminic acid and santalin natural dyes in dye-sensitized solar cells. J. Photochem. Photoiol. A Chem. 2016, 325, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Yan, C.; Zhang, S.; Cui, N.; Liu, Y.; Li, G.; Cheng, P. Optical and electrical losses in semitransparent organic photovoltaics. Joule 2024. [Google Scholar] [CrossRef]
- Wang, J.; Xue, P.; Jiang, Y.; Huo, Y.; Zhan, X. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 2022, 6, 614–634. [Google Scholar] [CrossRef]
- Syafnar, R.; Gomesh, N.; Irwanto, M.; Fareq, M.; Irwan, Y.M. Chlorophyll pigments as nature-based dye for dye-sensitized solar cell (DSSC). Energy Procedia 2015, 79, 896–902. [Google Scholar] [CrossRef]
- Hughes, N.M.; Smith, W.K. Attenuation of incident light in Galax urceolata (Diapensiaceae): Concerted infuence of adaxial and abaxial anthocyanic layers on photoprotection. Am. J. Bot. 2007, 94, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Prabavathy, N.; Shalini, S.; Balasundaraprabhu, R.; Dhayalan, V.; Prasanna, S.; Pravin, W.; Muthukumarasamy, N. Efect of solvents in the extraction and stability of anthocyanin from the petals of Caesalpinia pulcherrima for natural dye sensitized solar cell applications. J. Mater. Sci. Mater. Electron. 2017, 28, 9882–9892. [Google Scholar] [CrossRef]
- Yuly, K.; Aulia, S.H.; Diana, V.W.; Riki, S. Natural resources for dye-sensitized solar cells. Heliyon 2021, 7, e08436. [Google Scholar]
- Dao, V.D.; Larina, L.L.; Choi, H.S. Plasma Reduction of Nanostructured TiO2 Electrode to Improve Photovoltaic Efficiency of Dye-Sensitized Solar Cells. J. Electrochem. Soc. 2014, 161, 896–902. [Google Scholar] [CrossRef]
- Dao, V.D. Comment on “Energy storage via polyvinylidene fluoride dielectric on the counter electrode of dye-sensitized solar cells” by Jiang et al. J. Power Sources 2017, 337, 125–129. [Google Scholar] [CrossRef]
- Akula, S.T.; Abhishek, S.; Jena, A.K.S.; Manish, K.T.; Archana, K.; Subhash, C.Y.; Parasharam, M.S. Optimal processing methodology for futuristic natural dye-sensitized solar cells and novel applications. Dyes Pigm. 2023, 210, 110997. [Google Scholar]
- Wongcharee, K.; Meeyoo, V.; Chavadej, S. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea fowers. Sol. Energy Mater. Sol. Cells 2007, 91, 566–571. [Google Scholar] [CrossRef]
- Sengupta, D.; Mondal, B.; Mukherjee, K. Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 148, 85–92. [Google Scholar] [CrossRef]
- Park, K.H.; Tae, Y.K.; Ju, Y.P.; Jin, E.M.; Yim, S.H.; John, G.F.; Jae, W.L. Photochemical properties of dye-sensitized solar cell using mixed natural dyes extracted from Gardenia Jasminoide Ellis. J. Electroanal. Chem. 2013, 689, 21–25. [Google Scholar] [CrossRef]
- Soosairaj, A.; Pabba, D.P.; Gunasekaran, A. Synergetic impact of natural light harvesting materials to reduce the recombination rate and improve the device performance of dye sensitized solar cells. J. Mater. Sci. Mater. Electron. 2023, 34, 1748. [Google Scholar] [CrossRef]
- Orona, N.A.; Aguilar, H.I.; Nigam, K.D.P.; Cerdan, P.A.; Ornelas, S.N. Alternative Sources of Natural Photosensitizers: Role of Algae in Dye-Sensitized Solar Cell. J. Biotechnol. 2021, 332, 29–53. [Google Scholar] [CrossRef]
- Zubaidah, S.; Chin, W.L.; Joon, C.J. An investigation of the dye-sensitized solar cell performance using graphene-titania (TrGO) photoanode with conventional dye and natural green chlorophyll dye. Mater. Sci. Semicond. Process. 2018, 74, 267–276. [Google Scholar]
- Sinha, D.; De, D.; Ayaz, A. Photo sensitizing and electrochemical performance analysis of mixed natural dye and nanostructured ZnO based DSSC. Sadhana 2020, 45, 175. [Google Scholar] [CrossRef]
- Maurya, I.C.; Gupta, A.K.; Srivastava, P.; Bahadur, L. Natural dye extracted from Saraca asoca flowers as sensitizer for TiO2-based dye-sensitized solar cell. J. Sol. Energy Eng. 2016, 138, 051006. [Google Scholar] [CrossRef]
- Ferreira, B.C.; Suresh, B.; Conceicao, L.; Cunha, H.O.; Sampaio, D.M.; Samyn, L.M.; Barros, A.L.F. Performance evaluation of DSSCs using naturally extracted dyes from petals of Lantana repens and Solidago canadensis flowers as light-harvesting units. Ionics 2022, 28, 5233–5242. [Google Scholar] [CrossRef]
- Prachumrak, N.; Prajudtasri, N.; Kitisriworaphan, W. Novel photosensitizer from red lotus flower extract for natural dye-sensitized solar cells. Suranaree J. Sci. Technol. 2023, 30, 1–8. [Google Scholar] [CrossRef]
- Khan, A.A.; Syarifah, A.M.Y.; Mamat, M.H.; Yahaya, S.Z.; Setumin, S.; Ibrahim, M.N.; Daud, K.; Abdullah, M.H. Magnesium sulfate as a potential dye additive for chlorophyll-based organic sensitiser of the dye-sensitised solar cell (DSSC). Spectrochim. Acta A 2022, 274, 121140. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.S.; Salunke-Gawali, S.; Kadam, V.S.; Pathan, H.M. Canna lily red and yellow flower extracts: A new power source to produce photovoltage through dye-sensitized solar cells. Energy Fuels 2020, 34, 9674–9682. [Google Scholar] [CrossRef]
- Rajan, A.K.; Cindrella, L. Studies on new natural dye sensitizers from Indigofera tinctoria in dye-sensitized solar cells. Opt. Mater. 2019, 88, 39–47. [Google Scholar] [CrossRef]
Parameters | Bhcl | Gua-Bhcl | 2AETPPh-Bhcl |
---|---|---|---|
Voc (V) | 0.52 | 0.60 | 0.63 |
Jsc (mA cm−2) | 0.97 | 0.99 | 1.03 |
FF | 0.56 | 0.60 | 0.75 |
η (%) | 0.18 | 0.25 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almansour, A.I.; Kumar, R.S.; Al-Shemaimari, K.I.; Arumugam, N. Highly Efficient DSSCs Sensitized Using NIR Responsive Bacteriopheophytine-a and Its Derivatives Extracted from Rhodobacter Sphaeroides Photobacteria. Molecules 2024, 29, 931. https://doi.org/10.3390/molecules29050931
Almansour AI, Kumar RS, Al-Shemaimari KI, Arumugam N. Highly Efficient DSSCs Sensitized Using NIR Responsive Bacteriopheophytine-a and Its Derivatives Extracted from Rhodobacter Sphaeroides Photobacteria. Molecules. 2024; 29(5):931. https://doi.org/10.3390/molecules29050931
Chicago/Turabian StyleAlmansour, Abdulrahman I., Raju Suresh Kumar, Khloud Ibrahim Al-Shemaimari, and Natarajan Arumugam. 2024. "Highly Efficient DSSCs Sensitized Using NIR Responsive Bacteriopheophytine-a and Its Derivatives Extracted from Rhodobacter Sphaeroides Photobacteria" Molecules 29, no. 5: 931. https://doi.org/10.3390/molecules29050931
APA StyleAlmansour, A. I., Kumar, R. S., Al-Shemaimari, K. I., & Arumugam, N. (2024). Highly Efficient DSSCs Sensitized Using NIR Responsive Bacteriopheophytine-a and Its Derivatives Extracted from Rhodobacter Sphaeroides Photobacteria. Molecules, 29(5), 931. https://doi.org/10.3390/molecules29050931