Quantification of Trimethylamine-N-Oxide and Trimethylamine in Fish Oils for Human Consumption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Detection Method Optimization
2.2. Method Development
2.3. Method Validation
2.4. Analysis of Commercially Available Fish Oils
3. Materials and Methods
3.1. Chemicals
3.2. Sample Material
3.3. Sample Preparation
3.4. UHPLC-ESI-MS/MS Analysis
3.5. Stock Solutions, Calibration Standards, and Quality Control Sample Preparation
3.6. Detection Method Optimization
3.7. Extraction Method Development
3.8. Method Validation
3.9. Analysis of Commercially Available Fish Oils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 17 August 2023).
- Artham, S.M.; Patel, D.; Lavie, C.J.; Milani, R.V.; O’Keefe, J.H. Impact of Specific Diets and Nutritional Supplements on Cardiovascular Diseases. In Handbook of Cardiovascular Behavioral Medicine, 1st ed.; Waldstein, S.R., Kop, W.J., Suarez, E.C., Lovallo, W.R., Katzel, L.I., Eds.; Springer Nature: Berlin, Germany, 2022; Volume 1, pp. 331–355. [Google Scholar]
- Sidhu, K.S. Health benefits and potential risks related to consumption of fish or fish oil. RTP Regul. Toxicol. Pharmacol. 2003, 38, 336–344. [Google Scholar] [CrossRef]
- National Institutes of Health, Office of Dietary Supplements. Omega-3 Fatty Acids. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/#:~:text=Fish%20oil%20is%20one%20of,EPA%20%5B45%2C46%5D (accessed on 17 August 2023).
- Clarke, T.C.; Black, L.I.; Stussman, B.J.; Barnes, P.M.; Nahin, R.L. Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl. Health Stat. Rep. 2015, 79, 1–16. [Google Scholar]
- Velasquez, M.; Ramezani, A.; Manal, A.; Raj, D. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins 2016, 8, 326. [Google Scholar] [CrossRef]
- Zhen, J.; Zhou, Z.; He, M.; Han, H.-X.; Lv, E.-H.; Wen, P.-B.; Liu, X.; Wang, Y.-T.; Cai, X.-C.; Tian, J.-Q.; et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front. Endocrinol. 2023, 14, 1085041. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.S.; Fernandez, M.L. Trimethylamine N-Oxide (TMAO), Diet and Cardiovascular Disease. Curr. Atheroscler. Rep. 2021, 23, 12. [Google Scholar] [CrossRef]
- Cho, C.E.; Caudill, M.A. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? TEM Trends Endocrinol. Metab. 2016, 28, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.E.; Taesuwan, S.; Malysheva, E.B.; Tulchinsky, N.F.; Yan, J.; Sutter, J.L.; Caudill, M.A. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol. Nutr. Food Res. 2016, 61, 1600324. [Google Scholar] [CrossRef] [PubMed]
- Yancey, P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 2005, 208, 2819–2830. [Google Scholar] [CrossRef]
- Dalgaard, P. Qualitative and quantitative characterization of spoilage bacteria from packed fish. Int. J. Food Microbiol. 1995, 26, 319–333. [Google Scholar] [CrossRef]
- Chung, S.W.C.; Chan, B.T.P. Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong. Food Addit. Contam. B Surveill. 2009, 2, 44–51. [Google Scholar] [CrossRef]
- Dehaut, A.; Duthen, S.; Grard, T.; Krzewinski, F.; N’Guessan, A.; Brisabois, A.; Duflos, G. Development of an SPME-GC-MS method for the specific quantification of dimethylamine and trimethylamine: Use of a new ratio for the freshness monitoring of cod fillets. J. Sci. Food Agric. 2016, 96, 3787–3794. [Google Scholar] [CrossRef]
- Duflos, G.; Coin, V.M.; Cornu, M.; Antinelli, J.-F.; Malle, P. Determination of volatile compounds to characterize fish spoilage using headspace/mass spectrometry and solid-phase microextraction/gas chromatography/mass spectrometry. J. Sci. Food Agric. 2006, 86, 600–611. [Google Scholar] [CrossRef]
- Timm, M.; Jørgensen, B.M. Simultaneous determination of ammonia, dimethylamine, trimethylamine and trimethylamine-N-oxide in fish extracts by capillary electrophoresis with indirect UV-detection. Food Chem. 2002, 76, 509–518. [Google Scholar] [CrossRef]
- Li, F.; Liu, H.; Xue, C.; Xin, X.; Xu, J.; Chang, Y.; Xue, Y.; Yin, L. Simultaneous determination of dimethylamine, trimethylamine and trimethylamine-n-oxide in aquatic products extracts by ion chromatography with non-suppressed conductivity detection. J. Chromatogr. A 2009, 31, 5924–5926. [Google Scholar] [CrossRef]
- Hefni, M.E.; Bergström, M.; Lennqvist, T.; Fagerström, C.; Witthöft, C.M. Simultaneous quantification of trimethylamine N-oxide, trimethylamine, choline, betaine, creatinine, and propionyl-, acetyl-, and L-carnitine in clinical and food samples using HILIC-LC-MS. Anal. Bioanal. Chem. 2021, 413, 5349–5360. [Google Scholar] [CrossRef]
- Dal Bello, F.; Aigotti, R.; Zorzi, M.; Giaccone, V.; Medana, C. Multi-Analyte MS Based Investigation in Relation to the Illicit Treatment of Fish Products with Hydrogen Peroxide. Toxics 2020, 8, 2. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Industry, Bioanalytical Method Validation. U.S. Department of Health and Human Service, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, November 2022, ICH. Available online: https://www.fda.gov/media/162903/download (accessed on 17 August 2023).
- Prabhakar, P.K.; Vatsa, S.; Srivastav, P.P.; Pathak, S.S. A Comprehensive Review on Freshness of Fish and Assessment: Analytical Methods and Recent Innovations. Int. Food Res. J. 2020, 133, 109157. [Google Scholar] [CrossRef]
- Walker, R.; Decker, E.A.; McClements, D.J. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: Opportunities and obstacles in the food industry. Food Funct. 2015, 6, 41–54. [Google Scholar] [CrossRef]
- Cleland, L.G.; James, M.J.; Proudman, S.M. Fish oil: What the prescriber needs to know. Arthritis Res. Ther. 2005, 8, 202. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzade, T.; Jafari, S.M.; Akhavan, S.; Hadavi, R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 2017, 216, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Hadnadev, M.; Kalic, M.; Krstonosic, V.; Jovanovic-Ljeskovic, N.; Erceg, T.; Skrobot, D.; Dapcevic-Hadnadev, T. Fortification of chocolate with microencapsulated fish oil: Effect of protein wall material on physicochemical properties of microcapsules and chocolate matrix. Food Chem. X 2023, 17, 100583. [Google Scholar] [CrossRef] [PubMed]
- Hughes, B.H.; Perkins, L.B.; Calder, B.L.; Skonberg, D.I. Fish Oil Fortification of Soft Goat Cheese. J. Food Sci. 2012, 77, S128–S133. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; You, Y.; Zhang, Y.; Wu, G.; Karrar, E.; Zhang, L.; Zhang, H.; Jin, Q.; Wang, X. Highly Valuable Fish Oil: Formation Process, Enrichment, Subsequent Utilization, and Storage of Eicosapentaenoic Acid Ethyl Esters. Molecules 2023, 28, 672. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Dai, Z.; Shen, Q.; Peng, X.; Zhang, M. Analysis of the Changes in Volatile Compound and Fatty Acid Profiles of Fish Oil in Chemical Refining Process. Eur. J. Lipid Sci. Technol. 2018, 120, 1700219. [Google Scholar] [CrossRef]
- Shepherd, C.J.; Jackson, A.J. Global fishmeal and fish-oil supply: Inputs, outputs and markets. J. Fish Biol. 2013, 83, 1046–1066. [Google Scholar] [CrossRef]
- Skåra, T.; Axelsson, L.; Stefánsson, G.; Ekstrand, B.; Hagen, H. Fermented and ripened fish products in the northern European countries. J. Ethn. Foods 2015, 2, 18–24. [Google Scholar] [CrossRef]
- Tiris, G.; Yanikoglu, R.S.; Ceylan, B.; Egeli, D.; Tekkeli, E.K.; Önal, A. A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chem. 2022, 398, 133919. [Google Scholar] [CrossRef]
Compound | Precursor Ion [m/z] | Quantifier Ion [m/z] | Qualifier Ion [m/z] | Quantifier CE [V] | Quantifier CAV [V] |
---|---|---|---|---|---|
TEA | 102 | 58 | 74 | 24 | 8 |
TMA | 60 | 44 | 28 | 24 | 8 |
TMAO | 76 | 58 | 59 | 25 | 5 |
Compound | R2 | Linear Range [ng/mL] | Slope | Intercept |
---|---|---|---|---|
TMA | 0.9984 | 100–1000 | 0.039 | 0.002 |
TMAO | 0.9986 | 10–100 | 31.915 | 0.253 |
Compound | LOD [µg/kg] | LOQ [µg/kg] | LLOQ [µg/kg] | Carry-Over [%] |
---|---|---|---|---|
TMA | 5 | 10 | 100 | 0.41 |
TMAO | 0.25 | 0.75 | 10 | 0.70 |
Compound | Accuracy [%] | Intra-Day Precision RSD [%] | Inter-Day Precision RSD [%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | L | M | H | Q | L | M | H | Q | L | M | H | |
TMA | 113 | 115 | 117 | 119 | 2 | 3 | 1 | 1 | 7 | 4 | 4 | 5 |
TMAO | 106 | 109 | 113 | 113 | 3 | 2 | 1 | 1 | 6 | 4 | 3 | 3 |
Sample | TMA Content [µg/kg] | Recovery Rate [%] | TMAO Content [µg/kg] | Recovery Rate [%] |
---|---|---|---|---|
Fish oil liquid 1 | n.d. | 97 | n.d. | 96 |
Fish oil liquid 2 | n.d. | 81 | n.d. | 96 |
Fish oil liquid 3 | n.d. | 104 | n.d. | 96 |
Fish oil liquid 4 | n.d. | 101 | n.d. | 94 |
Fish oil liquid 5 | n.d. | 103 | n.d. | 99 |
Fish oil liquid 6 | n.d. | 101 | n.d. | 97 |
Fish oil liquid 7 | n.d. | 104 | n.d. | 95 |
Fish oil liquid 8 | n.d. | 104 | n.d. | 101 |
Fish oil liquid 9 | n.d. | 95 | n.d. | 86 |
Fish oil capsule 1 | n.d. | 100 | n.d. | 109 |
Fish oil capsule 2 | 16 * | 102 | n.d. | 110 |
Fish oil capsule 3 | 23 * | 102 | 1 * | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dörfel, D.; Rohn, S.; Jantzen, E. Quantification of Trimethylamine-N-Oxide and Trimethylamine in Fish Oils for Human Consumption. Molecules 2024, 29, 1339. https://doi.org/10.3390/molecules29061339
Dörfel D, Rohn S, Jantzen E. Quantification of Trimethylamine-N-Oxide and Trimethylamine in Fish Oils for Human Consumption. Molecules. 2024; 29(6):1339. https://doi.org/10.3390/molecules29061339
Chicago/Turabian StyleDörfel, Dominik, Sascha Rohn, and Eckard Jantzen. 2024. "Quantification of Trimethylamine-N-Oxide and Trimethylamine in Fish Oils for Human Consumption" Molecules 29, no. 6: 1339. https://doi.org/10.3390/molecules29061339
APA StyleDörfel, D., Rohn, S., & Jantzen, E. (2024). Quantification of Trimethylamine-N-Oxide and Trimethylamine in Fish Oils for Human Consumption. Molecules, 29(6), 1339. https://doi.org/10.3390/molecules29061339