Quantifying the Hydrophobic Effect per CF2 Moiety from Adsorption of Fluorinated Alcohols at the Water/Oil Interface
Abstract
:1. Introduction
2. Theory
2.1. SD Model
2.2. Hard-Disk Area
2.3. Attraction Parameter
2.4. Adsorption Constant
3. Results and Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Krafft, M.P.; Riess, J.G. Chemistry, physical chemistry, and uses of molecular fluorocarbon—Hydrocarbon diblocks, triblocks, and related compounds—Unique “apolar” components for self-assembled colloid and interface engineering. Chem. Rev. 2009, 109, 1714–1792. [Google Scholar] [CrossRef]
- Kissa, E. Fluorinated Surfactants and Repellents, 2nd ed.; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- Simcik, M.F. Aquatic processes and systems in perspective. Global transport and fate of perfluorochemicals. J. Environ. Monit. 2005, 7, 759–763. [Google Scholar]
- Armitage, J.; Cousins, I.T.; Buck, R.C.; Prevedouros, K.; Russell, M.H.; MacLeod, M.; Korzeniowski, S.H. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ. Sci. Technol. 2006, 40, 6969–6975. [Google Scholar] [CrossRef]
- Johnson, G.R.; Brusseau, M.L.; Carroll, K.C.; Tick, G.R.; Duncan, C.M. Global distributions, source-type dependencies, and concentration ranges of per-and polyfluoroalkyl substances in groundwater. Sci. Total Environ. 2022, 841, 156602. [Google Scholar] [CrossRef]
- Brunn, H.; Arnold, G.; Körner, W.; Rippen, G.; Steinhäuser, K.G.; Valentin, I. PFAS: Forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environ. Sci. Eur. 2023, 35, 1–50. [Google Scholar]
- Ehrlich, V.; Bil, W.; Vandebriel, R.; Granum, B.; Luijten, M.; Lindeman, B.; Grandjean, P.; Kaiser, A.; Hauzenberger, I.; Hartmann, C.; et al. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ. Health Glob. Access Sci. Source 2023, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Perfluoroalkyls. 2021. Available online: https://doi.org/10.15620/cdc:59198 (accessed on 13 May 2023).
- Brendel, S.; Fetter, É.; Staude, C.; Vierke, L.; Biegel-Engler, A. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH. Environ. Sci. Eur. 2018, 30, 9. [Google Scholar] [CrossRef]
- Wanninayake, D.M. Comparison of currently available PFAS remediation technologies in water: A review. J. Environ. Manag. 2021, 283, 111977. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Wang, J.; Kumar, P.; Mishra, V.; Arafat, H.; Sharma, R.S.; Dumée, L.F. Remediation of water from per-/poly-fluoroalkyl substances (PFAS)–Challenges and perspectives. J. Environ. Chem. Eng. 2021, 9, 105784. [Google Scholar] [CrossRef]
- Zhang, M.; Peyear, T.; Patmanidis, I.; Greathouse, D.V.; Marrink, S.J.; Andersen, O.S.; Ingólfsson, H.I. Fluorinated alcohols’ effects on lipid bilayer properties. Biophys. J. 2018, 115, 679–689. [Google Scholar] [CrossRef]
- Davies, J.; Rideal, E. Interfacial Phenomena; Academic Press: London, UK, 1961. [Google Scholar]
- Tanford, C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed.; J. Wiley.: New York, NY, USA, 1980. [Google Scholar]
- Huckel, W. Theoretical Principles of Organic Chemistry; Elsevier Publishing: Amsterdam, The Netherlands, 1958. [Google Scholar]
- Kitaigorodskii, A.I. Organic Chemical Crystallography; Consultants Bureau: New York, NY, USA, 1961. [Google Scholar]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Burlington, MA, USA, 2011. [Google Scholar]
- Möbius, D.; Miller, R.; Fainerman, V.B. Surfactants: Chemistry, Interfacial Properties, Applications; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Adam, N.K. The Physics and Chemistry of Surfaces, 3rd ed.; Milford, H., Ed.; Oxford University Press: London, UK, 1941. [Google Scholar]
- Slavchov, R.; Dimitrova, I.; Ivanov, I. Cohesive and non-cohesive adsorption of surfactants at liquid interfaces. In Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 199–225. [Google Scholar]
- Slavchov, R.I.; Ivanov, I.B. Adsorption parameters and phase behaviour of non-ionic surfactants at liquid interfaces. Soft Matter 2017, 13, 8829–8848. [Google Scholar] [CrossRef]
- Arp, H.P.H.; Niederer, C.; Goss, K.U. Predicting the partitioning behavior of various highly fluorinated compounds. Environ. Sci. Technol. 2006, 40, 7298–7304. [Google Scholar] [CrossRef]
- Mukerjee, P.; Handa, T. Adsorption of fluorocarbon and hydrocarbon surfactants to air-water, hexane-water and perfluorohexane-water interfaces. Relative affinities and fluorocarbon-hydrocarbon nonideality effects. J. Phys. Chem. 1981, 85, 2298–2303. [Google Scholar] [CrossRef]
- Peychev, B.; Slavchov, R.I. Adsorption model and phase transitions of diblock perfluoroalkylated surfactants at the water/alkane interface. J. Colloid Interface Sci. 2021, 594, 372–388. [Google Scholar] [CrossRef]
- Wang, Z.; Ud-Daula, A.; Fiedler, S.; Schramm, K.W. Impact of fluorotelomer alcohols (FTOH) on the molecular and macroscopic phenotype of Tetrahymena thermophila. Environ. Sci. Pollut. Res. 2010, 17, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Schwickert, H.; Strobl, G.; Kimmig, M. Molecular dynamics in perfluoro-n-eicosane. I. Solid phase behavior and crystal structures. J. Chem. Phys. 1991, 95, 2800–2806. [Google Scholar] [CrossRef]
- Albrecht, T.; Elben, H.; Jaeger, R.; Kimmig, M.; Steiner, R.; Strobl, G.; Stühn, B.; Schwickert, H.; Ritter, C. Molecular dynamics in perfluoro-n-eicosane. II. Components of disorder. J. Chem. Phys. 1991, 95, 2807–2816. [Google Scholar] [CrossRef]
- Gang, O.; Ellmann, J.; Möller, M.; Kraack, H.; Sirota, E.; Ocko, B.; Deutsch, M. Surface phases of semi-fluorinated alkane melts. Europhys. Lett. 2000, 49, 761. [Google Scholar] [CrossRef]
- Wang, J.; Ober, C.K. Solid state crystalline and liquid crystalline structure of semifluorinated 1-bromoalkane compounds. Liq. Cryst. 1999, 26, 637–648. [Google Scholar] [CrossRef]
- Traube, J. Ueber die Capillaritätsconstanten organischer Stoffe in wässerigen Lösungen. J. Liebigs Ann. Chem. 1891, 265, 27–55. [Google Scholar] [CrossRef]
- Takiue, T.; Sugino, K.; Higashi, T.; Toyomasu, T.; Hayami, Y.; Ikeda, N.; Aratono, M. Temperature effect on the adsorption of fluorooctanols at the hexane/water interface. Langmuir 2001, 17, 8098–8103. [Google Scholar] [CrossRef]
- Ohta, A.; Murakami, R.; Urata, A.; Asakawa, T.; Miyagishi, S.; Aratono, M. Aggregation behavior of fluorooctanols in hydrocarbon solvents. J. Phys. Chem. B 2003, 107, 11502–11509. [Google Scholar] [CrossRef] [PubMed]
- Murakami, D.; Fukuta, T.; Matsubara, H.; Aratono, M.; Takiue, T. Effect of the partial hydrogenation of hydrophobic chains on the mixing of fluoroalkanols in an adsorbed film at the hexane/water interface. J. Phys. Chem. C 2008, 112, 4564–4568. [Google Scholar] [CrossRef]
- Murakami, D.; Fukuda, T.; Matsubara, H.; Aratono, M.; Takiue, T. Molecular orientation and miscibility of fluorinated α, ω-alkanediol and alcohol at the hexane/water interface. Colloids Surf. A Physicochem. Eng. Asp. 2010, 354, 205–209. [Google Scholar] [CrossRef]
- Takiue, T.; Tottori, T.; Tatsuta, K.; Matsubara, H.; Tanida, H.; Nitta, K.; Uruga, T.; Aratono, M. Multilayer Formation of the Fluoroalkanol- ω-Hydrogenated Fluorocarbon Mixture at the Hexane/Water Interface Studied by Interfacial Tensiometry and X-ray Reflection. J. Phys. Chem. B 2012, 116, 13739–13748. [Google Scholar] [CrossRef]
- Fukuhara, R.; Tanida, H.; Nitta, K.; Ina, T.; Uruga, T.; Matsubara, H.; Aratono, M.; Takiue, T. Effect of molecular orientation on monolayer and multilayer formations of fluorocarbon alcohol and fluorocarbon-α, ω-diol mixture at the hexane/water interface. J. Phys. Chem. B 2014, 118, 12451–12461. [Google Scholar] [CrossRef]
- Mitani, K.; Imai, Y.; Ina, T.; Nitta, K.; Tanida, H.; Uruga, T.; Matsubara, H.; Aratono, M.; Takiue, T. Effect of hydrophobic chain structure on phase transition and domain formation of hybrid alcohol films adsorbed at the hexane/water interface. J. Phys. Chem. B 2015, 119, 12436–12445. [Google Scholar] [CrossRef]
- Burrows, S.A.; Shon, J.W.; Peychev, B.; Slavchov, R.I.; Smoukov, S.K. Phase transitions of fluorotelomer alcohols at the water|alkane interface studied via molecular dynamics simulation. Soft Matter 2024, 20, 2243–2257. [Google Scholar] [CrossRef]
- Gurkov, T.; Ivanov, I.B. Layers of non-ionic surfactants on fluid interfaces adsorption and interactions in the frames of a statistical model. In Proceedings of the 4th World Congress on Emulsions, Lyon, France, 3–6 October 2006; p. 509. [Google Scholar]
- Ivanov, I.B.; Danov, K.D.; Dimitrova, D.; Boyanov, M.; Ananthapadmanabhan, K.P.; Lips, A. Equations of state and adsorption isotherms of low molecular non-ionic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2010, 354, 118–133. [Google Scholar] [CrossRef]
- Helfand, E.; Frisch, H.; Lebowitz, J. Theory of the Two-and One-Dimensional Rigid Sphere Fluids. J. Chem. Phys. 1961, 34, 1037–1042. [Google Scholar] [CrossRef]
- Slavchov, R.I.; Ivanov, I.B. Effective osmotic cohesion due to the solvent molecules in a delocalized adsorbed monolayer. J. Colloid Interface Sci. 2018, 532, 746–757. [Google Scholar] [CrossRef]
- Rusanov, A. The essence of the new approach to the equation of the monolayer state. Colloid J. 2007, 69, 131–143. [Google Scholar] [CrossRef]
- Tournilhac, F.; Bassoul, P.; Cortes, R. Structure of the smectic B phase formed by linear and branched perfluoroalkyl-alkanes. Mol. Cryst. Liq. Cryst. 2001, 362, 45–65. [Google Scholar] [CrossRef]
- Slavchov, R.I.; Karakashev, S.I.; Ivanov, I.B. Ionic surfactants and ion-specific effects: Adsorption, micellization, thin liquid films. In Surfactant Science and Technology: Retrospects and Prospects; CRC Press: Boca Raton, FL, USA, 2014; p. 593. [Google Scholar]
- Aveyard, R.; Haydon, D. Thermodynamic properties of aliphatic hydrocarbon/water interfaces. Trans. Faraday Soc. 1965, 61, 2255–2261. [Google Scholar] [CrossRef]
- Rehfeld, S.J. Adsorption of sodium dodecyl sulfate at various hydrocarbon-water interfaces. J. Phys. Chem. 1967, 71, 738–745. [Google Scholar] [CrossRef]
- Zeppieri, S.; Rodríguez, J.; López de Ramos, A. Interfacial tension of alkane + water systems. J. Chem. Eng. Data 2001, 46, 1086–1088. [Google Scholar] [CrossRef]
- Goebel, A.; Lunkenheimer, K. Interfacial tension of the water/n-alkane interface. Langmuir 1997, 13, 369–372. [Google Scholar] [CrossRef]
- Demond, A.H.; Lindner, A.S. Estimation of interfacial tension between organic liquids and water. Environ. Sci. Technol. 1993, 27, 2318–2331. [Google Scholar] [CrossRef]
- Ben-Naim, A.Y. Solvation Thermodynamics; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Lum, K.; Chandler, D.; Weeks, J.D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 1999, 103, 4570–4577. [Google Scholar] [CrossRef]
- Rochester, C.; Symonds, J. Densities of solutions of four fluoroalcohols in water. J. Fluor. Chem. 1974, 4, 141–148. [Google Scholar] [CrossRef]
- Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev. 1971, 71, 525–616. [Google Scholar] [CrossRef]
n | Formula | Name |
---|---|---|
1 | CF3CH2OH | 2,2,2-trifluoro-1-ethanol |
2 | CF3CF2CH2OH | 2,2,3,3,3-pentafluoro-1-propanol |
3 | CF3CF2CF2CH2OH | 2,2,3,3,4,4,4-heptafluoro-1-butanol |
T [K] | [-] |
---|---|
288.15 | |
293.15 | |
303.15 | |
[kJ/mol] | [J/mol K] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peychev, B.; Arabadzhieva, D.; Minkov, I.L.; Mileva, E.; Slavchov, R.I. Quantifying the Hydrophobic Effect per CF2 Moiety from Adsorption of Fluorinated Alcohols at the Water/Oil Interface. Molecules 2024, 29, 1421. https://doi.org/10.3390/molecules29071421
Peychev B, Arabadzhieva D, Minkov IL, Mileva E, Slavchov RI. Quantifying the Hydrophobic Effect per CF2 Moiety from Adsorption of Fluorinated Alcohols at the Water/Oil Interface. Molecules. 2024; 29(7):1421. https://doi.org/10.3390/molecules29071421
Chicago/Turabian StylePeychev, Boyan, Dimitrinka Arabadzhieva, Ivan L. Minkov, Elena Mileva, and Radomir I. Slavchov. 2024. "Quantifying the Hydrophobic Effect per CF2 Moiety from Adsorption of Fluorinated Alcohols at the Water/Oil Interface" Molecules 29, no. 7: 1421. https://doi.org/10.3390/molecules29071421
APA StylePeychev, B., Arabadzhieva, D., Minkov, I. L., Mileva, E., & Slavchov, R. I. (2024). Quantifying the Hydrophobic Effect per CF2 Moiety from Adsorption of Fluorinated Alcohols at the Water/Oil Interface. Molecules, 29(7), 1421. https://doi.org/10.3390/molecules29071421