Boosting Visible-Light Photocatalytic Activity of BiOCl Nanosheets via Synergetic Effect of Oxygen Vacancy Engineering and Graphene Quantum Dots-Sensitization
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD, DRS, and PDOS Analysis
2.2. TEM and BET Analysis
2.3. IR, XPS, and ESR Analysis
2.4. Degradation Performance and Stability
2.5. Optical and Electrochemical Properties
2.6. Active Species Analysis
2.7. Photocatalytic Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of Photocatalysts
3.3. Characterization
3.4. Photoeletrochemical Measurements
3.5. Photocatalytic Test
3.6. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, M.; Xu, Z.; Hou, D.; Gao, B.; Cao, X.; Ok, Y.S.; Rinklebe, J.; Bolan, N.S.; Tsang, D.C.W. Waste-derived biochar for water pollution control and sustainable development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Guo, Y.; Tong, X.; Yang, N. Photocatalytic and electrocatalytic generation of hydrogen peroxide: Principles, catalyst design and performance. Nano-Micro Lett. 2023, 15, 77. [Google Scholar] [CrossRef]
- Du, Z.; Gong, K.; Yu, Z.; Yang, Y.; Wang, P.; Zheng, X.; Wang, Z.; Zhang, S.; Chen, S.; Meng, S. Photoredox coupling of CO2 reduction with benzyl alcohol oxidation over ternary metal chalcogenides (ZnmIn2S3+m, m = 1 − 5) with regulable products selectivity. Molecules 2023, 28, 6553. [Google Scholar] [CrossRef]
- Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W. Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Appl. Catal. B Environ. 2021, 285, 119789. [Google Scholar] [CrossRef]
- Wang, G.; Xiong, S.; Chen, Y.; Wang, C.; Lv, S.; Jia, K.; Xiang, Y.; Liu, J.; Liu, C.; Li, Z. Internal magnetic-field-enhanced photogenerated charge separation in ferromagnetic TiO2 surface heterojunctions. J. Mater. Sci. Technol. 2023, 160, 240–247. [Google Scholar] [CrossRef]
- Mengting, Z.; Kurniawan, T.A.; Duan, L.; Song, Y.; Hermanowicz, S.W.; Othman, M.H.D. Advances in BiOX-based ternary photocatalysts for water technology and energy storage applications: Research trends, challenges, solutions, and ways forward. Rev. Environ. Sci. Biotechnol. 2022, 21, 331–370. [Google Scholar] [CrossRef]
- Li, W.; Mao, Y.; Liu, Z.; Zhang, J.; Luo, J.; Zhang, L.; Qiao, Z.-A. Chelated ion-exchange strategy toward BiOCl mesoporous single-crystalline nanosheets for boosting photocatalytic selective aromatic alcohols oxidation. Adv. Mater. 2023, 35, 2300396. [Google Scholar] [CrossRef]
- Wenbin, J.; Hongyi, L.; Beverly Qian Ling, L.; Houjuan, Z.; Jingxiang, L.; Jerry Zhi Xiong, H.; Karen Yuanting, T.; Zibiao, L.; Xian Jun, L.; Enyi, Y.; et al. Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Appl. Catal. B Environ. Energy 2023, 321, 122079. [Google Scholar]
- Zhang, L.; Wang, W.; Jiang, D.; Gao, E.; Sun, S. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831. [Google Scholar] [CrossRef]
- Cui, D.; Wang, L.; Xu, K.; Ren, L.; Wang, L.; Yu, Y.; Du, Y.; Hao, W. Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 2018, 6, 2193–2199. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, Y.; Wan, Q.; Zeng, H.; Wang, H.; Yu, H.; Huang, J. Built-in electric field boosted exciton dissociation in sulfur doped BiOCl with abundant oxygen vacancies for transforming the pathway of molecular oxygen activation. Appl. Catal. B Environ. Energy 2024, 343, 123557. [Google Scholar] [CrossRef]
- Qin, H.; Sun, J. Xia, D. Xu, H. Yu, Q. Zheng, Y.; Shi, Y. Boosting nonradical process in BiOI/BiOCl heterostructure by interface oxygen vacancies. Chem. Eng. J. 2022, 435, 134847. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, Y.; Li, H.; Mao, C.; Wang, X.; Liu, X.; Liu, X.; Zhang, L. Oxygen and chlorine dual vacancies enable photocatalytic O2 dissociation into monatomic reactive oxygen on BiOCl for refractory aromatic pollutant removal. Environ. Sci. Technol. 2022, 56, 3587–3595. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; He, Y. Wang, H. Sun, Y.; Dong, F., Photo-switchable oxygen vacancy as the dynamic active site in the photocatalytic NO oxidation reaction. ACS Catal. 2022, 12, 14015–14025. [Google Scholar] [CrossRef]
- Fan, M.; Wang, Z.; Sun, K.; Wang, A.; Zhao, Y.; Yuan, Q.; Wang, R.; Raj, J.; Wu, J.; Jiang, J.; et al. N-B-OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Adv. Mater. 2023, 35, 2209086. [Google Scholar] [CrossRef]
- Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater. 2019, 31, 1808283. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.; Sun, Y.; Li, J.; Cui, W.; Zhang, W.; Yuan, X.; Wang, Z.; Zhang, Y.; Dong, F. Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement. Appl. Catal. B Environ. 2020, 264, 118545. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, X.; Wu, W.; Feng, X.; Kong, D.; Khan, U.; Ren, X.; Li, L. In situ encapsulation of graphene quantum dots in highly stable porphyrin metal-organic frameworks for efficient photocatalytic CO2 reduction. Molecules 2023, 28, 4703. [Google Scholar] [CrossRef]
- Jia, D.; Li, X.; Chi, Q.; Low, J.; Deng, P.; Wu, W.; Wang, Y.; Zhu, K.; Li, W.; Xu, M.; et al. Direct electron transfer from upconversion graphene quantum dots to TiO2 enabling infrared light-driven overall water splitting. Research 2022, 2022, 9781453. [Google Scholar] [CrossRef]
- Mandal, S.; Adhikari, S.; Choi, S.; Lee, Y.; Kim, D.H. Fabrication of a novel Z-scheme Bi2MoO6/GQDs/MoS2 hierarchical nanocomposite for the photo-oxidation of ofloxacin and photoreduction of Cr(VI) as aqueous pollutants. Chem. Eng. J. 2022, 444, 136609. [Google Scholar] [CrossRef]
- Sahu, R.S.; Dubey, A.; Shih, Y.h. Novel metal-free in-plane functionalized graphitic carbon nitride with graphene quantum dots for effective photodegradation of 4-bromophenol. Carbon 2022, 182, 89–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, N.; Xin, X.; Wang, Y.; Zhu, J.; Guo, P.; Li, X. Boosting the photocatalytic performance via defect-dependent interfacial interactions from electrostatic adsorption to chemical bridging. Nano Energy 2022, 104, 107865. [Google Scholar] [CrossRef]
- Zou, Y.; Weng, J.; Qin, Z.; Zhang, Y.; Ji, S.; Zhang, H. Metal-organic framework and graphene quantum dot-incorporated nanofibers as dual stimuli-responsive platforms for day/night antibacterial bio-protection. Chem. Eng. J. 2023, 473, 145365. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, T.; Liu, J.; Hu, L.; Nie, Q.; Tan, Z.; Yu, H. Enhanced solar photocatalytic degradation of nitric oxide using graphene quantum dots/bismuth tungstate composite catalysts. Chem. Eng. J 2021, 420, 129595. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, C.; Huang, F.; Zheng, C.; Wang, W. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B Environ. Energy 2006, 68, 125–129. [Google Scholar] [CrossRef]
- Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411–10417. [Google Scholar] [CrossRef]
- Ren, Y.; Zou, J.; Jing, K.; Liu, Y.; Guo, B.; Song, Y.; Yu, Y.; Wu, L. Photocatalytic synthesis of N-benzyleneamine from benzylamine on ultrathin BiOCl nanosheets under visible light. J. Catal. 2019, 380, 123–131. [Google Scholar] [CrossRef]
- Quan, B.; Liu, W.; Liu, Y.; Zheng, Y.; Yang, G.; Ji, G. Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: Synthesis and enhanced photocatalytic properties. J. Colloid Interface Sci. 2016, 481, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Bao, S.; Wang, W.; Hao, J.; Mao, Y.; Liu, P.; Ouyang, D. Understanding the effects of co-exposed facets on photocatalytic activities and fuel desulfurization performance in BiOCl singlet-crystalline sheets. J. Hazard. Mater. 2020, 391, 122198. [Google Scholar]
- Wang, C.; Li, S.; Cai, M.; Yan, R.; Dong, K.; Zhang, J.; Liu, Y. Rationally designed tetra (4-carboxyphenyl) porphyrin/graphene quantum dots/bismuth molybdate Z-scheme heterojunction for tetracycline degradation and Cr (VI) reduction: Performance, mechanism, intermediate toxicity appraisement. J. Colloid Interface Sci. 2022, 619, 307–321. [Google Scholar] [CrossRef]
- Xiong, S.; Bao, S.; Wang, W.; Hao, J.; Mao, Y.; Liu, P.; Huang, Y.; Duan, Z.; Lv, Y.; Ouyang, D. Surface oxygen vacancy and graphene quantum dots co-modified Bi2WO6 toward highly efficient photocatalytic reduction of CO2. Appl. Catal. B Environ. 2022, 305, 121026. [Google Scholar] [CrossRef]
- Xu, K.; Xu, D.; Li, Z.; Zhang, S.; Tong, L.; Peng, J.; Zhang, S.; Shen, J.; Chen, X. Enhanced visible-light photocatalytic degradation of ciprofloxacin hydrochloride by bulk iodine doped BiOCl with rich oxygen vacancy. Appl. Surf. Sci. 2022, 578, 152083. [Google Scholar] [CrossRef]
- Zhao, X.; Deng, B.; Li, F.; Huang, M.; Sun, Y.; Li, J.; Dong, F. Efficient photocatalytic toluene degradation over heterojunction of GQDs@BiOCl ultrathin nanosheets with selective benzoic acid activation. J. Hazard. Mater. 2021, 420, 126577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Qiu, Y.; Yang, S.; Jiao, Y.; Ji, C.; Li, Y.; Chen, B.; Fan, H. Oxygen-deficient bismuth oxychloride nanosheets: Superior photocatalytic performance. Mater. Res. Bull. 2017, 96, 478–484. [Google Scholar] [CrossRef]
- Li, X.; Dong, Q.; Li, F.; Zhu, Q.; Tian, Q.; Tian, L.; Zhu, Y.; Pan, B.; Padervand, M.; Wang, C. Defective Bi@BiOBr/C microrods derived from Bi-MOF for efficient photocatalytic NO abatement: Directional regulation of interfacial charge transfer via carbon–loading. Appl. Catal. B Environ. 2024, 340, 123238. [Google Scholar] [CrossRef]
- Wu, X.; Oropeza, F.E.; den Boer, D.; Kleinschmidt, P.; Hannappel, T.; Hetterscheid, D.G.H.; Hensen, E.J.M.; Hofmann, J.P. Thermally induced oxygen vacancies in BiOCl nanosheets and their impact on photoelectrochemical performance. ChemPhotoChem. 2023, 7, e202200192. [Google Scholar] [CrossRef]
- Zheng, Y.; Fu, K.; Yu, Z.; Su, Y.; Han, R.; Liu, Q. Oxygen vacancies in a catalyst for VOCs oxidation: Synthesis, characterization, and catalytic effects. J. Mater. Chem. A 2022, 10, 14171–14186. [Google Scholar] [CrossRef]
- Yang, J.; Miao, H.; Jing, J.; Zhu, Y.; Choi, W. Photocatalytic activity enhancement of PDI supermolecular via π-π action and energy level adjusting with graphene quantum dots. Appl. Catal. B Environ. 2021, 281, 119547. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, M.; Jiang, L.; Cao, J.-j.; Li, H.; Lee, S.C.; Huang, Y. Oxygen vacancy engineering of photocatalytic nanomaterials for enrichment, activation, and efficient removal of nitrogen oxides with high selectivity: A review. Environ. Chem. Lett. 2022, 20, 3905–3925. [Google Scholar] [CrossRef]
- Iqbal, W.; Yang, B.; Zhao, X.; Rauf, M.; Mohamed, I.M.; Zhang, J.; Mao, Y. Facile one-pot synthesis of mesoporous g-C3N4 nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H2 evolution performance. Catal. Sci. Technol. 2020, 10, 549. [Google Scholar] [CrossRef]
- Osorio, S.C.; Biesheuvel, P.M.; Spruijt, E.; Dykstra, J.E.; van der Wal, A. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: Considerations and challenges. Water Res. 2022, 225, 119130. [Google Scholar] [CrossRef]
- Li, F.; Liu, G.; Liu, F.; Wu, J.; Yang, S. Synergetic effect of CQD and oxygen vacancy to TiO2 photocatalyst for boosting visible photocatalytic NO removal. J. Hazard. Mater. 2023, 452, 131237. [Google Scholar] [CrossRef]
- Chen, F.; Ma, Z.; Ye, L.; Ma, T.; Zhang, T.; Zhang, Y.; Huang, H. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Wang, J.; Deng, Y.; Zhang, H.; Xu, T.; Wang, W. β particles induced directional inward migration of oxygen vacancies: Surface oxygen vacancies and interface oxygen vacancies synergistically activate PMS. Appl. Catal. B Environ. 2022, 318, 121879. [Google Scholar] [CrossRef]
- Yang, M.; He, L.; Shi, Z.; Mei, J.; Liu, C.; Yang, B.; Sun, S. An Unprecedented Strategy to Fabricate Inside/Surface Homojunction in Bismuth Oxychloride for Efficient Photocatalysis. J. Phys. Chem. C. 2023, 127, 4570–4581. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, S.; Xu, T.; Zhu, Y.; Chen, J. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ. Sci. Technol. 2008, 42, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Samadi, M.; Yousefzadeh, S.; Soltani, M.; Rahimi, A.; Chou, T.-c.; Chen, L.-C.; Chen, K.-H.; Moshfegh, A.Z. Improved solar-driven photocatalytic activity of hybrid graphene quantum dots/ZnO nanowires: A direct Z-scheme mechanism. ACS Sustain. Chem. Eng. 2017, 5, 367–375. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Wang, Q.; Hao, W.; Zhai, X.; Fei, X.; Bi, Y. Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction. Appl. Catal. B Environ. 2021, 299, 120679. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Chen, W.; Hu, Y.; Zhang, F.; Wang, L.; Zhou, D.; Chen, X.; Meng, S. Boosting Visible-Light Photocatalytic Activity of BiOCl Nanosheets via Synergetic Effect of Oxygen Vacancy Engineering and Graphene Quantum Dots-Sensitization. Molecules 2024, 29, 1362. https://doi.org/10.3390/molecules29061362
Shi Z, Chen W, Hu Y, Zhang F, Wang L, Zhou D, Chen X, Meng S. Boosting Visible-Light Photocatalytic Activity of BiOCl Nanosheets via Synergetic Effect of Oxygen Vacancy Engineering and Graphene Quantum Dots-Sensitization. Molecules. 2024; 29(6):1362. https://doi.org/10.3390/molecules29061362
Chicago/Turabian StyleShi, Zisheng, Wei Chen, Yin Hu, Fen Zhang, Lingling Wang, Dan Zhou, Xuanye Chen, and Sugang Meng. 2024. "Boosting Visible-Light Photocatalytic Activity of BiOCl Nanosheets via Synergetic Effect of Oxygen Vacancy Engineering and Graphene Quantum Dots-Sensitization" Molecules 29, no. 6: 1362. https://doi.org/10.3390/molecules29061362
APA StyleShi, Z., Chen, W., Hu, Y., Zhang, F., Wang, L., Zhou, D., Chen, X., & Meng, S. (2024). Boosting Visible-Light Photocatalytic Activity of BiOCl Nanosheets via Synergetic Effect of Oxygen Vacancy Engineering and Graphene Quantum Dots-Sensitization. Molecules, 29(6), 1362. https://doi.org/10.3390/molecules29061362