Synthesis of α,ω-bis-Mercaptoacyl Poly(alkyl oxide)s and Development of Thioether Cross-Linked Liposome Scaffolds for Sustained Release of Drugs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rationale
2.2. Synthesis of Functionalized α,ω-bis-Mercaptoacyl Poly(alkyl oxide)s
2.2.1. Selection and Synthesis of S-Mmt Mercapto Acids
2.2.2. Synthesis of di-S-Mmt-PEG-Dithiols and PEG-Dithiols
2.2.3. Synthesis of di-S-Mmt-Pluronic-Dithiols and Pluronic-Dithiols
2.3. Thia–Michael Reaction with Pre-Formed Liposomes Maleimides
2.3.1. General Method
2.3.2. Monitoring of the Reaction Progress by 1D CPMG 1H-NMR; Optimization
2.4. Effect of Thioether Cross-Linking on Liposome Size
2.5. Scanning Electron Microscope (SEM) Images
2.6. Effect of Thioether Cross-Linking on Liposome Scaffold Viscosity
2.7. Evaluation of Thioether Cross-Linked Liposomes as Drug Eluting Systems
3. Materials and Methods
3.1. General Information
3.1.1. Synthesis of α,ω-bis-Mercaptoacyl Poly(alkyl oxide)s
3.1.2. Liposome Preparations
3.1.3. Liposome Physicochemical Characterization
3.2. Synthetic Procedures
3.2.1. S-Mmt-Mercaptopropionic Acids (S-Mmt-2-Mercaptopropionic Acid 6a; S-Mmt-3-Mercaptopropionic Acid 6b)
3.2.2. di-S-Mmt-di-2-Mercaptopropionyl PEG10.000 (14)
3.2.3. di-2-Mercaptopropionyl PEG10.000 (17)
3.2.4. di-S-Mmt-di-2-Mercaptopropionyl PEG4.000 (15)
3.2.5. di-2-Mercaptopropionyl PEG4.000 (18)
3.2.6. di-S-Mmt-di-2-Mercaptopropionyl PEG1.000 (16)
3.2.7. di-2-Mercaptopropionyl PEG1.000 (19)
3.2.8. di-S-Mmt-di-3-Mercaptopropionyl Pluronic (20)
3.2.9. di-3-Mercaptopropionyl Pluronic (21)
3.2.10. Liposome Preparation Procedure
3.2.11. Reaction of di-Thioether-PEGs with Pre-Formed LIP-Maleimides
3.2.12. Liposome Integrity Studies
3.2.13. Scanning Electron Microscopy (SEM)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bré, L.P.; Zheng, Y.; Pêgo, A.P.; Wang, W. Taking tissue adhesives to the future: From traditional synthetic to new biomimetic approaches. Biomater. Sci. 2013, 1, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [PubMed]
- Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 2005, 10, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Alconcel, S.N.S.; Baas, A.S.; Maynard, H.D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem. 2011, 2, 1442–1448. [Google Scholar] [CrossRef]
- Rahdar, A.; Kazemi, S.; Askari, F. Pluronic as nano-carier for drug delivery systems. Nanomed. Res. J. 2018, 3, 174–179. [Google Scholar] [CrossRef]
- Yu, J.; Qiu, H.; Yin, S.; Wang, H.; Li, Y. Polymeric Drug Delivery System Based on Pluronics for Cancer Treatment. Molecules 2012, 26, 3610. [Google Scholar] [CrossRef]
- Batrakova, E.V.; Kabanov, A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 2008, 130, 98–106. [Google Scholar] [CrossRef]
- Hutanu, D.; Frishberg, M.D.; Guo, L.; Darie, C.C. Recent Applications of Polyethylene Glycols (PEGs) and PEG Derivatives. Mod. Chem. Appl. 2014, 2, 1000132. [Google Scholar] [CrossRef]
- Harris, J.M.; Kozlowski, A. Poly(Ethylene Glycol) Derivatives with Proximal Reactive Groups. U.S. Patent US6437025B1, 20 August 2002. [Google Scholar]
- Ravasco, J.M.; Faustino, H.; Trindade, A.; Gois, P.M.P. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chem. Eur. J. 2018, 25, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Renault, K.; Fredy, J.W.; Renard, P.Y.; Sabot, C. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. Bioconjug. Chem. 2018, 29, 2497–2513. [Google Scholar] [CrossRef] [PubMed]
- Kharkar, P.M.; Rehmann, M.S.; Skeens, K.M.; Maverakis, E.; Kloxin, A.M. Thiol-ene Click Hydrogels for Therapeutic Delivery. ACS Biomater. Sci. Eng. 2016, 2, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, C.E.; Bowman, C.N. Thiol-ene click chemistry. Angew. Chem. (Int. Ed. Engl.) 2010, 49, 1540–1573. [Google Scholar] [CrossRef] [PubMed]
- Goessl, A.; Tirelli, N.; Hubbell, J.A. A Hydrogel System for Stimulus-Responsive, Oxygen-Sensitive In Situ Gelation. J. Biomater. Sci. Polym. Ed. 2004, 15, 895–904. [Google Scholar] [CrossRef]
- Buwalda, S.J.; Dijkstra, P.J.; Feijen, J. In Situ Forming Poly(Ethylene Glycol)-Poly(L-Lactide) Hydrogels via Michael Addition: Mechanical Properties, Degradation, and Protein Release. Macromol. Chem. Phys. 2012, 213, 766–775. [Google Scholar] [CrossRef]
- Hiemstra, C.; van der Aa, L.J.; Zhong, Z.; Dijkstra, P.J.; Feijen, J. Novel In Situ Forming, Degradable Dextran Hydrogels by Michael Addition Chemistry: Synthesis, Rheology, and Degradation. Macromolecules 2007, 40, 1165–1173. [Google Scholar] [CrossRef]
- Yoshimoto, K.; Hirase, T.; Nemoto, S.; Hatta, T.; Nagasaki, Y. Facile Construction of Sulfanyl-Terminated Poly(Ethylene Glycol)-Brushed Layer on a Gold Surface for Protein Immobilization by the Combined use of Sulfanyl-Ended Telechelic and Semitelechelic Poly(Ethylene Glycol)s. Langmuir 2008, 24, 9623–9629. [Google Scholar] [CrossRef]
- Nie, T.; Baldwin, A.; Yamaguchi, N.; Kiick, K.L. Production of Heparin-Functionalized Hydrogels for the Development of Responsive and Controlled Growth Factor Delivery Systems. J. Control. Release 2007, 122, 287–296. [Google Scholar] [CrossRef]
- Belair, D.G.; Miller, M.J.; Wang, S.; Darjatmoko, S.R.; Binder, B.Y.; Sheibani, N.; Murphy, W.L. Differential Regulation of Angiogenesis using Degradable VEGF-Binding Microspheres. Biomaterials 2016, 93, 7–37. [Google Scholar] [CrossRef]
- Yu, H.; Feng, Z.G.; Zhang, A.Y.; Sun, L.G.; Qian, L. Synthesis and Characterization of Three-Dimensional Crosslinked Networks Based on Self-Assembly of α-Cyclodextrins with Thiolated 4-arm PEG using a Three-Step Oxidation. Soft. Matter. 2006, 2, 343–349. [Google Scholar] [CrossRef]
- Du, Y.J.; Brash, J.L. Synthesis and Characterization of thiol-terminated Poly(Ethylene Oxide) for Chemisorption to Gold Surface. J. Appl. Polym. Sci. 2003, 90, 594–607. [Google Scholar] [CrossRef]
- Wan, J.K.S.; Depew, M.C. Some Mechanistic Insights in the Behaviour of Thiol Containing Antioxidant Polymers in Lignin Oxidation Processes. Res. Chem. Intermed. 1996, 22, 241–253. [Google Scholar] [CrossRef]
- Yang, T.; Long, H.; Malkoch, M.; Kristofer Gamstedt, E.; Berglund, L.; Hult, A. Characterization of Well-Defined Poly(Ethylene Glycol) Hydrogels Prepared by Thiol-Ene Chemistry. Polym. Chem. 2011, 49, 4044–4054. [Google Scholar] [CrossRef]
- Zhang, H.J.; Xin, Y.; Yan, Q.; Zhou, L.L.; Peng, L.; Yuan, J.Y. Facile and Efficient Fabrication of Photoresponsive Microgels via Thiol-Michael Addition. Macromol. Rapid Commun. 2012, 33, 1952–1957. [Google Scholar] [CrossRef]
- Zustiak, S.P.; Leach, J.B. Hydrolytically Degradable Poly(Ethylene Glycol) Hydrogel Scaffolds with Tunable Degradation and Mechanical Properties. Biomacromolecules 2010, 11, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Lee, S.; Bararpour, L.; Yang, F. Long-term Controlled Protein Release from Poly(ethylene glycol) Hydrogels by Modulating Mesh Size and Degradation. Macromol. Biosci. 2015, 15, 1679–1686. [Google Scholar] [CrossRef] [PubMed]
- Picheth, G.F.; da Silva, L.C.E.; Giglio, L.P.; Plivelic, T.S.; de Oliveira, M.G. S-nitrosothiol-terminated Pluronic F127: Influence of microstructure on nitric oxide release. J. Colloid Interface Sci. 2020, 576, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Zhang, H.; Song, L.; Cui, L.; Cao, H.; Zheng, Y.; Zhu, S.; Yang, Z.; Yang, H. Thiol/acrylate-modified PEO-PPO-PEO triblocks used as reactive and thermosensitive copolymers. Biomacromolecules 2008, 9, 2621–2628. [Google Scholar] [CrossRef]
- Mulay, P.; Shrikhande, G.; Puskas, J. Synthesis of Mono- and Dithiols of Tetraethylene Glycol and Poly(ethylene glycol)s via Enzyme Catalysis. Catalysts 2019, 9, 228. [Google Scholar] [CrossRef]
- Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019, 164, 640–653. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016, 23, 3319–3329. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Kiick, K.L. Liposome-cross-linked hybrid hydrogels for glutathione- triggered delivery of multiple cargo molecules. Biomacromolecules 2016, 17, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Spears, R.J.; McMahon, C.; Chudasama, V. Cysteine protecting groups: Applications in peptide and protein science. Chem. Soc. Rev. 2021, 50, 11098–11155. [Google Scholar] [CrossRef] [PubMed]
- Mourtas, S.; Gatos, D.; Kalaitzi, V.; Katakalou, C.; Barlos, K. S-4-Methoxytrityl mercapto acids: Synthesis and application. Tetrahedron Lett. 2001, 42, 6965–6967. [Google Scholar] [CrossRef]
- Neises, B.; Steglich, W. Simple Method for the Esterification of Carboxylic Acids. Angew. Chem. Int. Ed. 1978, 17, 522–524. [Google Scholar] [CrossRef]
- Tsakos, M.; Schaffert, E.S.; Clement, L.L.; Villadsen, N.L.; Poulsen, T.B. Ester coupling reactions—An enduring challenge in the chemical synthesis of bioactive natural products. Nat. Prod. Rep. 2015, 32, 605–632. [Google Scholar] [CrossRef]
- McCourt, R.O.; Scanlan, E.M. A Sequential Acyl Thiol-Ene and Thiolactonization Approach for the Synthesis of δ-Thiolactones. Org. Lett. 2019, 21, 3460–3464. [Google Scholar] [CrossRef]
- Espeel, P.; Du Prez, F.E. One-pot multi-step reactions based on thiolactone chemistry: A powerful synthetic tool in polymer science. Eur. Polym. J. 2015, 62, 247–272. [Google Scholar] [CrossRef]
- Suzuki, M.; Makimura, K.; Matsuoka, S. Thiol-Mediated Controlled Ring-Opening Polymerization of Cysteine-Derived β-Thiolactone and Unique Features of Product Polythioester. Biomacromolecules 2016, 17, 1135–1141. [Google Scholar] [CrossRef]
- Pearson, D.A.; Blanchette, M.; Baker, M.L.; Guindon, C.A. Trialkylsilanes as scavengers for the trifluoroacetic acid deblocking of protecting groups in peptide synthesis. Tetrahedron Lett. 1989, 30, 2739–2742. [Google Scholar] [CrossRef]
- Chung, M.-K.; Schla, M. A Catalytic Synthesis of Thiosilanes and Silthianes: Palladium Nanoparticle-Mediated Cross-Coupling of Silanes with Thio Phenyl and Thio Vinyl Ethers through Selective Carbon-Sulfur Bond Activation. J. Am. Chem. Soc. 2004, 126, 7386–7392. [Google Scholar] [CrossRef]
- Kleckner, I.R.; Foster, M.P. An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta. 2011, 1814, 942–968. [Google Scholar] [CrossRef]
- Palmer, A.G.; Kroenke, C.D.; Loria, J.P. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Meth. Enzymol. 2001, 339, 204–238. [Google Scholar] [CrossRef]
- Palmer, A.G.; Grey, M.J.; Wang, C. Solution nmr spin relaxation methods for characterizing chemical exchange in high-molecular-weight systems. Meth. Enzymol. 2005, 394, 430–465. [Google Scholar] [CrossRef]
- Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297–315. [Google Scholar]
- Mourtas, S.; Fotopoulou, S.; Duraj, S.; Sfika, V.; Tsakiroglou, C.; Antimisiaris, S.G. Liposomal drugs dispersed in hydrogels. Effect of liposome, drug and gel properties on drug release kinetics. Colloids Surf. B Biointerfaces 2007, 55, 212–221. [Google Scholar] [CrossRef]
- Mourtas, S.; Christodoulou, P.; Klepetsanis, P.; Gatos, D.; Barlos, K.; Antimisiaris, S.G. Benzothiazolyl-Decorated Nanoliposomes. Molecules 2019, 24, 1540. [Google Scholar] [CrossRef] [PubMed]
- Mourtas, S.; Mavroidi, B.; Marazioti, A.; Kannavou, M.; Sagnou, M.; Pelecanou, M.; Antimisiaris, S.G. Liposomes Decorated with 2-(4′-Aminophenyl)benzothiazole Effectively Inhibit Aβ1−42 Fibril Formation and Exhibit in Vitro Brain-Targeting Potential. Biomacromolecules 2020, 21, 4685–4698. [Google Scholar] [CrossRef] [PubMed]
- Airoldi, C.; Mourtas, S.; Cardona, F.; Zona, C.; Sironi, E.; D’Orazio, G.; Markoutsa, E.; Nicotra, F.; Antimisiaris, S.G.; La Ferla, B. Nanoliposomes presenting on surface a cis-glycofused benzopyran compound display binding affinity and aggregation inhibition ability towards Amyloid b1-42 peptide. Eur. J. Med. Chem. 2014, 85, 43–50. [Google Scholar] [CrossRef]
- Stewart, J.C.M. Colorimetric Determination of Phospholipids with Ammonium Ferrothiocyanate. Anal. Biochem. 1980, 104, 10–14. [Google Scholar] [CrossRef] [PubMed]
Control Lips + PEG-Dithiol | PC-Lip-Mal + PEG-Dithiol | ||||
---|---|---|---|---|---|
Sample No b | mol PEG-Dithiol/mol Maleimide | Mean Hydrodynamic Diameter (nm) | PDI | Mean Hydrodynamic Diameter (nm) | PDI |
1 | - | 105.10 ± 2.07 | 0.158 | 101.80 ± 0.47 | 0.190 |
2 | 2.5 | 96.48 ± 0.74 | 0.199 | 128.90 ± 1.3 | 0.199 |
3 | 5 | 111.60 ± 0.95 | 0.231 | 121.30 ± 1.4 | 0.318 |
4 | 10 | 105.50 ± 3.7 | 0.260 | 153.10 ± 10.4 | 0.409 |
Control Lips + PEG-Dithiol | PC-Lip-Mal + PEG-Dithiol | ||||
---|---|---|---|---|---|
Sample No b | mol PEG-Dithiol/mol Maleimide | Mean Hydrodynamic Diameter (nm) | PDI | Mean Hydrodynamic Diameter (nm) | PDI |
1 | - | 89.38 ± 0.85 | 0.154 | 90.93 ± 0.98 | 0.178 |
2 | 2.5 | 89.06 ± 0.79 | 0.169 | 138.30 ± 2.2 | 0.244 |
3 | 5 | 91.90 ± 1.6 | 0.246 | 140.20 ± 3.4 | 0.260 |
4 | 10 | 100.60 ± 1.4 | 0.261 | 148.00 ± 4.5 | 0.375 |
Lipid Composition | Mean Hydrodynamic Diameter (nm) | PDI | ||
---|---|---|---|---|
Before Reaction | After Reaction | Before Reaction | After Reaction | |
Control Lips | 99.4 ± 0.543 | 100.8 ± 0.757 | 0.180 | 0.192 |
HPC-Lip-Mal | 100.3 ± 0.621 | 145.7 ± 2.875 | 0.199 | 0.317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourtas, S.; Kourmoulakis, G.; Kremezis, S.; Klepetsanis, P.; Antimisiaris, S.G. Synthesis of α,ω-bis-Mercaptoacyl Poly(alkyl oxide)s and Development of Thioether Cross-Linked Liposome Scaffolds for Sustained Release of Drugs. Molecules 2024, 29, 1312. https://doi.org/10.3390/molecules29061312
Mourtas S, Kourmoulakis G, Kremezis S, Klepetsanis P, Antimisiaris SG. Synthesis of α,ω-bis-Mercaptoacyl Poly(alkyl oxide)s and Development of Thioether Cross-Linked Liposome Scaffolds for Sustained Release of Drugs. Molecules. 2024; 29(6):1312. https://doi.org/10.3390/molecules29061312
Chicago/Turabian StyleMourtas, Spyridon, Georgios Kourmoulakis, Stavros Kremezis, Pavlos Klepetsanis, and Sophia G. Antimisiaris. 2024. "Synthesis of α,ω-bis-Mercaptoacyl Poly(alkyl oxide)s and Development of Thioether Cross-Linked Liposome Scaffolds for Sustained Release of Drugs" Molecules 29, no. 6: 1312. https://doi.org/10.3390/molecules29061312
APA StyleMourtas, S., Kourmoulakis, G., Kremezis, S., Klepetsanis, P., & Antimisiaris, S. G. (2024). Synthesis of α,ω-bis-Mercaptoacyl Poly(alkyl oxide)s and Development of Thioether Cross-Linked Liposome Scaffolds for Sustained Release of Drugs. Molecules, 29(6), 1312. https://doi.org/10.3390/molecules29061312