Ionic Liquids as Reconditioning Agents for Paper Artifacts
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Ionic Liquids Used 1 | B1 Paper Characteristics |
---|---|
PrEIMTs (391) | pH 2: 4.30 ± 0.15 |
PentMIMTs (405) | Paper basis weight: 67 g/m2 |
HeptMIMTs (433) | Composition 3: 57% groundwood fiber content, 43% bleached chemical pulp, 1.1% ash content |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marijnissen, R. Degradation, Conservation, and Restoration of Works of Art: Historical Overview. CeROArt 2015, 6, 122–135. [Google Scholar] [CrossRef]
- Chen, T.; Su, R.; Zhang, Y.; Zhang, J.; Yu, H. The Smart Conservation System of Ancient Books Driven by Smart Data. J. Libr. Sci. China 2023, 49, 68–81. [Google Scholar] [CrossRef]
- Stiglitz, M. Historical Perspectives in the Conservation of Works of Art on Paper. J. Inst. Conserv. 2017, 40, 83–84. [Google Scholar] [CrossRef]
- Strlič, M.; Thomas, J.; Trafela, T.; Cséfalvayová, L.; Cigić, I.K.; Kolar, J.; Cassar, M. Material Degradomics: On the Smell of Old Books. Anal. Chem. 2009, 81, 8617–8622. [Google Scholar] [CrossRef]
- Chiriu, D.; Ricci, P.C.; Cappellini, G.; Salis, M.; Loddo, G.; Carbonaro, C.M. Ageing of Ancient Paper: A Kinetic Model of Cellulose Degradation from Raman Spectra. J. Raman Spectrosc. 2018, 49, 1802–1811. [Google Scholar] [CrossRef]
- Hamburger, S. Preservation and Conservation for Libraries and Archives. Libr. Collect. Acquis. Tech. Serv. 2005, 29, 444–445. [Google Scholar] [CrossRef]
- Ahn, K.; Rosenau, T.; Potthast, A. The Influence of Alkaline Reserve on the Aging Behavior of Book Papers. Cellulose 2013, 20, 1989–2001. [Google Scholar] [CrossRef]
- Ahn, K.; Henniges, U.; Banik, G.; Potthast, A. Is Cellulose Degradation Due to β-Elimination Processes a Threat in Mass Deacidification of Library Books? Cellulose 2012, 19, 1149–1159. [Google Scholar] [CrossRef]
- Joseph, E. Microorganisms in the Deterioration and Preservation of Cultural Heritage; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Kačík, F.; Kačíková, D.; Jablonský, M.; Katuščák, S. Cellulose Degradation in Newsprint Paper Ageing. Polym. Degrad. Stab. 2009, 94, 1509–1514. [Google Scholar] [CrossRef]
- Potthast, A.; Henniges, U.; Banik, G. Iron Gall Ink-Induced Corrosion of Cellulose: Aging, Degradation and Stabilization. Part 1: Model Paper Studies. Cellulose 2008, 15, 849–859. [Google Scholar] [CrossRef]
- Dubois, A. Solving Cases: Book and Paper Artefact Restoration; Scriptorium: Turnhout, Belgium, 2013; Volume 67. [Google Scholar]
- Emanuele, L.; Dujaković, T.; Roselli, G.; Campanelli, S.; Bellesi, G. The Use of a Natural Polysaccharide as a Solidifying Agent and Color-Fixing Agent on Modern Paper and Historical Materials. Organics 2023, 4, 21. [Google Scholar] [CrossRef]
- Bicchieri, M.; Monti, M.; Antonelli, M.L. A New Low-Cost and Complete Restoration Method: A Simultaneous Non-Aqueous Treatment of Deacidification and Reduction. In Proceedings of the Third International Conference on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Alcalá de Henares, Spain, 9–14 July 2001. [Google Scholar]
- Henniges, U.; Potthast, A. Bleaching Revisited: Impact of Oxidative and Reductive Bleaching Treatments on Cellulose and Paper. Restaurator 2009, 30, 294–320. [Google Scholar] [CrossRef]
- Mohie, M.A.; Ismail, S.A.; Hassan, A.A.; Tawfik, A.M.; Mohamed, W.S. Assessment of the Applicability of Cellulolytic Enzyme in Disassembling of Caked Papers. Egypt. J. Chem. 2022, 65, 581–591. [Google Scholar] [CrossRef]
- Adamo, M.; Magaudda, G.; Tata, A. Radiation Technology for Cultural Heritage Restoration. Restaurator 2004, 25, 159–170. [Google Scholar] [CrossRef]
- Fotakis, C.; Kautek, W.; Castillejo, M. Lasers in the Preservation of Cultural Heritage. Laser Chem. 2006, 2006, 074791. [Google Scholar] [CrossRef]
- Eastaugh, N.; Needles, H.L.; Zeronian, S.H.; Zeronian, S.H.; Needles, H.L. Historic Textile and Paper Materials: Conservation and Characterization. Stud. Conserv. 1990, 35, 231. [Google Scholar] [CrossRef]
- Ahn, K.; Banik, G.; Potthast, A. Sustainability of Mass-Deacidification. Part II: Evaluation of Alkaline Reserve. Restaurator 2012, 33, 48–75. [Google Scholar] [CrossRef]
- Potthast, A.; Ahn, K. Critical Evaluation of Approaches toward Mass Deacidification of Paper by Dispersed Particles. Cellulose 2017, 24, 323–332. [Google Scholar] [CrossRef]
- Keraite, G.; Sivakova, B.; Kiuberis, J. Investigation of the Impact of Organic and Inorganic Halides on the Ageing Stability of Paper with Iron Gall Ink. Chemija 2017, 28, 137–147. [Google Scholar]
- Kozirog, A.; Wysocka-Robak, A. Application of Ionic Liquids in Paper Properties and Preservation. In Progress and Developments in Ionic Liquids; IntechOpen: London, UK, 2017. [Google Scholar]
- Santos, S.M.; Carbajo, J.M.; Quintana, E.; Ibarra, D.; Gomez, N.; Ladero, M.; Eugenio, M.E.; Villar, J.C. Characterization of Purified Bacterial Cellulose Focused on Its Use on Paper Restoration. Carbohydr. Polym. 2015, 116, 173–181. [Google Scholar] [CrossRef]
- Gueidão, M.; Vieira, E.; Bordalo, R.; Moreira, P. Available Green Conservation Methodologies for the Cleaning of Cultural Heritage: An Overview. Estud. Conserv. Restauro 2020, 12, 22–44. [Google Scholar] [CrossRef]
- Baglioni, M.; Poggi, G.; Chelazzi, D.; Baglioni, P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021, 26, 3967. [Google Scholar] [CrossRef] [PubMed]
- Pernak, J.; Jankowska, N.; Walkiewicz, F.; Jankowska, A. The Use of Ionic Liquids in Strategies for Saving and Preserving Cultural Artifacts. Pol. J. Chem. 2008, 82, 2227–2230. [Google Scholar]
- Olsson, C.; Hedlund, A.; Idström, A.; Westman, G. Effect of Methylimidazole on Cellulose/Ionic Liquid Solutions and Regenerated Material Therefrom. J. Mater. Sci. 2014, 49, 3423–3433. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Abdan, K.; Kaneko, T. A Concise Review on the Physicochemical Properties of Biopolymer Blends Prepared in Ionic Liquids. Molecules 2021, 26, 216. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, R.; Campanella, L.; Plattner, S.H.; Scarpellini, E. Effects of Innovative Green Chemical Treatments on Paper. Can They Help in Preservation? Int. J. Conserv. Sci. 2016, 7, 247–258. [Google Scholar]
- Schmitz, K.; Wagner, S.; Reppke, M.; Maier, C.L.; Windeisen-Holzhauser, E.; Philipp Benz, J. Preserving Cultural Heritage: Analyzing the Antifungal Potential of Ionic Liquids Tested in Paper Restoration. PLoS ONE 2019, 14, e0219650. [Google Scholar] [CrossRef]
- Przybysz, K.; Drzewińska, E.; Stanisławska, A.; Wysocka-Robak, A.; Cieniecka-Rosłonkiewicz, A.; Foksowicz-Flaczyk, J.; Pernak, J. Ionic Liquids and Paper. Ind. Eng. Chem. Res. 2005, 44, 4599–4604. [Google Scholar] [CrossRef]
- Ocreto, J.B.; Chen, W.H.; Rollon, A.P.; Chyuan Ong, H.; Pétrissans, A.; Pétrissans, M.; De Luna, M.D.G. Ionic Liquid Dissolution Utilized for Biomass Conversion into Biofuels, Value-Added Chemicals and Advanced Materials: A Comprehensive Review. Chem. Eng. J. 2022, 445, 136733. [Google Scholar] [CrossRef]
- Croitoru, C.; Patachia, S.; Porzsolt, A.; Friedrich, C. Effect of Alkylimidazolium Based Ionic Liquids on the Structure of UV-Irradiated Cellulose. Cellulose 2011, 18, 1469–1479. [Google Scholar] [CrossRef]
- Helbrecht, C.; Schmitt, F.; Meckel, T.; Biesalski, M.; Etzold, B.J.M.; Schabel, S. Mechanical Properties of Paper Saturated With a Hydrophobic Ionic Liquid. Bioresources 2023, 18, 2842–2856. [Google Scholar] [CrossRef]
- Croitoru, C.; Roata, I.C. Ionic Liquids as Potential Cleaning and Restoration Agents for Cellulosic Artefacts. Processes 2024, 12, 341. [Google Scholar] [CrossRef]
- Dimitrić, N.; Spremo, N.; Vraneš, M.; Belić, S.; Karaman, M.; Kovačević, S.; Karadžić, M.; Podunavac-Kuzmanović, S.; Korolija-Crkvenjakov, D.; Gadžurić, S. New Protic Ionic Liquids for Fungi and Bacteria Removal from Paper Heritage Artefacts. RSC Adv. 2019, 9, 17905–17912. [Google Scholar] [CrossRef] [PubMed]
- Marín, E.; Sistach, M.C.; Jiménez, J.; Clemente, M.; Garcia, G.; García, J.F. Distribution of Acidity and Alkalinity on Degraded Manuscripts Containing Iron Gall Ink. Restaurator 2015, 36, 229–247. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Itsumura, H.; Enomae, T. Mechanism of Acidification That Progresses in Library Collections of Books Made of Alkaline Paper. Restaurator. Int. J. Preserv. Libr. Arch. Mater. 2020, 41, 153–172. [Google Scholar] [CrossRef]
- Wójciak, A. Washing, Spraying and Brushing. A Comparison of Paper Deacidification by Magnesium Hydroxide Nanoparticles. Restaurator. Int. J. Preserv. Libr. Arch. Mater. 2015, 36, 3–23. [Google Scholar] [CrossRef]
- Anbardan, S.Z.; Mokhtari, J.; Yari, A.; Bozcheloei, A.H. Direct Synthesis of Amides and Imines by Dehydrogenative Homo or Cross-Coupling of Amines and Alcohols Catalyzed by Cu-MOF. RSC Adv. 2021, 11, 20788–20793. [Google Scholar] [CrossRef] [PubMed]
- Vujcic, I.; Masic, S.; Medic, M.; Milicevic, B.; Dramicanin, M. The Influence of Gamma Irradiation on the Color Change of Wool, Linen, Silk, and Cotton Fabrics Used in Cultural Heritage Artifacts. Radiat. Phys. Chem. 2019, 156, 307–313. [Google Scholar] [CrossRef]
- Luo, Y.; Xiang, Y.; Yang, Q.; Liu, J. Characterization of UVA-Irradiated Wheat Paste and Paste-Coated Paper. J. Cult. Herit. 2023, 64, 150–159. [Google Scholar] [CrossRef]
- Croitoru, C.; Roata, I.C. Ionic Liquids as Antifungal Agents for Wood Preservation. Molecules 2020, 25, 4289. [Google Scholar] [CrossRef]
- Patachia, S.; Croitoru, C.; Friedrich, C. Effect of UV Exposure on the Surface Chemistry of Wood Veneers Treated with Ionic Liquids. Appl. Surf. Sci. 2012, 258, 6723–6729. [Google Scholar] [CrossRef]
- Zuo, Y.; Lv, J.; Wei, N.; Chen, X.; Tong, J. Effect of Anions and Cations on the Self-Assembly of Ionic Liquid Surfactants in Aqueous Solution. J. Mol. Liq. 2023, 375, 121342. [Google Scholar] [CrossRef]
- Motamedian, H.R.; Halilovic, A.E.; Kulachenko, A. Mechanisms of Strength and Stiffness Improvement of Paper after PFI Refining with a Focus on the Effect of Fines. Cellulose 2019, 26, 4099–4124. [Google Scholar] [CrossRef]
- Zervos, S.; Alexopoulou, I. Paper Conservation Methods: A Literature Review. Cellulose 2015, 22, 2859–2897. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Abdelaziz, A. The Study of Decomposition of 1-Ethyl-3-Methyl-Imidazolium Bis(Trifluoromethylsulfonyl)Imide by Using Termogravimetry: Dissecting Vaporization and Decomposition of ILs. J. Mol. Liq. 2020, 313, 113507. [Google Scholar] [CrossRef]
- Kiefer, J.; Fries, J.; Leipertz, A. Experimental Vibrational Study of Imidazolium-Based Ionic Liquids: Raman and Infrared Spectra of 1-Ethyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide and 1-Ethyl-3-Methylimidazolium Ethylsulfate. Appl. Spectrosc. 2007, 61, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Heimer, N.E.; Del Sesto, R.E.; Meng, Z.; Wilkes, J.S.; Carper, W.R. Vibrational Spectra of Imidazolium Tetrafluoroborate Ionic Liquids. J. Mol. Liq. 2006, 124, 84–95. [Google Scholar] [CrossRef]
- Khachatrian, A.A.; Rakipov, I.T.; Mukhametzyanov, T.A.; Solomonov, B.N.; Miroshnichenko, E.A. The Ability of Ionic Liquids to Form Hydrogen Bonds with Organic Solutes Evaluated by Different Experimental Techniques. Part II. Alkyl Substituted Pyrrolidinium- and Imidazolium-Based Ionic Liquids. J. Mol. Liq. 2020, 309, 113138. [Google Scholar] [CrossRef]
- Hospodarova, V.; Singovszka, E.; Stevulova, N. Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. Am. J. Anal. Chem. 2018, 9, 303–310. [Google Scholar] [CrossRef]
- Younis, O.M.; El Hadidi, N.M.N.; Darwish, S.S.; Mohamed, M.F. Preliminary Study on the Strength Enhancement of Klucel E with Cellulose Nanofibrils (CNFs) for the Conservation of Wooden Artifacts. J. Cult. Herit. 2023, 60, 41–49. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Applications of Infrared Spectroscopy in Polysaccharide Structural Analysis: Progress, Challenge and Perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, J. Discovering the Effect of Alum on UV Photo-Degradation of Gelatin Binder via FTIR, XPS and DFT Calculation. Microchem. J. 2019, 149, 103934. [Google Scholar] [CrossRef]
- Littlejohn, D.; Pethrick, R.A.; Quye, A.; Ballany, J.M. Investigation of the Degradation of Cellulose Acetate Museum Artefacts. Polym. Degrad. Stab. 2013, 98, 416–424. [Google Scholar] [CrossRef]
- Erukhimovitch, V.; Pavlov, V.; Talyshinsky, M.; Souprun, Y.; Huleihel, M. FTIR Microscopy as a Method for Identification of Bacterial and Fungal Infections. J. Pharm. Biomed. Anal. 2005, 37, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, X.; Yin, D.; Zhang, J.; Mi, Q.; Lu, H.; Liang, D.; Zhang, J. The Solution State and Dissolution Process of Cellulose in Ionic-Liquid-Based Solvents with Different Hydrogen-Bonding Basicity and Microstructures. Green Chem. 2022, 24, 3824–3833. [Google Scholar] [CrossRef]
- Lu, B.; Xu, A.; Wang, J. Cation Does Matter: How Cationic Structure Affects the Dissolution of Cellulose in Ionic Liquids. Green Chem. 2014, 16, 1326–1335. [Google Scholar] [CrossRef]
- Nag, N.; Sharma, C.; Singh, A.; Roy, B.N.; Sharma, S.K.; Kumar, A. Trifluorosulfonyl Imide-Based Ionic Liquid Electrolytes for Lithium-Ion Battery: A Review. J. Inst. Eng. (India) Ser. D 2023, 104, 427–436. [Google Scholar] [CrossRef]
- T 509 om-02; Hydrogen Ion Concentration (pH) of Paper Extracts (Cold Extraction Method). TAPPI: Atlanta, GA, USA, 2002.
- Malešič, J.; Kraševec, I.; Cigić, I.K. Determination of Cellulose Degree of Polymerization in Historical Papers with High Lignin Content. Polymer 2021, 13, 1990. [Google Scholar] [CrossRef]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Łojewska, J.; Przybysz, P. Influence of Lignin Content in Cellulose Pulp on Paper Durability. Sci. Rep. 2020, 10, 19998. [Google Scholar] [CrossRef]
- Croitoru, C.; Patachia, S.; Doroftei, F.; Parparita, E.; Vasile, C. Ionic Liquids Influence on the Surface Properties of Electron Beam Irradiated Wood. Appl. Surf. Sci. 2014, 314, 956–966. [Google Scholar] [CrossRef]
Sample | Sc (g/g Paper) | Paper pH | Ash Content (%) | Paper Basis Weight (g/m2) |
---|---|---|---|---|
B1-PrEIMTs | 0.17 ± 0.03 | 6.50 ± 0.20 | 0.93 ± 0.15 | 64 ± 0.25 |
B1-PentMIMTs | 0.14 ± 0.01 | 6.70 ± 0.15 | 1.02 ± 0.18 | 65 ± 0.15 |
B1-HeptMIMTs | 0.09 ± 0.01 | 7.00 ± 0.10 | 1.01 ± 0.15 | 65 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croitoru, C.; Roata, I.C. Ionic Liquids as Reconditioning Agents for Paper Artifacts. Molecules 2024, 29, 963. https://doi.org/10.3390/molecules29050963
Croitoru C, Roata IC. Ionic Liquids as Reconditioning Agents for Paper Artifacts. Molecules. 2024; 29(5):963. https://doi.org/10.3390/molecules29050963
Chicago/Turabian StyleCroitoru, Catalin, and Ionut Claudiu Roata. 2024. "Ionic Liquids as Reconditioning Agents for Paper Artifacts" Molecules 29, no. 5: 963. https://doi.org/10.3390/molecules29050963
APA StyleCroitoru, C., & Roata, I. C. (2024). Ionic Liquids as Reconditioning Agents for Paper Artifacts. Molecules, 29(5), 963. https://doi.org/10.3390/molecules29050963