Adsorption of Scandium Ions by Amberlite XAD7HP Polymeric Adsorbent Loaded with Tri-n-Octylphosphine Oxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Adsorbent
2.2. Sc(III) Adsorption Kinetics
Influence of Contact Time and Temperature
2.3. Thermodynamic Studies
2.3.1. pH Influence
2.3.2. Influence of Sorbent Amount
2.3.3. Influence of Sc(III) Ions Initial Concentration and Adsorption Isotherms
2.3.4. Thermodynamic Feasibility of Sc(III) Adsorption, Activation Energy
2.3.5. Regeneration and Reusability Studies, Adsorption-Desorption Cycle
3. Materials and Method
3.1. Preparation of XAD7HP-TOPO Material
3.2. Characterization Techniques
- Preparation of an initial solution of 0.01 M KCl (Merck—Sigma Aldrich, Saint Louis, MI, USA).
- Adjustment of the solution pH by using 0.5 M HCl (Carl Roth, Karlsruhe, Germany) or 0.5 M NaOH (Merck, Sigma Aldrich), in the range 2 to 14. Solution pH was measured using a Mettler Toledo Seven Compact—S210 pH meter, with the initial pH being denoted as pHi.
- Solid adsorbent material is mixed with a strong electrolyte solution (KCl) with known pH and concentration in a well-determined and constant solid:liquid ratio. In the present study, 0.1 g of XAD7-TOPO were weighed and placed in contact with 25 mL of electrolyte solution.
- Obtained suspension was shaken for 60 min by using a Julabo thermostatic bath, and after that, the solution pH was measured, with this pH being denoted as pHf.
- In the last step, we plotted the dependence between pHi and pHf. From this dependence, the material zero charge point can be determined as the intersection of this graph with the abscissa.
3.3. Sc(III) Adsorption Experiments
3.4. Determination of Sc(III) Adsorption Characteristics
3.5. Kinetic Models
3.6. Intraparticle Diffusion
- The transport of ions whose adsorption is studied from the volume of the liquid to the level of the adsorbent material/solution interface.
- Adsorbate transport from the interface level inside adsorbent material pores (intraparticle diffusion).
3.7. Adsorption Equilibrium
3.8. Adsorption Thermodynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salman, A.D.; Juzsakova, T.; Jalhoom, M.G.; Ibrahim, R.I.; Domokos, E.; Al-Mayyahi, M.A.; Abdullah, T.A.; Szabolcs, B.; Al-Nuzal, S.M.D. Studying the extraction of scandium(III) by macrocyclic compounds from aqueous solution using optimization technique. Int. J. Environ. Sci. Technol. 2022, 19, 11069–11086. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Metallurgical processes for scandium recovery from various resources: A review. Hydrometallurgy 2011, 108, 100–108. [Google Scholar] [CrossRef]
- Gongyi, G.; Yuli, C.; Yu, L. Solvent Extraction off Scandium from Wolframite Residue. JOM 1988, 40, 28–31. [Google Scholar] [CrossRef]
- Hu, J.; Zou, D.; Chen, J.; Li, D. A novel synergistic extraction system for the recovery of scandium (III) by Cyanex272 and Cyanex923 in sulfuric acid medium. Sep. Purif. Technol. 2020, 233, 115977. [Google Scholar] [CrossRef]
- Ramasamy, D.L.; Puhakka, V.; Repo, E.; Ben Hammouda, S.; Sillanpää, M. Two-stage selective recovery process of scandium from the group of rare earth elements in aqueous systems using activated carbon and silica composites: Dual applications by tailoring the ligand grafting approach. Chem. Eng. J. 2018, 341, 351–360. [Google Scholar] [CrossRef]
- Yagmurlu, B.; Dittrich, C.; Friedrich, B. Precipitation Trends of Scandium in Synthetic Red Mud Solutions with Different Precipitation Agents. J. Sustain. Metall. 2017, 3, 90–98. [Google Scholar] [CrossRef]
- Qi, D. Chapter 8—Treatment of Wastewater, Off-Gas, and Waste Solid. In Hydrometallurgy of Rare Earths; Qi, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 743–777. [Google Scholar] [CrossRef]
- Salman, A.D.; Juzsakova, T.; Ákos, R.; Ibrahim, R.I.; Al-Mayyahi, M.A.; Mohsen, S.; Abdullah, T.A.; Domokos, E. Synthesis and surface modification of magnetic Fe3O4@SiO2 core-shell nanoparticles and its application in uptake of scandium (III) ions from aqueous media. Environ. Sci. Pollut. Res. 2021, 28, 28428–28443. [Google Scholar] [CrossRef] [PubMed]
- Rychkov, V.N.; Kirillov, E.V.; Kirillov, S.V.; Semenishchev, V.S.; Bunkov, G.M.; Botalov, M.S.; Smyshlyaev, D.V.; Malyshev, A.S. Recovery of rare earth elements from phosphogypsum. J. Clean. Prod. 2018, 196, 674–681. [Google Scholar] [CrossRef]
- Makanyire, T.; Sanchez-Segado, S.; Jha, A. Separation and recovery of critical metal ions using ionic liquids. Adv. Manuf. 2016, 4, 33–46. [Google Scholar] [CrossRef]
- Bradshaw, J.S.; Izatt, R.M.; Savage, P.B.; Bruening, R.L.; Krakowiak, K.E. The Design of Ion Selective Macrocycles and the Solid-Phase Extraction of Ions Using Molecular Recognition Technology: A Synopsis. Supramol. Chem. 2000, 12, 23–26. [Google Scholar] [CrossRef]
- Rivas, B.L.; Pereira, E.; Maureira, A. Functional water-soluble polymers: Polymer–metal ion removal and biocide properties. Polym. Int. 2009, 58, 1093–1114. [Google Scholar] [CrossRef]
- Graillot, A.; Cojocariu, C.; Bouyer, D.; Monge, S.; Mauchauffe, S.; Robin, J.-J.; Faur, C. Thermosensitive polymer Enhanced Filtration (TEF) process: An innovative process for heavy metals removal and recovery from industrial wastewaters. Sep. Purif. Technol. 2015, 141, 17–24. [Google Scholar] [CrossRef]
- Gomes Rodrigues, D.; Monge, S.; Pellet-Rostaing, S.; Dacheux, N.; Bouyer, D.; Faur, C. Sorption properties of carbamoylmethylphosphonated-based polymer combining both sorption and thermosensitive properties: New valuable hydrosoluble materials for rare earth elements sorption. Chem. Eng. J. 2019, 355, 871–880. [Google Scholar] [CrossRef]
- Graillot, A.; Bouyer, D.; Monge, S.; Robin, J.-J.; Faur, C. Removal of nickel ions from aqueous solution by low energy-consuming sorption process involving thermosensitive copolymers with phosphonic acid groups. J. Hazard. Mater. 2013, 244–245, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Ruepert, A.; Keizer, K.; Steg, L.; Maricchiolo, F.; Carrus, G.; Dumitru, A.; García Mira, R.; Stancu, A.; Moza, D. Environmental considerations in the organizational context: A pathway to pro-environmental behaviour at work. Energy Res. Soc. Sci. 2016, 17, 59–70. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Wei, Z.; Zhou, Y.; Zhang, M.; Hou, H.; Tian, G.; He, H. Extraction behavior and third phase formation of neodymium(III) from nitric acid medium in N,N′-dimethyl-N,N′-dioctyl-3-oxadiglcolamide. J. Radioanal. Nucl. Chem. 2018, 318, 2087–2096. [Google Scholar] [CrossRef]
- Davidescu, C.-M.; Dumitru, R.; Adina, N.; Lupa, L.; Mihaela, C.; Negrea, P. Arsenic removal through adsorption on cobalt nanoferrite. Rev. Chim. 2015, 66, 1742–1746. [Google Scholar]
- Wen, Z.; Zhang, Y.; Guo, S.; Chen, R. Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal. J. Colloid Interface Sci. 2017, 486, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Choi, W.S.; Nam, B.; Yoon, C.; Lee, H.-J. Needle-like iron oxide@CaCO3 adsorbents for ultrafast removal of anionic and cationic heavy metal ions. Chem. Eng. J. 2017, 307, 208–219. [Google Scholar] [CrossRef]
- Nagarajah, R.; Wong, K.T.; Lee, G.; Chu, K.H.; Yoon, Y.; Kim, N.C.; Jang, M. Synthesis of a unique nanostructured magnesium oxide coated magnetite cluster composite and its application for the removal of selected heavy metals. Sep. Purif. Technol. 2017, 174, 290–300. [Google Scholar] [CrossRef]
- Fang, X.-H.; Fang, F.; Lu, C.-H.; Zheng, L. Removal of Cs+, Sr2+, and Co2+ Ions from the Mixture of Organics and Suspended Solids Aqueous Solutions by Zeolites. Nucl. Eng. Technol. 2017, 49, 556–561. [Google Scholar] [CrossRef]
- Moamen, O.A.A.; Ibrahim, H.A.; Abdelmonem, N.; Ismail, I.M. Thermodynamic analysis for the sorptive removal of cesium and strontium ions onto synthesized magnetic nano zeolite. Microporous Mesoporous Mater. 2016, 223, 187–195. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Xu, Z.; Han, T.; Chuan, S.; Zhu, T. Ammonia removal from leachate solution using natural Chinese clinoptilolite. J. Hazard. Mater. 2006, 136, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Dodoo Arhin, D.; Konadu, D.; Annan, E.; Buabeng, F.P.; Yaya, A.; Agyei-Tuffour, B. Fabrication and characterisation of Ghanaian bauxite red mud-clay composite bricks for construction applications. Am. J. Mater. Sci. 2013, 3, 110–119. [Google Scholar]
- Lopez-Galindo, A.; Torres-Ruiz, J.; Gonzalez Lopez, J.M. Mineral quantification in sepiolite-palygorskite deposits using X-ray diffraction and chemical data. Clay Miner. 1996, 31, 217–224. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. Carbon-based adsorber resin Lewatit AF 5 applicability in metal ion recovery. Microporous Mesoporous Mater. 2016, 224, 400–414. [Google Scholar] [CrossRef]
- Singha Deb, A.K.; Dwivedi, V.; Dasgupta, K.; Musharaf Ali, S.; Shenoy, K.T. Novel amidoamine functionalized multi-walled carbon nanotubes for removal of mercury(II) ions from wastewater: Combined experimental and density functional theoretical approach. Chem. Eng. J. 2017, 313, 899–911. [Google Scholar] [CrossRef]
- Saman, N.; Johari, K.; Song, S.-T.; Kong, H.; Cheu, S.-C.; Mat, H. High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass. Chemosphere 2017, 171, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.; Chhoden, K.; Negi, P.; Ravindra, K. Utilization of nano-alumina and activated charcoal for phosphate removal from wastewater. Environ. Nanotechnol. Monit. Manag. 2017, 7, 15–23. [Google Scholar] [CrossRef]
- Kadirova, Z.C.; Hojamberdiev, M.; Bo, L.; Hojiyev, R.; Okada, K. Simultaneous removal of NH4+, H2PO4− and Ni2+ from aqueous solution by thermally activated combinations of steel converter slag and spent alumina catalyst. J. Water Process Eng. 2015, 8, 151–159. [Google Scholar] [CrossRef]
- Deravanesiyan, M.; Beheshti, M.; Malekpour, A. Alumina nanoparticles immobilization onto the NaX zeolite and the removal of Cr (III) and Co (II) ions from aqueous solutions. J. Ind. Eng. Chem. 2015, 21, 580–586. [Google Scholar] [CrossRef]
- Pentea, M.; Kasapsaraçoğlu, I.; Samfira, I.; Adina, N.; Mihaela, C.; Motoc, M.; Gabor, A.; Negrea, P.; Buzatu, R. Studies concerning disposal radionuclides by adsorption rabbit bone meal. Rev. De Chim. 2016, 67, 967–970. [Google Scholar]
- Galbacs, G.; Szokolai, H.; Kormanyos, A.; Metzinger, A.; Szekeres, L.; Marcu, C.; Peter, F.; Muntean, C.; Adina, N.; Mihaela, C.; et al. Cd(II) Capture Ability of an Immobilized, Fluorescent Hexapeptide. Bull. Chem. Soc. Jpn. 2016, 89, 243. [Google Scholar] [CrossRef]
- Davidescu, C.-M.; Ciopec, M.; Negrea, A.; Popa, A.; Lupa, L.; Dragan, E.-S.; Ardelean, R.; Ilia, G.; Iliescu, S. Synthesis, characterization, and Ni(II) ion sorption properties of poly(styrene-co-divinylbenzene) functionalized with aminophosphonic acid groups. Polym. Bull. 2013, 70, 277–291. [Google Scholar] [CrossRef]
- Ciopec, M.; Davidescu, C.M.; Negrea, A.; Grozav, I.; Lupa, L.; Negrea, P.; Popa, A. Adsorption studies of Cr(III) ions from aqueous solutions by DEHPA impregnated onto Amberlite XAD7—Factorial design analysis. Chem. Eng. Res. Des. 2012, 90, 1660–1670. [Google Scholar] [CrossRef]
- Mihaela, C.; Davidescu, C.-M.; Adina, N.; Lupa, L.; Negrea, P.; Popa, A.; Muntean, C. Use of D2EHPA-impregnated XAD7 resin for the removal of Cd(II) and Zn(II) from aqueous solutions. Environ. Eng. Manag. J. 2011, 10, 1597–1608. [Google Scholar] [CrossRef]
- Davidescu, C.-M.; Mihaela, C.; Adina, N.; Popa, A.; Lupa, L.; Negrea, P.; Muntean, C.; Motoc, M. Use of di-(2-ethylhexyl) Phosphoric Acid (DEHPA) Impregnated XAD7 Copolymer Resin for the Removal of Chromium (III) from Water. Rev. Chim. 2011, 62, 712–717. [Google Scholar]
- Mihaela, C.; Davidescu, C.-M.; Adina, N.; Grozav, I.; Lupa, L.; Muntean, C.; Negrea, P.; Popa, A. Statististical optimization of chromium ions adsorption on DEHPA-impregnated amberlite XAD7. Environ. Eng. Manag. J. 2012, 11, 525–531. [Google Scholar] [CrossRef]
- Ciopec, M.; Davidescu, C.M.; Negrea, A.; Muntean, C.; Popa, A.; Negrea, P.; Lupa, L. Equilibrium and Kinetic Studies of the Adsorption of Cr(III) Ions onto Amberlite XAD-8 Impregnated with Di-(2-ethylhexyl) Phosphoric Acid (DEHPA). Adsorpt. Sci. Technol. 2011, 29, 989–1005. [Google Scholar] [CrossRef]
- Mihaela, C.; Lupa, L.; Adina, N.; Davidescu, C.-M.; Popa, A.; Negrea, P.; Motoc, M.; David, D.; Kaycsa, D. Kinetic and Thermodynamic Studies Regarding Cu(II) Ions Removal from Aqueous Solution by Poly(Styrene-Divinylbenzene)-Supported Aminophosphonic Acids. Rev. Chim. 2012, 63, 49–53. [Google Scholar]
- Gabor, A.E.; Davidescu, C.M.; Negrea, A.; Ciopec, M.; Butnariu, M.; Ianasi, C.; Muntean, C.; Negrea, P. Lanthanum Separation from Aqueous Solutions Using Magnesium Silicate Functionalized with Tetrabutylammonium Dihydrogen Phosphate. J. Chem. Eng. Data 2016, 61, 535–542. [Google Scholar] [CrossRef]
- Gabor, A.; Corneliu, M.; Davidescu, C.-M.; Popa, A.; Adina, N.; Mihaela, C.; Motoc, M.; Lupa, L.; Buzatu, R.; Negrea, P. Equilibrium studies for crown ether impregnated solid support used in the removal process of Nd(III), La(III), Sr(II), Tl(I.), Eu(III). Rev. Chim. 2016, 67, 580–583. [Google Scholar]
- Adina, N.; Lupa, L.; Mihaela, C.; Negrea, P. Silica impregnated with Cyphos IL-101 for Cs+ adsorption. Environ. Eng. Manag. J. 2014, 13, 2005–2013. [Google Scholar] [CrossRef]
- McAfee, B.J.; Gould, W.D.; Nadeau, J.C.; da Costa, A.C.A. Biosorption of Metal Ions Using Chitosan, Chitin, and Biomass of Rhizopus Oryzae. Sep. Sci. Technol. 2001, 36, 3207–3222. [Google Scholar] [CrossRef]
- Gebru, K.A.; Das, C. Removal of Pb (II) and Cu (II) ions from wastewater using composite electrospun cellulose acetate/titanium oxide (TiO2) adsorbent. J. Water Process Eng. 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Maity, J.; Ray, S.K. Removal of Cu (II) ion from water using sugar cane bagasse cellulose and gelatin based composite hydrogels. Int. J. Biol. Macromol. 2017, 97, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Stoica-Guzun, A.; Stroescu, M.; Jinga, S.I.; Mihalache, N.; Botez, A.; Matei, C.; Berger, D.; Damian, C.M.; Ionita, V. Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites. Int. J. Biol. Macromol. 2016, 91, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Ozbas, Z.; Sahin, C.P.; Esen, E.; Gurdag, G.; Kasgoz, H. The effect of extractant on the removal of heavy metal ions by thermoresponsive cellulose graft copolymer. J. Environ. Chem. Eng. 2016, 4, 1948–1954. [Google Scholar] [CrossRef]
- Saha, B.; Gill, R.J.; Bailey, D.G.; Kabay, N.; Arda, M. Sorption of Cr(VI) from aqueous solution by Amberlite XAD-7 resin impregnated with Aliquat 336. React. Funct. Polym. 2004, 60, 223–244. [Google Scholar] [CrossRef]
- Benamor, M.; Bouariche, Z.; Belaid, T.; Draa, M.T. Kinetic studies on cadmium ions by Amberlite XAD7 impregnated resins containing di(2-ethylhexyl) phosphoric acid as extractant. Sep. Purif. Technol. 2008, 59, 74–84. [Google Scholar] [CrossRef]
- Hosseini-Bandegharaei, A.; Hosseini, M.S.; Sarw-Ghadi, M.; Zowghi, S.; Hosseini, E.; Hosseini-Bandegharaei, H. Kinetics, equilibrium and thermodynamic study of Cr(VI) sorption into toluidine blue o-impregnated XAD-7 resin beads and its application for the treatment of wastewaters containing Cr(VI). Chem. Eng. J. 2010, 160, 190–198. [Google Scholar] [CrossRef]
- Kumar, J.R.; Kim, J.-S.; Lee, J.-Y.; Yoon, H.-S. A Brief Review on Solvent Extraction of Uranium from Acidic Solutions. Sep. Purif. Rev. 2011, 40, 77–125. [Google Scholar] [CrossRef]
- Wojcik, G.; Pasieczna-Patkowska, S.; Hubicki, Z.; Ryczkowski, J. Investigation of platinum(IV) ions sorption on SIRs by using photoacoustic and DRS methods. Eur. Phys. J. Spec. Top. 2008, 154, 373–376. [Google Scholar] [CrossRef]
- Alkan, M.; Do ǧ, M. Surface Titrations of Perlite Suspensions. J. Colloid Interface Sci. 1998, 207, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.F.; Xiao, B.; Thomas, K.M. Adsorption of Metal Ions on Nitrogen Surface Functional Groups in Activated Carbons. Langmuir 2002, 18, 470–478. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substabces. Kungl. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Ofomaja, A.E. Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresour. Technol. 2010, 101, 5868–5876. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ning, S.; Liu, H.; Zhou, J.; Wang, S.; Zhang, W.; Wang, X.; Wei, Y. Highly-efficient separation and recovery of ruthenium from electroplating wastewater by a mesoporous silica-polymer based adsorbent. Microporous Mesoporous Mater. 2020, 303, 110293. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2005; p. 1008. [Google Scholar]
- Zhang, J.; Zhao, S.-Q.; Zhang, K.; Zhou, J.-Q.; Cai, Y.-F. A study of photoluminescence properties and performance improvement of Cd-doped ZnO quantum dots prepared by the sol–gel method. Nanoscale Res. Lett. 2012, 7, 405. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, T.-a.; Zhang, W.; Lv, G. Solvent Extraction of Sc(III) by D2EHPA/TBP from the Leaching Solution of Vanadium Slag. Metals 2020, 10, 790. [Google Scholar] [CrossRef]
- Piepho, H.-P. An adjusted coefficient of determination (R2) for generalized linear mixed models in one go. Biom. J. 2023, 65, 2200290. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Srivastava, V.K.; Ullah, A. The coefficient of determination and its adjusted version in linear regression models. Econom. Rev. 1995, 14, 229–240. [Google Scholar] [CrossRef]
- Cyriac, B.; Vali, M.; Ojha, N.; Durani, S. Extraction of Th, Zr and Sc from rock matrix using silica modified with arsenazo-III and their determination by inductively coupled plasma atomic emission spectrometery. J. Chem. Sci. 2020, 132, 91. [Google Scholar] [CrossRef]
- Zhou, G.; Li, Q.; Sun, P.; Guan, W.; Zhang, G.; Cao, Z.; Zeng, L. Removal of impurities from scandium chloride solution using 732-type resin. J. Rare Earths 2018, 36, 311–316. [Google Scholar] [CrossRef]
- Bao, S.; Hawker, W.; Vaughan, J. Scandium Loading on Chelating and Solvent Impregnated Resin from Sulfate Solution. Solvent Extr. Ion Exch. 2018, 36, 100–113. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Bondarenko, N.A. Extraction of rare-earth, yttrium, and scandium perchlorates by podands bearing diphenylphosphorylacetamide terminal groups. Russ. J. Inorg. Chem. 2008, 53, 1801–1808. [Google Scholar] [CrossRef]
- Madrid, J.F.; Barba, B.J.D.; Pomicpic, J.C.; Cabalar, P.J.E. Immobilization of an organophosphorus compound on polypropylene-g-poly(glycidyl methacrylate) polymer support and its application in scandium recovery. J. Appl. Polym. Sci. 2022, 139, 51597. [Google Scholar] [CrossRef]
- Van Nguyen, N.; Iizuka, A.; Shibata, E.; Nakamura, T. Study of adsorption behavior of a new synthesized resin containing glycol amic acid group for separation of scandium from aqueous solutions. Hydrometallurgy 2016, 165, 51–56. [Google Scholar] [CrossRef]
- Jayaraman, G. Introduction to Transport Phenomena. In Modelling and Monitoring of Coastal Marine Processes; Springer: Dordrecht, The Netherlands, 2008; pp. 11–21. [Google Scholar] [CrossRef]
- Kumar, V.; Subanandam, K.; Ramamurthi, V.; Sivanesan, S. Solid Liquid Adsorption for Wastewater Treatment: Principle Design and Operation. 2004. Available online: https://www.eco-web.com/edi/040201.html (accessed on 12 December 2023).
- Vilvanathan, S.; Shanthakumar, S. Column adsorption studies on nickel and cobalt removal from aqueous solution using native and biochar form of Tectona grandis. Environ. Prog. Sustain. Energy 2017, 36, 1030–1038. [Google Scholar] [CrossRef]
- Abdolali, A.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Zhang, J.; Liang, S.; Chang, S.W.; Nguyen, D.D.; Liu, Y. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresour. Technol. 2017, 229, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Alsawy, T.; Rashad, E.; El-Qelish, M.; Mohammed, R.H. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. npj Clean Water 2022, 5, 29. [Google Scholar] [CrossRef]
Pseudo-First-Order | |||||
Temperature (K) | qe,exp (mg g−1) | k1 (min−1) | qe,calc (mg g−1) | R2 | |
298 | 20.24 | 0.0168 | 20.61 | 0.9715 | 0.8210 |
308 | 21.20 | 0.0174 | 18.58 | 0.9247 | 0.7456 |
318 | 22.24 | 0.0209 | 15.72 | 0.9253 | 0.7605 |
328 | 23.03 | 0.0268 | 16.53 | 0.9333 | 0.7792 |
Pseudo-second-order | |||||
Temperature (K) | qe,exp (mg g−1) | k2 (g mg−1∙min−1) | qe,calc (mg g−1) | R2 | |
298 | 20.24 | 390.8 | 25.12 | 0.9933 | 0.9875 |
308 | 21.20 | 498.4 | 25.51 | 0.9901 | 0.9884 |
318 | 22.24 | 697.5 | 25.70 | 0.9943 | 0.9949 |
328 | 23.03 | 882.6 | 25.83 | 0.9943 | 0.9953 |
Intraparticle diffusion model (IPD) | |||||
Temperature (K) | Kdiff (mg·g−1 min−1/2) | C | R2 | ||
298 | 1.17 | 4.02 | 0.9528 | 0.8112 | |
308 | 1.78 | 5.39 | 0.9093 | 0.7635 | |
318 | 2.16 | 6.31 | 0.8603 | 0.7504 | |
328 | 2.28 | 7.56 | 0.8403 | 0.7425 |
Langmuir Isotherm | |||
qm,exp (mg/g) | KL (L/mg) | qL (mg/g) | R2 |
31.84 | 0.112 | 38.14 | 0.9849 |
Freundlich isotherm | |||
KF (mg/g) | 1/nF | R2 | |
7.91 | 0.36 | 0.8880 | |
Sips isotherm | |||
KS | qS (mg/g) | 1/nS | R2 |
0.075 | 34.6 | 0.04 | 0.9915 |
Materials | Sc(III) Recovery Efficiency, % | References |
---|---|---|
732-type acid cation exchange resin | 84.2 | [56] |
TP 272-Cyanex 272 | - | [57] |
Amberchrom CG-71c nonionic macroporous sorbent | - | [58] |
polymer support fabric (PP-g-PGMA) | 98 | [59] |
glycol amic acid embedded resin | 45 | [60] |
XAD7HP-TOPO | 99.7 | Present paper |
ΔH0 (kJ/mol) | ΔS0 (J/mol∙K) | ΔG0 (kJ/mol) | R2 | |||
---|---|---|---|---|---|---|
26.28 | 88.53 | 298 K | 308 K | 318 K | 328K | 0.9917 |
−26.35 | −27.24 | −28.12 | −29.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daminescu, D.; Duteanu, N.; Ciopec, M.; Negrea, A.; Negrea, P.; Nemeş, N.S.; Pascu, B.; Ianăşi, C.; Cotet, L. Adsorption of Scandium Ions by Amberlite XAD7HP Polymeric Adsorbent Loaded with Tri-n-Octylphosphine Oxide. Molecules 2024, 29, 1578. https://doi.org/10.3390/molecules29071578
Daminescu D, Duteanu N, Ciopec M, Negrea A, Negrea P, Nemeş NS, Pascu B, Ianăşi C, Cotet L. Adsorption of Scandium Ions by Amberlite XAD7HP Polymeric Adsorbent Loaded with Tri-n-Octylphosphine Oxide. Molecules. 2024; 29(7):1578. https://doi.org/10.3390/molecules29071578
Chicago/Turabian StyleDaminescu, Diana, Narcis Duteanu, Mihaela Ciopec, Adina Negrea, Petru Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Cătălin Ianăşi, and Lucian Cotet. 2024. "Adsorption of Scandium Ions by Amberlite XAD7HP Polymeric Adsorbent Loaded with Tri-n-Octylphosphine Oxide" Molecules 29, no. 7: 1578. https://doi.org/10.3390/molecules29071578
APA StyleDaminescu, D., Duteanu, N., Ciopec, M., Negrea, A., Negrea, P., Nemeş, N. S., Pascu, B., Ianăşi, C., & Cotet, L. (2024). Adsorption of Scandium Ions by Amberlite XAD7HP Polymeric Adsorbent Loaded with Tri-n-Octylphosphine Oxide. Molecules, 29(7), 1578. https://doi.org/10.3390/molecules29071578