Advances and Challenges in Electrolyte Development for Magnesium–Sulfur Batteries: A Comprehensive Review
Abstract
:1. Introduction
2. Principle of Mg-S Batteries
3. Recent Developments in Electrolytes
3.1. Non-Nucleophilic Electrolytes
3.1.1. Chloride-Containing
3.1.2. Chloride-Free
3.2. Nucleophilic Electrolytes
4. The Mechanism of Sulfur Reduction
5. Concluding Remarks and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, e1800561. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Barrera, J.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H. SoC Estimation for Lithium-ion Batteries: Review and Future Challenges. Electronics 2017, 6, 102. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939–1964. [Google Scholar] [CrossRef]
- Shahjalal, M.; Roy, P.K.; Shams, T.; Fly, A.; Chowdhury, J.I.; Ahmed, M.R.; Liu, K. A review on second-life of Li-ion batteries: Prospects, challenges, and issues. Energy 2022, 241, 122881. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, P.; Ullah, Z.; Zheng, S.; Yu, S.; Zhu, S.; Liu, L.; Li, Q. Synchronous Light Harvesting and Energy Storing Organic Cathode Material 1,4-Dihydroxyanthraquinone for Lithium-Ion Batteries. Chem. Eng. J. 2023, 468, 143787. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, M.; Liu, T.; Wang, Y.; Liu, Y.; Nai, J.; Zhang, L.; Zhang, S.; Tao, X. Direct recovery: A sustainable recycling technology for spent lithium-ion battery. Energy Storage Mater. 2023, 54, 120–134. [Google Scholar] [CrossRef]
- Li, J.; Fleetwood, J.; Hawley, W.B.; Kays, W. From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Chem. Rev. 2022, 122, 903–956. [Google Scholar] [CrossRef]
- Li, G.; Zheng, X. Thermal energy storage system integration forms for a sustainable future. Renew. Sustain. Energy Rev. 2016, 62, 736–757. [Google Scholar] [CrossRef]
- Schneider, S.F.; Novak, P.; Kober, T. Rechargeable Batteries for Simultaneous Demand Peak Shaving and Price Arbitrage Business. IEEE Trans. Sustain. Energy 2021, 12, 148–157. [Google Scholar] [CrossRef]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Bella, F.; De Luca, S.; Fagiolari, L.; Versaci, D.; Amici, J.; Francia, C.; Bodoardo, S. An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables. Nanomaterials 2021, 11, 810. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, X.; Le, Q.; Zhang, M.; Liu, M.; Atrens, A. A comprehensive review of the development of magnesium anodes for primary batteries. J. Mater. Chem. A 2021, 9, 12367–12399. [Google Scholar] [CrossRef]
- Lei, X.; Liang, X.; Yang, R.; Zhang, F.; Wang, C.; Lee, C.S.; Tang, Y. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries. Small 2022, 18, e2200418. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Yan, C.; Huang, J.-Q.; Zhao, M.-Q.; Titirici, M.-M.; Xiang, R.; Zhang, Q. A Review of Advanced Energy Materials for Magnesium-Sulfur Batteries. Energy Environ. Mater. 2018, 1, 100–112. [Google Scholar] [CrossRef]
- Benmayza, A.; Ramanathan, M.; Arthur, T.S.; Matsui, M.; Mizuno, F.; Guo, J.; Glans, P.-A.; Prakash, J. Effect of Electrolytic Properties of a Magnesium Organohaloaluminate Electrolyte on Magnesium Deposition. J. Phys. Chem. C 2013, 117, 26881–26888. [Google Scholar] [CrossRef]
- Gao, T.; Noked, M.; Pearse, A.J.; Gillette, E.; Fan, X.; Zhu, Y.; Luo, C.; Suo, L.; Schroeder, M.A.; Xu, K.; et al. Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 2015, 137, 12388–12393. [Google Scholar] [CrossRef] [PubMed]
- Razaq, R.; Li, P.; Dong, Y.; Li, Y.; Mao, Y.; Bo, S.H. Practical energy densities, cost, and technical challenges for magnesium-sulfur batteries. EcoMat 2020, 2, e12056. [Google Scholar] [CrossRef]
- Zhang, R.; Cui, C.; Xiao, R.; Li, R.; Mu, T.; Huo, H.; Ma, Y.; Yin, G.; Zuo, P. Interface regulation of Mg anode and redox couple conversion in cathode by copper for high-performance Mg-S battery. Chem. Eng. J. 2023, 451, 138663. [Google Scholar] [CrossRef]
- Hong, W.; Ge, P.; Jiang, Y.; Yang, L.; Tian, Y.; Zou, G.; Cao, X.; Hou, H.; Ji, X. Yolk-Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity. ACS Appl. Mater. Interfaces 2019, 11, 10829–10840. [Google Scholar] [CrossRef]
- Togonon, J.J.H.; Esparcia, E.A., Jr.; Del Rosario, J.A.D.; Ocon, J.D. Development of Magnesium Anode-Based Transient Primary Batteries. ChemistryOpen 2021, 10, 471–476. [Google Scholar] [CrossRef]
- Panigrahi, P.; Mishra, S.B.; Hussain, T.; Nanda, B.R.K.; Ahuja, R. Density Functional Theory Studies of Si2BN Nanosheets as Anode Materials for Magnesium-Ion Batteries. ACS Appl. Nano Mater. 2020, 3, 9055–9063. [Google Scholar] [CrossRef]
- Saha, P.; Datta, M.K.; Velikokhatnyi, O.I.; Manivannan, A.; Alman, D.; Kumta, P.N. Rechargeable magnesium battery: Current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1–86. [Google Scholar] [CrossRef]
- Fan, H.; Zheng, Z.; Zhao, L.; Li, W.; Wang, J.; Dai, M.; Zhao, Y.; Xiao, J.; Wang, G.; Ding, X.; et al. Extending Cycle Life of Mg/S Battery by Activation of Mg Anode/Electrolyte Interface through an LiCl-Assisted MgCl2 Solubilization Mechanism. Adv. Funct. Mater. 2020, 30, 1909370. [Google Scholar] [CrossRef]
- Laskowski, F.A.L.; Stradley, S.H.; Qian, M.D.; See, K.A. Mg Anode Passivation Caused by the Reaction of Dissolved Sulfur in Mg-S Batteries. ACS Appl. Mater. Interfaces 2021, 13, 29461–29470. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Buchmeiser, M.R. Rechargeable Magnesium–Sulfur Battery Technology: State of the Art and Key Challenges. Adv. Funct. Mater. 2019, 29, 1905248. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, S.; Cui, Z.; Du, A.; Li, G.; Cui, G. Rechargeable Magnesium Batteries using Conversion-Type Cathodes: A Perspective and Minireview. Small Methods 2018, 2, 1800020. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, S.; Li, T.; Su, D.; Guo, S.; Wang, G. Recent Advances in Rechargeable Magnesium-Based Batteries for High-Efficiency Energy Storage. Adv. Energy Mater. 2020, 10, 1903591. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Z.; Kong, Q.; Zhang, Q.; Wang, T.; Dong, S.; Gu, L.; Wang, X.; Ma, J.; Han, P.; et al. Highly Reversible Cuprous Mediated Cathode Chemistry for Magnesium Batteries. Angew. Chem. Int. Ed. Engl. 2020, 59, 11477–11482. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, B.; Xu, H.; Cui, Z.; Dong, S.; Du, A.; Ma, J.; Wang, Q.; Zhou, X.; Cui, G. Self-Established Rapid Magnesiation/De-Magnesiation Pathways in Binary Selenium-Copper Mixtures with Significantly Enhanced Mg-Ion Storage Reversibility. Adv. Funct. Mater. 2018, 28, 1701718. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Fichtner, M. Magnesium–sulfur battery: Its beginning and recent progress. MRS Commun. 2017, 7, 770–784. [Google Scholar]
- Yang, Y.; Yang, H.; Wang, X.; Bai, Y.; Wu, C. Multivalent metal–sulfur batteries for green and cost-effective energy storage: Current status and challenges. J. Energy Chem. 2022, 64, 144–165. [Google Scholar] [CrossRef]
- Shi, F.; Yu, J.; Chen, C.; Lau, S.P.; Lv, W.; Xu, Z.-L. Advances in understanding and regulation of sulfur conversion processes in metal–sulfur batteries. J. Mater. Chem. A 2022, 10, 19412–19443. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Zhao, G.; Zhu, L.; Sun, Y.; Besenbacher, F.; Yu, M. Rechargeable Mg-Ion Full Battery System with High Capacity and High Rate. ACS Appl. Mater. Interfaces 2021, 13, 40451–40459. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Fichtner, M. Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective. Front. Chem. 2018, 6, 656. [Google Scholar] [CrossRef] [PubMed]
- Romio, M.; Surace, Y.; Mautner, A.; Hamid, R.; Jahn, M.; Cupid, D.M.; Abrahams, I. A Comparative Mechanistic Study on the Intercalation Reactions of Mg2+ and Li+ Ions into (Mg0.5Ni0.5)3(PO4)2. Batteries 2023, 9, 342. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Gong, W.; Geng, F. Genuine divalent magnesium-ion storage and fast diffusion kinetics in metal oxides at room temperature. Proc. Natl. Acad. Sci. USA 2021, 118, e2111549118. [Google Scholar] [CrossRef]
- Yu, X.-G.; Xie, J.-Y.; Yang, J.; Huang, H.-J.; Wang, K.; Wen, Z.-S. Lithium storage in conductive sulfur-containing polymers. J. Electroanal. Chem. 2004, 573, 121–128. [Google Scholar]
- Zhu, J.; Mu, S. Defect Engineering in Carbon-Based Electrocatalysts: Insight into Intrinsic Carbon Defects. Adv. Funct. Mater. 2020, 30, 2001097. [Google Scholar] [CrossRef]
- Sheha, E.M.; Farrag, M.; Refai, H.S.; El-Desoky, M.M.; Abdel-Hady, E. Positron Annihilation Spectroscopy as a Diagnostic Tool for Probing the First-Cycle Defect Evolution in Magnesium–Sulfur Battery Electrodes. Phys. Status Solidi A 2023, 220, 2200661. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, W.; NuLi, Y.; Wang, B.; Yang, J.; Wang, J. Sulfurized-Pyrolyzed Polyacrylonitrile Cathode for Magnesium-Sulfur Batteries Containing Mg2+/Li+ Hybrid Electrolytes. Chem. Eng. J. 2022, 427, 130902. [Google Scholar] [CrossRef]
- Zu, C.-X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Env. Mater. 2011, 4, 2614–2624. [Google Scholar] [CrossRef]
- Bieker, G.; Küpers, V.; Kolek, M.; Winter, M. Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Commun. Mater. 2021, 2, 37. [Google Scholar] [CrossRef]
- Wang, M.; Bai, Z.; Yang, T.; Nie, C.; Xu, X.; Wang, Y.; Yang, J.; Dou, S.; Wang, N. Advances in High Sulfur Loading Cathodes for Practical Lithium-Sulfur Batteries. Adv. Energy Mater. 2022, 12, 2201585. [Google Scholar] [CrossRef]
- Zhao, F.; Xue, J.; Shao, W.; Yu, H.; Huang, W.; Xiao, J. Toward high-sulfur-content, high-performance lithium-sulfur batteries: Review of materials and technologies. J. Energy Chem. 2023, 80, 625–657. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, B.; Ju, S.; Wu, Z.; Yang, Y.; Pan, H.; Yu, X. Progress and prospects for solving the “shuttle effect” in magnesium-sulfur batteries. Energy Storage Mater. 2023, 62, 102933. [Google Scholar] [CrossRef]
- Bieker, G.; Diddens, D.; Kolek, M.; Borodin, O.; Winter, M.; Bieker, P.; Jalkanen, K. Cation-Dependent Electrochemistry of Polysulfides in Lithium and Magnesium Electrolyte Solutions. J. Phys. Chem. C 2018, 122, 21770–21783. [Google Scholar] [CrossRef]
- Muldoon, J.; Bucur, C.B.; Oliver, A.G.; Sugimoto, T.; Matsui, M.; Kim, H.S.; Allred, G.D.; Zajicek, J.; Kotani, Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Mater. 2012, 5, 5941–5950. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Horia, R.; Eng, A.Y.S.; Song, S.W.; Seh, Z.W. Material design strategies to improve the performance of rechargeable magnesium-sulfur batteries. Mater. Horiz. 2021, 8, 830–853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cui, Z.; Qiao, L.; Guan, J.; Xu, H.; Wang, X.; Hu, P.; Du, H.; Li, S.; Zhou, X.; et al. Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High-Performance Magnesium-Selenium and Magnesium-Sulfur Batteries. Adv. Energy Mater. 2017, 7, 1602055. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Gil Bardaji, M.E.; Fuhr, O.; Fichtner, M. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A 2017, 5, 10815–10820. [Google Scholar] [CrossRef]
- Kim, H.S.; Arthur, T.S.; Allred, G.D.; Zajicek, J.; Newman, J.G.; Rodnyansky, A.E.; Oliver, A.G.; Boggess, W.C.; Muldoon, J. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2011, 2, 427. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, W.; Nuli, Y.; Yang, J.; Wang, J. High Active Magnesium Trifluoromethanesulfonate-Based Electrolytes for Magnesium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 9062–9072. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yuan, H.; Nuli, Y.; Zhou, J.; Yang, J.; Wang, J. Sulfur@microporous Carbon Cathode with a High Sulfur Content for Magnesium–Sulfur Batteries with Nucleophilic Electrolytes. J. Phys. Chem. C 2018, 122, 26764–26776. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Zhao, X.; Wang, D.; Diemant, T.; Behm, R.J.; Fichtner, M. Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes. Adv. Energy Mater. 2014, 5, 1401155. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Zhan, Y.; Sun, X.Y.; Li, Z.; Xu, H.; Laine, R.M.; Zou, J.X. Advances in Cathodes for High-Performance Magnesium-Sulfur Batteries: A Critical Review. Batteries 2023, 9, 203. [Google Scholar] [CrossRef]
- Wang, C.; Ji, Q.; Chu, R.; Ullah, Z.; Zheng, M.; Dong, X.; Sun, Y.; Li, Q.; Liu, L. High-Performance PDB Organic Cathodes Reinforced by 3D Flower-like Carbon for Lithium-/Sodium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 12641–12648. [Google Scholar] [CrossRef]
- Zheng, S.; Yu, S.; Ullah, Z.; Liu, L.; Chen, L.; Sun, H.; Chen, M.; Liu, L.; Li, Q. π-d conjugation regulates the cathode/electrolyte interface in all-solid-state lithium-ion batteries. J. Mater. Chem. A 2024, 12, 3967–3976. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, M.; Liu, Q.; Wang, R.; Ma, W.; Li, X.; Hu, J.; Wei, T.; Liu, C.; Ling, Y.; et al. Toward High-Performance Mg/S Batteries with M4-Assisted Mg(AlCl(4))(2) /PYR14TFSI/DME Electrolyte and MoS2@CMK/S Cathode. Small 2023, e2307396. [Google Scholar] [CrossRef]
- Ren, W.; Wu, D.; NuLi, Y.; Zhang, X.; Yang, J.; Wang, J. A Chlorine-Free Electrolyte Based on Non-nucleophilic Magnesium Bis(diisopropyl)amide and Ionic Liquid for Rechargeable Magnesium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 32957–32967. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, W.; Zhang, D.; Ren, W.; Zhang, S.; Yan, Y.; Zhang, Y.; Lee, S.J.; Lee, J.S.; Ma, Z.F.; et al. Toward High-Performance Mg-S Batteries via a Copper Phosphide Modified Separator. ACS Nano 2022, 17, 1255–1267. [Google Scholar] [CrossRef]
- Ji, Y.; Liu-Théato, X.; Xiu, Y.; Indris, S.; Njel, C.; Maibach, J.; Ehrenberg, H.; Fichtner, M.; Zhao-Karger, Z. Polyoxometalate Modified Separator for Performance Enhancement of Magnesium–Sulfur Batteries. Adv. Funct. Mater. 2021, 31, 2100868. [Google Scholar] [CrossRef]
- Zhou, Z.F.; Chen, B.B.; Fang, T.T.; Li, Y.; Wang, Q.J.; Zhang, J.J.; Zhao, Y.F. A Multifunctional Separator Enables Safe and Durable Lithium/Magnesium-Sulfur Batteries under Elevated Temperature. Adv. Energy Mater. 2020, 10, 1902023. [Google Scholar] [CrossRef]
- Guan, Z.; Ullah, Z.; Zheng, S.; Yang, R.; Zhu, P.; Cheng, Q.; Song, P.; Li, Q.; Liu, L. Single Iron Atom Anchored on ZIF-8 Derived Carbon Framework to Directionally Regulate Lithium Deposition with Minimum Nucleation Overpotential. Adv. Mater. Interfaces 2022, 9, 2201278. [Google Scholar] [CrossRef]
- Zhao, L.; Ning, Y.; Dong, Q.; Ullah, Z.; Zhu, P.; Zheng, S.; Xia, G.; Zhu, S.; Li, Q.; Liu, L. Longer cycle life and higher discharge voltage of a small molecular indanthrone resulting from the extended conjugated framework. J. Power Sources 2023, 556, 232518. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Sun, Y.; Zhang, D.; Zhang, S.; Zhao, Y.; Wang, J.; Yang, J.; NuLi, Y. Research status and prospect of separators for magnesium-sulfur batteries. J. Energy Chem. 2023, 87, 225–246. [Google Scholar] [CrossRef]
- Robba, A.; Vizintin, A.; Bitenc, J.; Mali, G.; Arčon, I.; Kavčič, M.; Žitnik, M.; Bučar, K.; Aquilanti, G.; Martineau-Corcos, C.; et al. Mechanistic Study of Magnesium–Sulfur Batteries. Chem. Mater. 2017, 29, 9555–9564. [Google Scholar] [CrossRef]
- Xu, Y.; Ye, Y.; Zhao, S.; Feng, J.; Li, J.; Chen, H.; Yang, A.; Shi, F.; Jia, L.; Wu, Y.; et al. In Situ X-ray Absorption Spectroscopic Investigation of the Capacity Degradation Mechanism in Mg/S Batteries. Nano Lett. 2019, 19, 2928–2934. [Google Scholar] [CrossRef]
- Luo, T.; Wang, Y.; Elander, B.; Goldstein, M.; Mu, Y.; Wilkes, J.; Fahrenbruch, M.; Lee, J.; Li, T.; Bao, J.L.; et al. Polysulfides in Magnesium-Sulfur Batteries. Adv. Mater. 2023, 36, e2306239. [Google Scholar] [CrossRef]
- Rashad, M.; Asif, M.; Ali, Z. Quest for magnesium-sulfur batteries: Current challenges in electrolytes and cathode materials developments. Coord. Chem. Rev. 2020, 415, 213312. [Google Scholar] [CrossRef]
- Du, A.; Zhang, Z.; Qu, H.; Cui, Z.; Qiao, L.; Wang, L.; Chai, J.; Lu, T.; Dong, S.; Dong, T.; et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy Env. Mater. 2017, 10, 2616–2625. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, J.; Hu, J.; Li, C. High Rate Magnesium-Sulfur Battery with Improved Cyclability Based on Metal-Organic Framework Derivative Carbon Host. Adv. Mater. Lett. 2018, 30, 1704166. [Google Scholar] [CrossRef]
- Itaoka, K.; Kim, I.-T.; Yamabuki, K.; Yoshimoto, N.; Tsutsumi, H. Room temperature rechargeable magnesium batteries with sulfur-containing composite cathodes prepared from elemental sulfur and bis(alkenyl) compound having a cyclic or linear ether unit. J. Power Sources 2015, 297, 323–328. [Google Scholar] [CrossRef]
- Gao, T.; Ji, X.; Hou, S.; Fan, X.; Li, X.; Yang, C.; Han, F.; Wang, F.; Jiang, J.; Xu, K.; et al. Thermodynamics and Kinetics of Sulfur Cathode during Discharge in MgTFSI2–DME Electrolyte. Adv. Mater. Lett. 2018, 30, 1704313. [Google Scholar] [CrossRef]
- Muthuraj, D.; Ghosh, A.; Kumar, A.; Mitra, S. Nitrogen and Sulfur Doped Carbon Cloth as Current Collector and Polysulfide Immobilizer for Magnesium-Sulfur Batteries. Chemelectrochem 2019, 6, 684–689. [Google Scholar] [CrossRef]
- Du, H.; Zhang, Z.; He, J.; Cui, Z.; Chai, J.; Ma, J.; Yang, Z.; Huang, C.; Cui, G. A Delicately Designed Sulfide Graphdiyne Compatible Cathode for High-Performance Lithium/Magnesium-Sulfur Batteries. Small 2017, 13, 1702277. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cheng, S.; Wang, J.; Qiu, Y.; Zheng, Z.; Lin, H.; Nanda, S.; Ma, Q.; Xu, Y.; Ye, F.; et al. Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. Angew. Chem. 2016, 128, 6516–6520. [Google Scholar] [CrossRef]
- Sievert, B.; Häcker, J.; Bienen, F.; Wagner, N.; Friedrich, K.A. Magnesium Sulfur Battery with a New Magnesium Powder Anode. ECS Trans. 2017, 77, 413–424. [Google Scholar] [CrossRef]
- Vinayan, B.P.; Zhao-Karger, Z.; Diemant, T.; Chakravadhanula, V.S.K.; Schwarzburger, N.I.; Cambaz, M.A.; Behm, R.J.; Kubel, C.; Fichtner, M. Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nanoscale 2016, 8, 3296–3306. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, C.; Liu, Q.; Li, X.; Zhao, X.; Guo, Z. Progress and Perspective on Rechargeable Magnesium-Sulfur Batteries. Small Methods 2021, 5, e2001303. [Google Scholar] [CrossRef]
- Kotobuki, M.; Yan, B.; Lu, L. Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Mater. 2023, 54, 227–253. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. Performance Enhancement and Mechanistic Studies of Magnesium–Sulfur Cells with an Advanced Cathode Structure. ACS Energy Lett. 2016, 1, 431–437. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Padmanaban, S.; Kabra, D.; Pareek, G.; Naik, S.; Singh, M.; Banavoth, M.; Sonar, P.; Singh, S.; et al. Review—Carbon Electrodes in Magnesium Sulphur Batteries: Performance Comparison of Electrodes and Future Directions. J. Electrochem. Soc. 2021, 168, 120555. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Liu, R.; Dai, W.; Li, Z.; Diemant, T.; Vinayan, B.P.; Bonatto Minella, C.; Yu, X.; Manthiram, A.; Behm, R.J.; et al. Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip)4]2 Electrolyte. ACS Energy Lett. 2018, 3, 2005–2013. [Google Scholar] [CrossRef]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef]
- Wu, D.; Ren, W.; Yang, Y.; Wang, J.; NuLi, Y. A Se-Doped S@CMK3 Composite as a High-Performance Cathode for Magnesium–Sulfur Batteries with Mg2+/Li+ Hybrid Electrolytes. J. Phys. Chem. C 2021, 125, 25959–25967. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, M.; Chen, W.; Zeng, L.; Wei, M. An in situ formed Se/CMK-3 composite for rechargeable lithium-ion batteries with long-term cycling performance. J. Mater. Chem. A 2016, 4, 13646–13651. [Google Scholar] [CrossRef]
- Qian, M.D.; Laskowski, F.A.L.; Ware, S.D.; See, K.A. Effect of Polysulfide Speciation on Mg Anode Passivation in Mg-S Batteries. ACS Appl. Mater. Interfaces 2023, 15, 9193–9202. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Hu, Y.; Liu, X.; Zhang, J. Simultaneously enhancing redox kinetics and inhibiting the polysulfide shuttle effect using MOF-derived CoSe hollow sphere structures for advanced Li-S batteries. Nanoscale 2021, 13, 10849–10861. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jankowski, P.; Njel, C.; Bauer, W.; Li, Z.; Meng, Z.; Dasari, B.; Vegge, T.; Lastra, J.M.G.; Zhao-Karger, Z.; et al. Dual Role of Mo(6) S(8) in Polysulfide Conversion and Shuttle for Mg-S Batteries. Adv Sci. 2022, 9, e2104605. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Hou, S.; Wang, F.; Ma, Z.; Li, X.; Xu, K.; Wang, C. Reversible S(0)/MgS(x) Redox Chemistry in a MgTFSI(2)/MgCl(2)/DME Electrolyte for Rechargeable Mg/S Batteries. Angew. Chem. Int. Ed. Engl. 2017, 56, 13526–13530. [Google Scholar] [CrossRef] [PubMed]
- Zhao-Karger, Z.; Zhao, X.; Fuhr, O.; Fichtner, M. Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Adv. 2013, 3, 16330. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Y.; Nuli, Y.; Li, D.; Wang, Y.; Xiang, X. A new class of electrolytes based on magnesium bis(diisopropyl)amide for magnesium–sulfur batteries. Chem. Commun. 2019, 55, 6086–6089. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zou, Q.; Wang, W.; Lu, Y.-C. Non-passivating Anion Adsorption Enables Reversible Magnesium Redox in Simple Non-nucleophilic Electrolytes. ACS Energy Lett. 2021, 6, 3607–3613. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, G.M.; Zhao, S.Y.; Li, W.F.; Shi, F.F.; Li, J.; Feng, J.; Zhao, Y.X.; Wu, Y.; Guo, J.H.; et al. Improving a Mg/S Battery with YCl3 Additive and Magnesium Polysulfide. Adv. Sci. 2019, 6, 1800981. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, N.; Yang, J.; Wang, J.; Nuli, Y. Application of a Sulfur Cathode in Nucleophilic Electrolytes for Magnesium/Sulfur Batteries. J. Electrochem. Soc. 2017, 164, A2504–A2512. [Google Scholar] [CrossRef]
- Muldoon, J.; Bucur, C.B.; Oliver, A.G.; Zajicek, J.; Allred, G.D.; Boggess, W.C. Corrosion of magnesium electrolytes: Chlorides—The culprit. Energy Environ. Sci. 2013, 6, 482–487. [Google Scholar] [CrossRef]
- Ruß, C.; König, B. Low melting mixtures in organic synthesis—An alternative to ionic liquids? Green. Chem. 2012, 14, 2969. [Google Scholar] [CrossRef]
- Häcker, J.; Nguyen, D.H.; Rommel, T.; Zhao-Karger, Z.; Wagner, N.; Friedrich, K.A. Operando UV/vis Spectroscopy Providing Insights into the Sulfur and Polysulfide Dissolution in Magnesium–Sulfur Batteries. ACS Energy Lett. 2021, 7, 1–9. [Google Scholar] [CrossRef]
Author/Year | Electrolyte Type | Solute | Solvent | Additives | Coulombic Efficiency [%] | Capacity [mAh g−1sulfur]/Current Rate/Cycle Number |
---|---|---|---|---|---|---|
H.S. Kim et al., 2011 [52] | Non-nucleophilic Cl-containing | HMDSMgCl | THF | AlCl3 | 95–100 | 394/no data/2nd |
Zhao-Karger, Z et al., 2013 [92] | (HMDS)2Mg/ (i-Pr2N)2Mg | THF/Diglyme/Tetraglyme | AlCl3 | 97–98 | 90/10 mA g−1/30th | |
Zhao-Karger et al., 2014 [55] | (HMDS)2Mg | Diglyme/Tetraglyme | AlCl3+ PP14TFSI | 100 | 150/0.01 C/20th (PVDF, diglyme) 200/0.01 C/20th (CMC, diglyme) 250/0.01 C/20th (PVDF, tetraglyme) 260/0.01 C/20th (CMC, tetraglyme) | |
Gao et al., 2015 [17] | (HMDS)2Mg | No Data | AlCl3 + LiTFSI | 92 | 1000/0.03 C/30th | |
Du et al., 2017 [71] | B(HFP)3/OMBB | DME | MgCl2 | 80.4% (100th) | 1000/0.1 C/100th | |
Zhao et al., 2019 [93] | Magnesium bis(diisopropyl)amide | THF | AlCl3 + LiCl | 94 | 400/0.04 C/100th | |
Yang et al., 2018 [53] | Mg(CF3SO3)2 + anthracene | THF + Tetraglyme | AlCl3 + LiCl/ LiCF3SO3 | 100 | 300/0.05 C/55th 400/0.05 C/55th | |
Sun et al., 2021 [94] | Mg(TFSI)2 | DME | MgCl2 + rPDI | 99.4 98 | 110 (1 mg cm−2 loading)/15 C/1000th 100 (10 mg cm−2 loading)/1 C/200th | |
Xu et al., 2019 [95] | Mg(BPh4)2 | PYR14TFSI | YCl3 | 98.7 | 1000/0.04 C/50th | |
Li et al., 2016 [77] | Non-nucleophilic Cl-free | [Mg(THF)6]2+ | PYR14TFSI + THF | No data | 100 | 63/0.02 C/20th |
Zhao-Karger, Z et al., 2017 [51] | Mg[B(hfip)4]2 | DME + TEG | No data | 100 | 200/0.1 C/100th | |
Zhao-Karger, Z et al., 2018 [84] | Mg[B(hfip)4]2 | DME | No data | 100 | 200/0.1 C/100th | |
Zhang et al., 2017 [50] | THFPB | DME | MgF2 | 100 | 900/0.03 C/30th | |
Ren et al., 2021 [60] | MBA + AlF3 | THF | LiTFSI + PP14TFSI | 100 | 260/0.2 C/70th | |
Zeng et al., 2017 [96] | Nucleophilic | (PhMgCl)2 | THF | AlCl3 | 100 | 300/0.005 C/40th |
Wang et al., 2018 [54] | (PhMgCl)2 | THF | AlCl3 | 100 | 368/0.1 C/200th |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, L.; Feng, J.; Gong, M.; Zhang, L.; Harding, J.; Hao, Z.; Wang, F.R. Advances and Challenges in Electrolyte Development for Magnesium–Sulfur Batteries: A Comprehensive Review. Molecules 2024, 29, 1234. https://doi.org/10.3390/molecules29061234
Sheng L, Feng J, Gong M, Zhang L, Harding J, Hao Z, Wang FR. Advances and Challenges in Electrolyte Development for Magnesium–Sulfur Batteries: A Comprehensive Review. Molecules. 2024; 29(6):1234. https://doi.org/10.3390/molecules29061234
Chicago/Turabian StyleSheng, Lin, Junrun Feng, Manxi Gong, Lun Zhang, Jonathan Harding, Zhangxiang Hao, and Feng Ryan Wang. 2024. "Advances and Challenges in Electrolyte Development for Magnesium–Sulfur Batteries: A Comprehensive Review" Molecules 29, no. 6: 1234. https://doi.org/10.3390/molecules29061234
APA StyleSheng, L., Feng, J., Gong, M., Zhang, L., Harding, J., Hao, Z., & Wang, F. R. (2024). Advances and Challenges in Electrolyte Development for Magnesium–Sulfur Batteries: A Comprehensive Review. Molecules, 29(6), 1234. https://doi.org/10.3390/molecules29061234