Unraveling Light-Activated Insulin Action in Regulating Blood Glucose: New Photoactivatable Insight as a Novel Modality in Diabetes Management
Abstract
:1. Introduction
2. Search Strategy and Selection Criteria
3. Insulin and Insulin Derivatives: What Happens to Them?
4. Photoactivatable Drugs
5. Light-Activated Insulin and Its Action in Blood Glucose Regulation
6. Challenges, Future Directions, and Implications of Light-Activated Insulin in the Future
7. Advantages of Light-Activated Insulin
8. Another Possible Mechanism
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eaton, S.B.; Eaton, S.B. Physical Inactivity, Obesity, and Type 2 Diabetes: An Evolutionary Perspective. Res. Q. Exerc. Sport 2017, 88, 1–8. [Google Scholar] [CrossRef]
- Bertoglia, M.P.; Gormaz, J.G.; Libuy, M.; Sanhueza, D.; Gajardo, A.; Srur, A.; Wallbaum, M.; Erazo, M. The population impact of obesity, sedentary lifestyle, and tobacco and alcohol consumption on the prevalence of type 2 diabetes: Analysis of a health population survey in Chile, 2010. PLoS ONE 2017, 12, e0178092. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Samouda, H. Clinical and biological risk factors associated with inflammation in patients with type 2 diabetes mellitus. BMC Endocr. Disord. 2022, 22, 16. [Google Scholar] [CrossRef]
- Hariharan, R.; Odjidja, E.N.; Scott, D.; Shivappa, N.; Hébert, J.R.; Hodge, A.; de Courten, B. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes. Rev. 2022, 23, e13349. [Google Scholar] [CrossRef]
- Xie, X.; Wu, C.; Hao, Y.; Wang, T.; Yang, Y.; Cai, P.; Zhang, Y.; Huang, J.; Deng, K.; Yan, D.; et al. Benefits and risks of drug combination therapy for diabetes mellitus and its complications: A comprehensive review. Front. Endocrinol. 2023, 14, 1301093. [Google Scholar] [CrossRef]
- Maines, E.; Urru, S.A.M.; Leonardi, L.; Fancellu, E.; Campomori, A.; Piccoli, G.; Maiorana, A.; Soffiati, M.; Franceschi, R. Drug-induced hyperinsulinemic hypoglycemia: An update on pathophysiology and treatment. Rev. Endocr. Metab. Disord. 2023, 24, 1031–1044. [Google Scholar] [CrossRef]
- Çetinarslan, B.; Çetinkalp, Ş.; Kaya, A.; Ersoy, C.; Kebapçı, N.; Çömlekçi, A.; Tütüncü, N.B.; Deyneli, O.; Oğuz, A.; İlkova, H.; et al. Effectiveness and Safety of Initiation and Titration of Insulin Glargine 300 U/mL in Insulin-Naive Patients with Type 2 Diabetes Mellitus Uncontrolled on Oral Antidiabetic Drug Treatment in Turkey: The EASE Study. Endocrinol. Res. Pract. 2024, 28, 4–11. [Google Scholar] [CrossRef]
- Saltiel, A.R. Insulin signaling in the control of glucose and lipid homeostasis. In Handbook of Experimental Pharmacology; Springer LLC: New York, NY, USA, 2016; Volume 233, pp. 51–71. [Google Scholar]
- Qaid, M.M.; Abdelrahman, M.M. Role of insulin and other related hormones in energy metabolism—A review. Cogent Food Agric. 2016, 2, 1267691. [Google Scholar] [CrossRef]
- Ferrannini, E.; DeFronzo, R.A. Insulin actions in vivo: Glucose metabolism. In International Textbook of Diabetes Mellitus; Wiley: Hoboken, NJ, USA, 2015; pp. 211–233. [Google Scholar]
- Rahman, M.S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, M.A.; Hannan, M.A.; Uddin, M.J.; Pang, M.G. Role of insulin in health and disease: An update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef] [PubMed]
- Girousse, A.; Tavernier, G.; Valle, C.; Moro, C.; Mejhert, N.; Dinel, A.L.; Houssier, M.; Roussel, B.; Besse-Patin, A.; Combes, M.; et al. Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass. PLoS Biol. 2013, 11, e1001485. [Google Scholar] [CrossRef] [PubMed]
- Bódis, K.; Roden, M. Energy metabolism of white adipose tissue and insulin resistance in humans. Eur. J. Clin. Investig. 2018, 48, e13017. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Y.; Rong, X.; Zheng, C.; Guo, J. Anti-lipolysis induced by insulin in diverse pathophysiologic conditions of adipose tissue. Diabetes Metab. Syndr. Obes. 2020, 13, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The master regulator of glucose metabolism. Metabolism 2022, 129, 155142. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Investig. 2017, 127, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, S.; Iossa, S.; Venditti, P. Skeletal muscle insulin resistance: Role of mitochondria and other ROS sources. J. Endocrinol. 2017, 233, R15–R42. [Google Scholar] [CrossRef] [PubMed]
- Karas, J.A.; Wade, J.D.; Hossain, M.A. The Chemical Synthesis of Insulin: An Enduring Challenge. Chem. Rev. 2021, 121, 4531–4560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Lin, N.-P.; Guo, X.; Szabo-Fresnais, N.; Ortoleva, P.J.; Chou, D.H.-C. Omniligase-1-Mediated Phage-Peptide Library Modification and Insulin Engineering. ACS Chem. Biol. 2024, 19, 506–515. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed]
- Yki-Järvinen, H. Insulin Resistance in Type 2 Diabetes. In Textbook of Diabetes: Fourth Edition; Wiley: Hoboken, NJ, USA, 2010; pp. 174–190. ISBN 9781405191814. [Google Scholar]
- Khodabandehloo, H.; Gorgani-Firuzjaee, S.; Panahi, G.; Meshkani, R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl. Res. 2016, 167, 228–256. [Google Scholar] [CrossRef]
- Migdal, A.; Abrahamson, M.; Peters, A.; Vint, N. Approaches to rapid acting insulin intensification in patients with type 2 diabetes mellitus not achieving glycemic targets. Ann. Med. 2018, 50, 453–460. [Google Scholar] [CrossRef]
- Racsa, P.N.; Meah, Y.; Ellis, J.J.; Saverno, K.R. Comparative effectiveness of rapid-acting insulins in adults with diabetes. J. Manag. Care Spec. Pharm. 2017, 23, 291–298. [Google Scholar] [CrossRef]
- Meece, J. Basal Insulin Intensification in Patients with Type 2 Diabetes: A Review. Diabetes Ther. 2018, 9, 877–890. [Google Scholar] [CrossRef]
- García-Pérez, L.E.; Álvarez, M.; Dilla, T.; Gil-Guillén, V.; Orozco-Beltrán, D. Adherence to therapies in patients with type 2 diabetes. Diabetes Ther. 2013, 4, 175–194. [Google Scholar] [CrossRef]
- Ross, S.A.; Tildesley, H.D.; Ashkenas, J. Barriers to effective insulin treatment: The persistence of poor glycemic control in type 2 diabetes. Curr. Med. Res. Opin. 2011, 27, 13–20. [Google Scholar] [CrossRef]
- Peyrot, M.; Barnett, A.H.; Meneghini, L.F.; Schumm-Draeger, P.M. Factors associated with injection omission/non-adherence in the global attitudes of patients and physicians in insulin therapy study. Diabetes Obes. Metab. 2012, 14, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.K.; De Roza, J.G.; Liu, C.; Goh, L.J.; Ooi, C.W.; Chen, E.; Poon, S.; Tang, W.E. Which Aspect of Patient–Provider Relationship Affects Acceptance and Adherence of Insulin Therapy in Type 2 Diabetes Mellitus? A Qualitative Study in Primary Care. Diabetes Metab. Syndr. Obes. 2022, 15, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, F.; Alavijeh, F.Z.; Salahshouri, A.; Mahaki, B. The psychosocial barriers to medication adherence of patients with type 2 diabetes: A qualitative study. Biopsychosoc. Med. 2021, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Skriver, L.K.L.; Nielsen, M.W.; Walther, S.; Nørlev, J.D.; Hangaard, S. Factors associated with adherence or nonadherence to insulin therapy among adults with type 2 diabetes mellitus: A scoping review. J. Diabetes Complicat. 2023, 37, 108596. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Costa, A.; Sarmento, B. Novel non-invasive methods of insulin delivery. Expert Opin. Drug Deliv. 2012, 9, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Easa, N.; Alany, R.G.; Carew, M.; Vangala, A. A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade. Drug Discov. Today 2019, 24, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Nørlev, J.T.D.; Hejlesen, O.; Jensen, M.H.; Hangaard, S. Quantification of insulin adherence in adults with insulin-treated type 2 diabetes: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102908. [Google Scholar] [CrossRef]
- Duckworth, W.C.; Kitabchi, A.E. Insulin metabolism and degradation. Endocr. Rev. 1981, 2, 210–233. [Google Scholar] [CrossRef]
- Saffran, M.; Kumar, G.S.; Savariar, C.; Burnham, J.C.; Williams, F.; Neckers, D.C. A new approach to the oral administration of insulin and other peptide drugs. Science 1986, 233, 1081–1084. [Google Scholar] [CrossRef]
- Yang, Y.; Mu, J.; Xing, B. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1408. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhao, Y.; Wang, Q.; Liu, T.; Sun, J.; Zhang, R. Remote Light-Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small 2019, 15, e1903060. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; You, J. Near infrared light-controlled therapeutic molecules release of nanocarriers in cancer therapy. J. Pharm. Investig. 2017, 47, 297–316. [Google Scholar] [CrossRef]
- Fraix, A.; Marino, N.; Sortino, S. Phototherapeutic release of nitric oxide with engineered nanoconstructs. In Topics in Current Chemistry; Springer: Cham, Switzerland, 2016; Volume 370, pp. 225–258. [Google Scholar]
- Mosinger, J.; Lang, K.; Kubá, P. Photoactivatable nanostructured surfaces for biomedical applications. In Topics in Current Chemistry; Springer: Cham, Switzerland, 2016; Volume 370, pp. 135–168. [Google Scholar]
- Fraix, A.; Sortino, S. Photoactivable platforms for nitric oxide delivery with fluorescence imaging. Chem.—Asian J. 2015, 10, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Sortino, S. Photoactivated nanomaterials for biomedical release applications. J. Mater. Chem. 2012, 22, 301–318. [Google Scholar] [CrossRef]
- Rapp, T.L.; DeForest, C.A. Targeting drug delivery with light: A highly focused approach. Adv. Drug Deliv. Rev. 2021, 171, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Guo, J.; Kang, D.; Li, Z.; Wang, G.; Wu, J.; Zhang, Z.; Fang, H.; Hou, X.; Huang, Z.; et al. New techniques and strategies in drug discovery. Chin. Chem. Lett. 2020, 31, 1695–1708. [Google Scholar] [CrossRef]
- Østergaard, M.; Mishra, N.K.; Jensen, K.J. The ABC of Insulin: The Organic Chemistry of a Small Protein. Chem.—Eur. J. 2020, 26, 8341–8357. [Google Scholar] [CrossRef]
- Brange, J.; Langkjoer, L. Insulin structure and stability. Pharm. Biotechnol. 1993, 5, 315–350. [Google Scholar] [CrossRef]
- Lawrence, M.C. Understanding insulin and its receptor from their three-dimensional structures. Mol. Metab. 2021, 52, 101255. [Google Scholar] [CrossRef]
- Hossain, M.A.; Wade, J.D. Novel Methods for the Chemical Synthesis of Insulin Superfamily Peptides and of Analogues Containing Disulfide Isosteres. Acc. Chem. Res. 2017, 50, 2116–2127. [Google Scholar] [CrossRef]
- Leto, D.; Saltiel, A.R. Regulation of glucose transport by insulin: Traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 2012, 13, 383–396. [Google Scholar] [CrossRef]
- Hevener, A.L.; Ribas, V.; Moore, T.M.; Zhou, Z. The Impact of Skeletal Muscle ERα on Mitochondrial Function and Metabolic Health. Endocrinology 2020, 161, bqz017. [Google Scholar] [CrossRef]
- Hirayama, I.; Tamemoto, H.; Yokota, H.; Kubo, S.K.; Wang, J.; Kuwano, H.; Nagamachi, Y.; Takeuchi, T.; Izumi, T. Insulin receptor-related receptor is expressed in pancreatic β-cells and stimulates tyrosine phosphorylation of insulin receptor substrate-1 and -2. Diabetes 2000, 48, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Solow, B.T.; Harada, S.; Goldstein, B.J.; Smith, J.A.; White, M.F.; Jarett, L. Differential modulation of the tyrosine phosphorylation state of the insulin receptor by IRS (Insulin Receptor Subunit) proteins. Mol. Endocrinol. 1999, 13, 1784–1798. [Google Scholar] [CrossRef] [PubMed]
- Copps, K.D.; White, M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012, 55, 2565–2582. [Google Scholar] [CrossRef] [PubMed]
- Boura-Halfon, S.; Zick, Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am. J. Physiol.—Endocrinol. Metab. 2009, 296, E581–E591. [Google Scholar] [CrossRef]
- Fayard, E.; Xue, G.; Parcellier, A.; Bozulic, L.; Hemmings, B.A. Protein Kinase B (PKB/Akt), a Key Mediator of the PI3K Signaling Pathway. In Phosphoinositide 3-Kinase in Health and Disease; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 31–56. [Google Scholar]
- Wende, A.R.; O’Neill, B.T.; Bugger, H.; Riehle, C.; Tuinei, J.; Buchanan, J.; Tsushima, K.; Wang, L.; Caro, P.; Guo, A.; et al. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes. Mol. Cell. Biol. 2015, 35, 831–846. [Google Scholar] [CrossRef]
- Fang, P.; Yu, M.; He, B.; Guo, L.; Huang, X.; Kong, G.; Shi, M.; Zhu, Y.; Bo, P.; Zhang, Z. Central injection of GALR1 agonist M617 attenuates diabetic rat skeletal muscle insulin resistance through the Akt/AS160/GLUT4 pathway. Mech. Ageing Dev. 2017, 162, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, H.; Kanzaki, M. Heterotypic endosomal fusion as an initial trigger for insulin-induced glucose transporter 4 (GLUT4) translocation in skeletal muscle. J. Physiol. 2017, 595, 5603–5621. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, D.H. Insulin, Muscle Glucose Uptake, and Hexokinase: Revisiting the Road Not Taken. Physiology 2022, 37, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Merz, K.E.; Thurmond, D.C. Role of skeletal muscle in insulin resistance and glucose uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; Defronzo, R.A. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010, 2010, 476279. [Google Scholar] [CrossRef]
- Koricanac, G.; Tepavcevic, S.; Zakula, Z.; Milosavljevic, T.; Stojiljkovic, M.; Isenovic, E.R. Interference between insulin and estradiol signaling pathways in the regulation of cardiac eNOS and Na+/K+-ATPase. Eur. J. Pharmacol. 2011, 655, 23–30. [Google Scholar] [CrossRef]
- Mayer, J.P.; Zhang, F.; DiMarchi, R.D. Insulin structure and function. Biopolym.—Pept. Sci. Sect. 2007, 88, 687–713. [Google Scholar] [CrossRef]
- Dunn, M.F. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—A review. Biometals 2005, 18, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Derewenda, U.; Derewenda, Z.S.; Dodson, G.G.; Hubbard, R.E. Insulin Structure. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 1990; pp. 23–39. [Google Scholar]
- Brader, M.L. Zinc coordination, asymmetry, and allostery of the human insulin hexamer. J. Am. Chem. Soc. 1997, 119, 7603–7604. [Google Scholar] [CrossRef]
- Bolli, G.B.; Cheng, A.Y.Y.; Owens, D.R. Insulin: Evolution of insulin formulations and their application in clinical practice over 100 years. Acta Diabetol. 2022, 59, 1129–1144. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.R. Insulin preparations with prolonged effect. Diabetes Technol. Ther. 2011, 13 (Suppl. 1), S-5–S-14. [Google Scholar] [CrossRef] [PubMed]
- Jarosinski, M.A.; Dhayalan, B.; Chen, Y.S.; Chatterjee, D.; Varas, N.; Weiss, M.A. Structural principles of insulin formulation and analog design: A century of innovation. Mol. Metab. 2021, 52, 101325. [Google Scholar] [CrossRef] [PubMed]
- Klepach, A.; Tran, H.; Ahmad Mohammed, F.; ElSayed, M.E.H. Characterization and impact of peptide physicochemical properties on oral and subcutaneous delivery. Adv. Drug Deliv. Rev. 2022, 186, 114322. [Google Scholar] [CrossRef]
- DeFelippis, M.R.; Chance, R.E.; Frank, B.H. Insulin self-association and the relationship to pharmacokinetics and pharmacodynamics. Crit. Rev. Ther. Drug Carrier Syst. 2001, 18, 201–264. [Google Scholar] [CrossRef]
- Home, P.; Kurtzhals, P. Insulin detemir: From concept to clinical experience. Expert Opin. Pharmacother. 2006, 7, 325–343. [Google Scholar] [CrossRef]
- Ayan, E.; DeMirci, H. A Brief Atlas of Insulin. Curr. Diabetes Rev. 2022, 19, 18–79. [Google Scholar] [CrossRef]
- Glidden, M.D., II. Single-Chain Insulin Analogs as Ultra-Stable Therapeutics and as Models of Protein (Mis)Folding: Stability, Structure, Dynamics, and Function of Novel Analogs. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2018. [Google Scholar]
- Berenson, D.F.; Weiss, A.R.; Wan, Z.; Weiss, M.A. Insulin analogs for the treatment of diabetes mellitus: Therapeutic applications of protein engineering. Ann. N. Y. Acad. Sci. 2011, 1243, E40–E54. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M. Design of ultra-stable insulin analogues for the developing world. J. Health Spec. 2013, 1, 59. [Google Scholar] [CrossRef]
- Hua, Q.X.; Jia, W.; Weiss, M.A. Conformational dynamics of insulin. Front. Endocrinol. 2011, 2, 48. [Google Scholar] [CrossRef]
- Dhayalan, B.; Chatterjee, D.; Chen, Y.S.; Weiss, M.A. Structural Lessons From the Mutant Proinsulin Syndrome. Front. Endocrinol. 2021, 12, 754693. [Google Scholar] [CrossRef] [PubMed]
- Falcetta, P.; Aragona, M.; Bertolotto, A.; Bianchi, C.; Campi, F.; Garofolo, M.; Del Prato, S. Insulin discovery: A pivotal point in medical history. Metabolism 2022, 127, 154941. [Google Scholar] [CrossRef] [PubMed]
- Beals, J.M.; DeFelippis, M.R.; Paavola, C.D.; Allen, D.P.; Garg, A.; Baldwin, D.B. Insulin. In Pharmaceutical Biotechnology: Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2019; pp. 403–427. [Google Scholar]
- Akbarian, M.; Ghasemi, Y.; Uversky, V.N.; Yousefi, R. Chemical modifications of insulin: Finding a compromise between stability and pharmaceutical performance. Int. J. Pharm. 2018, 547, 450–468. [Google Scholar] [CrossRef]
- Pandyarajan, V.; Weiss, M.A. Design of non-standard insulin analogs for the treatment of diabetes mellitus. Curr. Diab. Rep. 2012, 12, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wang, Z. Photoactivatable Platinum-Based Anticancer Drugs: Mode of Photoactivation and Mechanism of Action. Molecules 2020, 25, 5167. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.Y.; Perry, I.B.; Bissonnette, N.B.; Buksh, B.F.; Edwards, G.A.; Frye, L.I.; Garry, O.L.; Lavagnino, M.N.; Li, B.X.; Liang, Y.; et al. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem. Rev. 2022, 122, 1485–1542. [Google Scholar] [CrossRef] [PubMed]
- Reed, N.L.; Yoon, T.P. Oxidase reactions in photoredox catalysis. Chem. Soc. Rev. 2021, 50, 2954–2967. [Google Scholar] [CrossRef]
- Liu, J.; Lu, L.; Wood, D.; Lin, S. New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS Cent. Sci. 2020, 6, 1317–1340. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef]
- Arora, A.; Weaver, J.D. Visible Light Photocatalysis for the Generation and Use of Reactive Azolyl and Polyfluoroaryl Intermediates. Acc. Chem. Res. 2016, 49, 2273–2283. [Google Scholar] [CrossRef]
- Li, J.; Huang, C.Y.; Han, J.T.; Li, C.J. Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C-C Cross-Couplings via H2Release. ACS Catal. 2021, 11, 14148–14158. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, J. Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances. Adv. Energy Mater. 2021, 11, 2003216. [Google Scholar] [CrossRef]
- Shang, W.; Li, Y.; Huang, H.; Lai, F.; Roeffaers, M.B.J.; Weng, B. Synergistic Redox Reaction for Value-Added Organic Transformation via Dual-Functional Photocatalytic Systems. ACS Catal. 2021, 11, 4613–4632. [Google Scholar] [CrossRef]
- Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035–10074. [Google Scholar] [CrossRef]
- Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angew. Chem.—Int. Ed. 2018, 57, 10034–10072. [Google Scholar] [CrossRef]
- Bellotti, P.; Huang, H.M.; Faber, T.; Glorius, F. Photocatalytic Late-Stage C-H Functionalization. Chem. Rev. 2023, 123, 4237–4352. [Google Scholar] [CrossRef]
- Zeitler, K.; Neumann, M. Synergistic visible light photoredox catalysis. In Chemical Photocatalysis; De Gruyter: Berlin, Germany, 2020; Volume 5, pp. 245–283. ISBN 9783110576764. [Google Scholar]
- Chan, C.M.; Chow, Y.C.; Yu, W.Y. Recent Advances in Photocatalytic C-N Bond Coupling Reactions. Synthesis 2020, 52, 2899–2921. [Google Scholar] [CrossRef]
- Obaid, G.; Broekgaarden, M.; Bulin, A.L.; Huang, H.C.; Kuriakose, J.; Liu, J.; Hasan, T. Photonanomedicine: A convergence of photodynamic therapy and nanotechnology. Nanoscale 2016, 8, 12471–12503. [Google Scholar] [CrossRef]
- Mallidi, S.; Anbil, S.; Bulin, A.L.; Obaid, G.; Ichikawa, M.; Hasan, T. Beyond the Barriers of Light Penetration: Strategies, Perspectives and Possibilities for Photodynamic Therapy. Theranostics 2016, 6, 2458. [Google Scholar] [CrossRef] [PubMed]
- Josefsen, L.B.; Boyle, R.W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012, 2, 916–966. [Google Scholar] [CrossRef] [PubMed]
- Lukyanets, E.A.; Kuz’Min, S.G.; Vorozhtsov, G.N. Photosensitizers for photodynamic therapy—State of the art and perspectives. In Proceedings of the 6th International Congress of the World Association of Laser Therapy, WALT, Lemesos, Cyprus, 25–28 October 2006; pp. 131–134. [Google Scholar]
- Bown, S.G. Photodynamic therapy for photochemists. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120371. [Google Scholar] [CrossRef]
- Selbo, P.K.; Weyergang, A.; Høgset, A.; Norum, O.J.; Berstad, M.B.; Vikdal, M.; Berg, K. Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J. Control. Release 2010, 148, 2–12. [Google Scholar] [CrossRef]
- Hattinger, C.M.; Fanelli, M.; Tavanti, E.; Vella, S.; Ferrari, S.; Picci, P.; Serra, M. Advances in emerging drugs for osteosarcoma. Expert Opin. Emerg. Drugs 2015, 20, 495–514. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Wang, K.P.; Mo, J.G.; Xiong, L.; Wen, Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J. Stem Cells 2020, 12, 562–584. [Google Scholar] [CrossRef]
- Dogra, Y.; Ferguson, D.C.J.; Dodd, N.J.F.; Smerdon, G.R.; Curnow, A.; Winyard, P.G. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species. Redox Biol. 2016, 9, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Buytaert, E.; Dewaele, M.; Agostinis, P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Biophys. Acta—Rev. Cancer 2007, 1776, 86–107. [Google Scholar] [CrossRef] [PubMed]
- Teijo, M.J.; Diez, B.A.; Battle, A.; Fukuda, H. Modulation of 5-Aminolevulinic acid mediated photodynamic therapy induced cell death in a human lung adenocarcinoma cell line. Integr. Cancer Sci. Ther. 2016, 3, 450–459. [Google Scholar] [CrossRef]
- Singh, D. A sojourn on mitochondria targeted drug delivery systems for cancer: Strategies, clinical and future prospects. Mitochondrion 2024, 74, 101826. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Carter, K.A.; Miranda, D.; Lovell, J.F. Chemophototherapy: An Emerging Treatment Option for Solid Tumors. Adv. Sci. 2017, 4, 1600106. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, S.; Kashima, Y.; Suzuki, A.; Suzuki, Y. Single-cell and spatial analyses of cancer cells: Toward elucidating the molecular mechanisms of clonal evolution and drug resistance acquisition. Inflamm. Regen. 2021, 41, 22. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.H. Replacing Pumps with Light Controlled Insulin Delivery. Curr. Diab. Rep. 2019, 19, 122. [Google Scholar] [CrossRef]
- Rea, A.C.; Vandenberg, L.N.; Ball, R.E.; Snouffer, A.A.; Hudson, A.G.; Zhu, Y.; McLain, D.E.; Johnston, L.L.; Lauderdale, J.D.; Levin, M.; et al. Light-activated serotonin for exploring its action in biological systems. Chem. Biol. 2013, 20, 1536–1546. [Google Scholar] [CrossRef] [PubMed]
- Diaspro, A.; Chirico, G.; Collini, M. Two-photon fluorescence excitation and related techniques in biological microscopy. Q. Rev. Biophys. 2005, 38, 97–166. [Google Scholar] [CrossRef] [PubMed]
- Sarode, B.R.; Kover, K.; Tong, P.Y.; Zhang, C.; Friedman, S.H. Light control of insulin release and blood glucose using an injectable photoactivated depot. Mol. Pharm. 2016, 13, 3835–3841. [Google Scholar] [CrossRef]
- Trane, M.; Marelli, L.; Siragusa, A.; Pollo, R.; Lombardi, P. Progress by Research to Achieve the Sustainable Development Goals in the EU: A Systematic Literature Review. Sustainability 2023, 15, 7055. [Google Scholar] [CrossRef]
- Heise, T. The future of insulin therapy. Diabetes Res. Clin. Pract. 2021, 175, 108820. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Taleb, N.; Stainforth-Dubois, M.; Rabasa-Lhoret, R. The promising future of insulin therapy in diabetes mellitus. Am. J. Physiol.—Endocrinol. Metab. 2021, 320, E886–E890. [Google Scholar] [CrossRef] [PubMed]
- Spanakis, E.K.; Cryer, P.E.; Davis, S.N. Hypoglycemia During Therapy of Diabetes; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Zhang, F.; Tzanakakis, E.S. Optogenetic regulation of insulin secretion in pancreatic β-cells. Sci. Rep. 2017, 7, 9357. [Google Scholar] [CrossRef]
- Safarkhani, M.; Aldhaher, A.; Heidari, G.; Zare, E.N.; Warkiani, M.E.; Akhavan, O.; Huh, Y.S.; Rabiee, N. Nanomaterial-assisted wearable glucose biosensors for noninvasive real-time monitoring: Pioneering point-of-care and beyond. Nano Mater. Sci. 2023, in press. [CrossRef]
- Katz, E. Implantable Biofuel Cells Operating In Vivo—Potential Power Sources for Bioelectronic Devices. Bioelectron. Med. 2015, 2, 1–12. [Google Scholar] [CrossRef]
- Gharib, G.; Bütün, İ.; Muganlı, Z.; Kozalak, G.; Namlı, İ.; Sarraf, S.S.; Ahmadi, V.E.; Toyran, E.; van Wijnen, A.J.; Koşar, A. Biomedical Applications of Microfluidic Devices: A Review. Biosensors 2022, 12, 1023. [Google Scholar] [CrossRef] [PubMed]
- Kawana, Y.; Imai, J.; Morizawa, Y.M.; Ikoma, Y.; Kohata, M.; Komamura, H.; Sato, T.; Izumi, T.; Yamamoto, J.; Endo, A.; et al. Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation. Nat. Biomed. Eng. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
Scopes | Light-Activated Insulin | Conventional Injected/Oral Insulin |
---|---|---|
Economic | One injection that is long-lasting (affordable) | Injected frequently (high cost) |
Safety | Fewer adverse effects (low pain tolerance) | Pain and gastrointestinal adverse effects |
Clinical–physical intrusion | Minimally invasive | Invasive |
Target | Covalent modifiers for precise regulation; RNA and epigenetic factors related to diabetes | It only increases insulin levels in the bloodstream |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurkolis, F.; Kurniawan, R.; Wiyarta, E.; Syahputra, R.A.; Surya, R.; Taslim, N.A.; Tallei, T.E.; Tjandrawinata, R.R.; Adashi, E.Y.; Kim, B. Unraveling Light-Activated Insulin Action in Regulating Blood Glucose: New Photoactivatable Insight as a Novel Modality in Diabetes Management. Molecules 2024, 29, 1294. https://doi.org/10.3390/molecules29061294
Nurkolis F, Kurniawan R, Wiyarta E, Syahputra RA, Surya R, Taslim NA, Tallei TE, Tjandrawinata RR, Adashi EY, Kim B. Unraveling Light-Activated Insulin Action in Regulating Blood Glucose: New Photoactivatable Insight as a Novel Modality in Diabetes Management. Molecules. 2024; 29(6):1294. https://doi.org/10.3390/molecules29061294
Chicago/Turabian StyleNurkolis, Fahrul, Rudy Kurniawan, Elvan Wiyarta, Rony Abdi Syahputra, Reggie Surya, Nurpudji Astuti Taslim, Trina Ekawati Tallei, Raymond Rubianto Tjandrawinata, Eli Y. Adashi, and Bonglee Kim. 2024. "Unraveling Light-Activated Insulin Action in Regulating Blood Glucose: New Photoactivatable Insight as a Novel Modality in Diabetes Management" Molecules 29, no. 6: 1294. https://doi.org/10.3390/molecules29061294
APA StyleNurkolis, F., Kurniawan, R., Wiyarta, E., Syahputra, R. A., Surya, R., Taslim, N. A., Tallei, T. E., Tjandrawinata, R. R., Adashi, E. Y., & Kim, B. (2024). Unraveling Light-Activated Insulin Action in Regulating Blood Glucose: New Photoactivatable Insight as a Novel Modality in Diabetes Management. Molecules, 29(6), 1294. https://doi.org/10.3390/molecules29061294