Investigation of the Influence of Anti-Solvent Precipitation Parameters on the Physical Stability of Amorphous Solids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Feeding Rate
2.1.1. PDF Analysis and PCA of PXRD Data
2.1.2. Rc Analysis of DSC Data
2.1.3. Filtering Rate Analysis
2.2. Effect of Agitation Speed
2.2.1. PDF Analysis and PCA of PXRD Data
2.2.2. Rc Analysis of DSC Data
2.2.3. Filtering Rate Analysis
2.3. Effect of Aging Time
2.3.1. PDF Analysis and PCA of PXRD Data
2.3.2. Rc Analysis of DSC Data
2.3.3. Filtering Rate Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of Nilotinib Free Base Amorphous Solids
3.3. Characterization of Nilotinib Free Base Solid Samples
3.3.1. Powder X-ray Diffraction (PXRD)
3.3.2. Differential Scanning Calorimetry (DSC)
3.3.3. Focused Beam Reflectance Measurement (FBRM)
3.4. Filter Test
3.5. Pair Distribution Function (PDF)
3.6. Principal Components Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huzjak, T.; Jakasanovski, O.; Berginc, K.; Puž, V.; Zajc-Kreft, K.; Jeraj, Ž.; Janković, B. Overcoming drug impurity challenges in amorphous solid dispersion with rational development of biorelevant dissolution-permeation method. Eur. J. Pharm. Sci. 2024, 192, 106655. [Google Scholar] [CrossRef] [PubMed]
- Pisay, M.; Padya, S.; Mutalik, S.; Koteshwara, K.B. Stability challenges of amorphous solid dispersions of drugs: A critical review on mechanistic aspects. Crit. Rev. Ther. Drug Carrier Syst. 2024, 41, 45–94. [Google Scholar] [CrossRef]
- Xia, D.; Wu, J.X.; Cui, F.; Qu, H.; Rades, T.; Rantanen, J.; Yang, M. Solvent-mediated amorphous-to-crystalline transformation of nitrendipine in amorphous particle suspensions containing polymers. Eur. J. Pharm. Sci. 2012, 46, 446–454. [Google Scholar] [CrossRef] [PubMed]
- López-González, F.; Herrera-González, A.M.; Donado, F. Study of the transition from amorphous to crystalline phase in a granular system under shearing and vibration. Physica A 2022, 590, 126756. [Google Scholar] [CrossRef]
- Dhaval, M.; Dudhat, K.; Soniwala, M.; Dudhrejiya, A.; Shah, S.; Prajapati, B. A review on stabilization mechanism of amorphous form based drug delivery system. Mater. Today Commun. 2023, 37, 107411. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Yu, D. Effects of additives on the physical stability and dissolution of polymeric amorphous solid dispersions: A review. AAPS PharmSciTech 2023, 24, 175. [Google Scholar] [CrossRef]
- Huang, S.; Williams, R.O., 3rd. Effects of the preparation process on the properties of amorphous solid dispersions. AAPS PharmSciTech 2018, 19, 1971–1984. [Google Scholar] [CrossRef]
- Li, Z.; Luo, J.; Chen, X.; Zhang, B.; Nawaz, A.; Dessie, W. Optimization of precipitation conditions for producing physically stable amorphous solids using pair distribution function and reduced crystallization temperature. J. Drug Deliv. Sci. Technol. 2024, 91, 105268. [Google Scholar] [CrossRef]
- Bennett, M.J.; Beveniou, E.; Kerr, A.R.; Dragosavac, M.M. Antisolvent crystallization of telmisartan using stainless-steel micromixing membrane contactors. Cryst. Growth Des. 2023, 23, 3720–3730. [Google Scholar] [CrossRef]
- Kim, J.; Ulrich, J. Finding conditions to process hydrate crystals and amorphous solids of disodium guanosine 5′-monophosphate by an antisolvent crystallization process. Cryst. Res. Technol. 2022, 57, 2100176. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, Y.; Wu, Y.; Gong, J.; Bao, Y.; Wang, J.; Rohani, S. Self-induced nucleation during the antisolvent crystallization process of candesartan cilexetil. Cryst. Growth Des. 2018, 18, 7655–7662. [Google Scholar] [CrossRef]
- Shi, Q.; Li, F.; Yeh, S.; Wang, Y.; Xin, J. Physical stability of amorphous pharmaceutical solids: Nucleation, crystal growth, phase separation and effects of the polymers. Int. J. Pharm. 2020, 590, 119925. [Google Scholar] [CrossRef] [PubMed]
- Bøtker, J.P.; Karmwar, P.; Strachan, C.J.; Cornett, C.; Tian, F.; Zujovic, Z.; Rantanen, J.; Rades, T. Assessment of crystalline disorder in cryo-milled samples of indomethacin using atomic pair-wise distribution functions. Int. J. Pharm. 2011, 417, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Naelapää, K.; Boetker, J.P.; Veski, P.; Rantanen, J.; Rades, T.; Kogermann, K. Polymorphic form of piroxicam influences the performance of amorphous material prepared by ball-milling. Int. J. Pharm. 2012, 429, 69–77. [Google Scholar] [CrossRef]
- Liu, C.-H.; Wright, C.J.; Gu, R.; Bandi, S.; Wustrow, A.; Todd, P.K.; O’Nolan, D.; Beauvais, M.L.; Neilson, J.R.; Chupas, P.J.; et al. Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data. J. Appl. Crystallogr. 2021, 54, 768–775. [Google Scholar] [CrossRef]
- Chapman, K.; Lapidus, S.; Chupas, P. Applications of principal component analysis to pair distribution function data. J. Appl. Crystallogr. 2015, 48, 1619–1626. [Google Scholar] [CrossRef]
- Bhugra, C.; Telang, C.; Schwabe, R.; Zhong, L. Reduced crystallization temperature methodology for polymer selection in amorphous solid dispersions: Stability perspective. Mol. Pharm. 2016, 13, 3326–3333. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, G.G.Z.; Law, D.; Grant, D.J.W.; Schmitt, E.A. Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility. J. Pharm. Sci. 2002, 91, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Manley, P.W.; Shieh, W.C.; Sutton, P.A.; Karpinski, P.H.; Raeann, W.; Stephanie, M.; Joerg, B. Crystalline Forms of 4-Methyl-n-[3-(4-methyl-midazol-1-yl)-5-trifluoromethylphenyl]-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-benzamide. WO 2007015870 A2, 8 February 2007. [Google Scholar]
- Zhu, S.; Yu, R.; Qian, G.; Deng, L. A supersaturating drug delivery system to enhance the oral bioavailability of nilotinib. J. Drug Deliv. Sci. Technol. 2022, 68, 103038. [Google Scholar] [CrossRef]
- Koehl, N.J.; Holm, R.; Kuentz, M.; Jannin, V.; Griffin, B.T. Exploring the impact of surfactant type and digestion: Highly digestible surfactants improve oral bioavailability of nilotinib. Mol. Pharm. 2020, 17, 3202–3213. [Google Scholar] [CrossRef]
- Herbrink, M.; Schellens, J.H.M.; Beijnen, J.H.; Nuijen, B. Improving the solubility of nilotinib through novel spray-dried solid dispersions. Int. J. Pharm. 2017, 529, 294–302. [Google Scholar] [CrossRef]
- Chougule, M.; Sirvi, A.; Saini, V.; Kashyap, M.; Sangamwar, A.T. Enhanced biopharmaceutical performance of brick dust molecule nilotinib via stabilized amorphous nanosuspension using a facile acid-base neutralization approach. Drug Deliv. Transl. Res. 2023, 13, 2503–2519. [Google Scholar] [CrossRef]
- Šalamúnová, P.; Krejčí, T.; Ryšánek, P.; Saloň, I.; Kroupová, J.; Hubatová-Vacková, A.; Petřík, J.; Grus, T.; Lukáč, P.; Kozlík, P.; et al. Serum and lymph pharmacokinetics of nilotinib delivered by yeast glucan particles per os. Int. J. Pharm. 2023, 634, 122627. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Q.; Deng, Y.; Xing, X.; Wang, C.; Ding, Z.; Su, W. New case of pharmaceutical solid-state forms: Several novel solvates/polymorphs of nilotinib and their phase transformation controls. Cryst. Growth Des. 2022, 22, 4794–4812. [Google Scholar] [CrossRef]
- Shi, X.; Deng, Y.; Wang, Z.; Liu, X.; Chen, Q.; Peng, J.; Xing, X.; Su, W. Two new nilotinib polymorphs with solubility advantages prepared by the melt crystallization process. J. Drug Deliv. Sci. Technol. 2023, 84, 104511. [Google Scholar] [CrossRef]
- Boetker, J.P.; Koradia, V.; Rades, T.; Rantanen, J.; Savolainen, M. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes. Pharmaceutics 2012, 4, 93–103. [Google Scholar] [CrossRef]
- Kaduk, J.A.; Zhong, K.; Gindhart, A.M.; Blanton, T.N. Crystal structure of nilotinib, C28H22F3N7O. Powder Diffr. 2015, 30, 270–277. [Google Scholar] [CrossRef]
- Bates, S.; Zografi, G.; Engers, D.; Morris, K.; Crowley, K.; Newman, A. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm. Res. 2006, 23, 2333–2349. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.D.; Lee, P.I. Evolution of supersaturation of amorphous pharmaceuticals: Nonlinear rate of supersaturation generation regulated by matrix diffusion. Mol. Pharm. 2015, 12, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.D.; Lee, P.I. Evolution of supersaturation of amorphous pharmaceuticals: The effect of rate of supersaturation generation. Mol. Pharm. 2013, 10, 4330–4346. [Google Scholar] [CrossRef] [PubMed]
- Matteucci, M.E.; Hotze, M.A.; Johnston, K.P.; Williams, R.O. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir 2006, 22, 8951–8959. [Google Scholar] [CrossRef]
- Kim, K.-J.; Doherty, M.F. Crystallization of selective polymorph using relationship between supersaturation and solubility. AIChE J. 2015, 61, 1372–1379. [Google Scholar] [CrossRef]
- Barrett, M.; O’Grady, D.; Casey, E.; Glennon, B. The role of meso-mixing in anti-solvent crystallization processes. Chem. Eng. Sci. 2011, 66, 2523–2534. [Google Scholar] [CrossRef]
- Bhujbal, S.V.; Mitra, B.; Jain, U.; Gong, Y.; Agrawal, A.; Karki, S.; Taylor, L.S.; Kumar, S.; Zhou, Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B 2021, 11, 2505–2536. [Google Scholar] [CrossRef] [PubMed]
- Rushton, A. Batch filtration of solid-liquid suspensions. In Handbook of Batch Process Design; Sharratt, P.N., Ed.; Springer: Dordrecht, The Netherlands, 1997; pp. 153–192. [Google Scholar]
- Li, Y.; Chen, Y.; Xia, W.; Xie, G. Filtration of kaolinite and coal mixture suspension: Settling behavior and filter cake structure analysis. Powder Technol. 2021, 381, 122–128. [Google Scholar] [CrossRef]
- Bal, V.; Peters, B. Coupled population balance and species balance models of crystallization: Analytic solutions and data fits. Cryst. Growth Des. 2021, 21, 227–234. [Google Scholar] [CrossRef]
- Pan, S.; Liu, Y.; Yang, B.; Fu, Y.; Gao, M.; Guan, R. Effect of stirring speed and temperature on the microstructure and mechanical properties of A356 alloy under vacuum. Vacuum 2023, 212, 112059. [Google Scholar] [CrossRef]
- Schulman, R.D.; Trejo, M.; Salez, T.; Raphaël, E.; Dalnoki-Veress, K. Surface energy of strained amorphous solids. Nat. Commun. 2018, 9, 982. [Google Scholar] [CrossRef] [PubMed]
- Korchef, A.; Abouda, S.; Souid, I. Optimizing struvite crystallization at high stirring rates. Crystals 2023, 13, 711. [Google Scholar] [CrossRef]
- Kharatyan, T.; Gopireddy, S.R.; Ogawa, T.; Kodama, T.; Nishimoto, N.; Osada, S.; Scherließ, R.; Urbanetz, N.A. Quantitative analysis of glassy state relaxation and Ostwald ripening during annealing using freeze-drying microscopy. Pharmaceutics 2022, 14, 1176. [Google Scholar] [CrossRef]
- Raty, J.Y.; Zhang, W.; Luckas, J.; Chen, C.; Mazzarello, R.; Bichara, C.; Wuttig, M. Aging mechanisms in amorphous phase-change materials. Nat. Commun. 2015, 6, 7467. [Google Scholar] [CrossRef]
- Murphy, D.; Rodríguez-Cintrón, F.; Langevin, B.; Kelly, R.C.; Rodríguez-Hornedo, N. Solution-mediated phase transformation of anhydrous to dihydrate carbamazepine and the effect of lattice disorder. Int. J. Pharm. 2002, 246, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Partridge, L.; Fuentealba, M.; Kennedy, B.K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 2020, 19, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Červinka, C.; Fulem, M. Structure and glass transition temperature of amorphous dispersions of model pharmaceuticals with nucleobases from molecular dynamics. Pharmaceutics 2021, 13, 1253. [Google Scholar] [CrossRef]
- Juhás, P.; Davis, T.; Farrow, C.; Billinge, S.J.L. PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 2013, 46, 560–566. [Google Scholar] [CrossRef]
- Karmwar, P.; Boetker, J.P.; Graeser, K.A.; Strachan, C.J.; Rantanen, J.; Rades, T. Investigations on the effect of different cooling rates on the stability of amorphous indomethacin. Eur. J. Pharm. Sci. 2011, 44, 341–350. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Gong, Z.; Zhang, B.; Nawaz, A. Investigation of the Influence of Anti-Solvent Precipitation Parameters on the Physical Stability of Amorphous Solids. Molecules 2024, 29, 1275. https://doi.org/10.3390/molecules29061275
Li Z, Gong Z, Zhang B, Nawaz A. Investigation of the Influence of Anti-Solvent Precipitation Parameters on the Physical Stability of Amorphous Solids. Molecules. 2024; 29(6):1275. https://doi.org/10.3390/molecules29061275
Chicago/Turabian StyleLi, Zunhua, Zicheng Gong, Bowen Zhang, and Asad Nawaz. 2024. "Investigation of the Influence of Anti-Solvent Precipitation Parameters on the Physical Stability of Amorphous Solids" Molecules 29, no. 6: 1275. https://doi.org/10.3390/molecules29061275
APA StyleLi, Z., Gong, Z., Zhang, B., & Nawaz, A. (2024). Investigation of the Influence of Anti-Solvent Precipitation Parameters on the Physical Stability of Amorphous Solids. Molecules, 29(6), 1275. https://doi.org/10.3390/molecules29061275