Triel Bonds between BH3/C5H4BX and M(MDA)2 (X = H, CN, F, CH3, NH2; M = Ni, Pd, Pt, MDA = Enolated Malondialdehyde) and Group 10 Transition Metal Electron Donors
Abstract
:1. Introduction
2. Results
2.1. MEP Analysis
2.2. Structural Analyses
2.3. Interaction Energy
2.4. AIM Analysis
2.5. IRI Analysis
2.6. EDA Analysis
2.7. NOCV Analysis
3. Discussion
4. Theoretical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grabowski, S.J. π-Hole bonds: Boron and aluminum Lewis acid centers. ChemPhysChem 2015, 16, 1470–1479. [Google Scholar] [CrossRef]
- Liu, K.; Kang, Y.T.; Wang, Z.; Zhang, X. Reversible and adaptive functional supramolecular materials: “Noncovalent interaction” matters. Adv. Mater. 2013, 25, 5530–5548. [Google Scholar] [CrossRef]
- Karabıyık, H.; Ocak; İskeleli, N. Hydrogen-bridged chelate ring-assisted π-stacking interactions. Acta Crystallogr. Sect. B Struct. Sci. 2012, 68, 71–79. [Google Scholar] [CrossRef]
- Mundlapati, V.R.; Sahoo, D.K.; Bhaumik, S.; Jena, S.; Chandrkar, A.S.; Biswal, H. Noncovalent carbon-bonding interactions in proteins. Angew. Chem. Int. Ed. 2018, 57, 16496–16500. [Google Scholar] [CrossRef]
- Walker, M.G.; Mendez, C.G.; Ho, P.S. Non-classical non-covalent σ-hole interactions in protein structure and function: Concepts for potential protein engineering applications. Chem.–Asian J. 2023, 18, e202300026. [Google Scholar] [CrossRef]
- de las Nieves-Piña, M.; Frontera, A.; Mooibroek, T.J.; Bauza, A. Frustrated Lewis pairs based on carbon∙∙∙carbon+ tetrel bonds: A DFT study. ChemPhysChem 2021, 22, 2478–2483. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.X.; Zhou, P.P.; Wang, Y. Catalysis with supramolecular carbon-bonding interactions. Angew. Chem. Int. Ed. 2021, 133, 22899–22903. [Google Scholar] [CrossRef]
- Wang, J.Z.; Young, T.A.; Duarte, F.; Lusby, P.J. Synergistic noncovalent catalysis facilitates base-free Michael addition. J. Am. Chem. Soc. 2020, 142, 17743–17750. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.J. Highly activated Michael acceptor by an intramolecular hydrogen bond as a fluorescence turn-on probe for cyanide. Chem. Commun. 2010, 46, 9197–9199. [Google Scholar] [CrossRef]
- Bhunya, S.; Malakar, T.; Ganguly, G.; Paul, A. Combining protons and hydrides by homogeneous catalysis for controlling the release of hydrogen from ammonia–borane: Present status and challenges. ACS Catal. 2016, 6, 7907–7934. [Google Scholar] [CrossRef]
- Hamilton, C.W.; Baker, R.T.; Staubitz, A.; Manners, I. B–N compounds for chemical hydrogen storage. Chem. Soc. Rev. 2009, 38, 279–293. [Google Scholar] [CrossRef]
- Bismillah, A.N.; Aprahamian, I. Fundamental studies to emerging applications of pyrrole-BF2(BOPHY) fluorophores. Chem. Soc. Rev. 2021, 50, 5631–5649. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. The bright future of unconventional σ/π-hole interactions. ChemPhysChem 2015, 16, 2496–2517. [Google Scholar] [CrossRef]
- Herrebout, W.A.; Van der Veken, B.J. Van der Waals complexes between unsaturated hydrocarbons and boron trifluoride: An infrared and ab Initio study of etheneBF3 and propeneBF3. J. Am. Chem. Soc. 1997, 119, 10446–10454. [Google Scholar] [CrossRef]
- Fiacco, D.L.; Mo, Y.; Hunt, S.W.; Ott, M.E.; Roberts, A.; Leopold, K.R. Dipole moments of partially bound Lewis acid−base adducts. J. Phys. Chem. A 2001, 105, 484–493. [Google Scholar] [CrossRef]
- Reeve, S.W.; Burns, W.A.; Lovas, F.J.; Suenram, R.D.; Leopold, K.R. Microwave spectra and structure of hydrogen cyanide-boron trifluoride: An almost weakly bound complex. J. Phys. Chem. 1993, 97, 10630–10637. [Google Scholar] [CrossRef]
- Phillips, J.A.; Giesen, D.J.; Wells, N.P.; Halfen, J.A.; Kuntson, C.C.; Wrass, J.P. Condensed-phase effects on the structural properties of C6H5CN−BF3 and (CH3)3CCN−BF3: IR spectra, crystallography, and computations. J. Phys. Chem. A 2005, 109, 8199–8208. [Google Scholar] [CrossRef]
- Phillips, J.A.; Halfen, J.A.; Wrass, J.P.; Knutson, C.C.; Cramer, C.J. Large gas− solid structural differences in complexes of haloacetonitriles with boron trifluoride. Inorg. Chem. 2006, 45, 722–731. [Google Scholar] [CrossRef]
- Grabowski, S.J. Boron and other triel Lewis acid centers: From hypovalency to hypervalency. ChemPhysChem 2014, 15, 2985–2993. [Google Scholar] [CrossRef]
- Grabowski, S.J. The nature of triel bonds, a case of B and Al centres bonded with electron rich sites. Molecules 2020, 25, 2703. [Google Scholar] [CrossRef]
- Michalczyk, M.; Zierkiewicz, W.; Scheiner, S. Triel-bonded complexes between TrR3 (Tr= B, Al, Ga; R= H, F, Cl, Br, CH3) and pyrazine. ChemPhysChem 2018, 19, 3122–3133. [Google Scholar] [CrossRef]
- Shriver, D.F. Transition metal basicity. Acc. Chem. Res. 1970, 3, 231–238. [Google Scholar] [CrossRef]
- Werner, H. Electron-rich half-sandwich complexes—Metal bases par excellence. Angew. Chem. Int. Ed. 1983, 22, 927–949. [Google Scholar] [CrossRef]
- Baker, A.W.; Bublitz, D.E. Enthalpies of intramolecular interactions in ferrocenyl alcohols. Spectrochim. Acta 1966, 22, 1787–1799. [Google Scholar] [CrossRef]
- Hill, E.A.; Richards, J.H. Carbonium ion stabilization by metallocene nuclei. III. Evidence for metal participation1. J. Am. Chem. Soc. 1961, 83, 4216–4221. [Google Scholar] [CrossRef]
- Hill, E.A.; Richards, J.H. Carbonium ion stabilization by metallocene nuclei. II. α-Metallocenylcarbonium ions. J. Am. Chem. Soc. 1961, 83, 3840–3846. [Google Scholar] [CrossRef]
- Trifan, D.S.; Bacskai, R. Metal-hydrogen bonding in metallocene compounds. J. Am. Chem. Soc. 1960, 82, 5010–5011. [Google Scholar] [CrossRef]
- Shriver, D.F. Lewis basicity of a transition metal. A boron trifluoride adduct of biscyclopentadienyltungsten dihydride. J. Am. Chem. Soc. 1963, 85, 3509–3510. [Google Scholar] [CrossRef]
- Scott, R.N.; Shriver, D.F.; Vaska, L. Lewis acid adducts of planar four-coordinated d8 complexes. Boron trifluoride-chlorocarbonylbis(triphenylphosphine)iridium and related systems. J. Am. Chem. Soc. 1968, 90, 1079–1080. [Google Scholar] [CrossRef]
- Burlitch, J.M.; Leonowicz, M.E.; Petersen, R.B.; Hughes, E.R. Coordination of metal carbonyl anions to triphenylaluminum, -gallium, and-indium and the crystal structure of tetraethylammonium triphenyl ((η5-cyclopentadienyl)dicarbonyliron) aluminate (Fe-Al). Inorg. Chem. 1979, 18, 1097–1105. [Google Scholar] [CrossRef]
- Fischer, R.A.; Weiß, J. Coordination chemistry of aluminum, gallium, and indium at transition metals. Angew. Chem. Int. Ed. 1999, 38, 2830–2850. [Google Scholar] [CrossRef]
- Hill, A.F.; Owen, G.R.; White, A.J.P.; Williams, D.J. The sting of the scorpion: A metallaboratrane. Angew. Chem. Int. Ed. 1999, 38, 2759–2761. [Google Scholar] [CrossRef]
- Braunschweig, H.; Gruss, K.; Radacki, K. Interaction between d-and p-block metals: Synthesis and structure of platinum–alane adducts. Angew. Chem. Int. Ed. 2007, 46, 7782–7784. [Google Scholar] [CrossRef]
- Braunschweig, H.; Gruss, K.; Radacki, K. Reactivity of Pt0 complexes toward gallium(III) halides: Synthesis of a platinum gallane complex and oxidative addition of gallium halides to Pt0. Inorg. Chem. 2008, 47, 8595–8597. [Google Scholar] [CrossRef]
- Senda, S.; Ohki, Y.; Hirayama, T.; Toda, D.; Chen, J.L.; Matsumoto, T.; Kawaguchi, H.; Ttsumi, K. Mono{hydrotris(mercaptoimidazolyl)borato} complexes of manganese(II), iron(II), cobalt(II), and nickel(II) halides. Inorg. Chem. 2006, 45, 9914–9925. [Google Scholar] [CrossRef]
- Pang, K.; Tanski, J.M.; Parkin, G. Reactivity of the Ni→B dative σ-bond in the nickel boratrane compounds [κ4-B (mimBut)3] NiX (X= Cl, OAc, NCS, N3): Synthesis of a series of B-functionalized tris(2-mercapto-1-tert-butylimidazolyl)borato complexes, [YTmBut]NiZ. Chem. Commun. 2008, 1008–1010. [Google Scholar] [CrossRef]
- Bikbaeva, Z.M.; Ivanov, D.M.; Novikov, A.S.; Ananyev, I.V.; Bokach, N.A.; Kukushkin, V.Y. Electrophilic–nucleophilic dualism of nickel(II) toward Ni∙∙∙I noncovalent interactions: Semicoordination of iodine centers via electron belt and halogen bonding via σ-hole. Inorg. Chem. 2017, 56, 13562–13578. [Google Scholar] [CrossRef]
- Ivanov, D.M.; Bokach, N.A.; Kukushkin, V.Y.; Frontera, A. Metal centers as nucleophiles: Oxymoron of halogen bond-involving crystal engineering. Chem.–A Eur. J. 2022, 28, e202103173. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. Supramolecular assemblies based on σ-hole interactions. In Supramolecular Assemblies Based on Electrostatic Interactions; Springer International Publishing: Cham, Switzerland, 2022; pp. 203–241. [Google Scholar] [CrossRef]
- Katlenok, E.A.; Rozhkov, A.V.; Levin, O.V.; Haukka, M.; Kuznetsov, M.L.; Kukushkin, V.Y. Halogen bonding involving palladium(II) as an XB acceptor. Cryst. Growth Des. 2020, 21, 1159–1177. [Google Scholar] [CrossRef]
- Bulatov, E.; Eskelinen, T.; Ivanov, A.Y.; Tolstoy, M.; Kalenius, E.; Hirva, P.; Huukka, M. Noncovalent axial I∙∙∙Pt∙∙∙I interactions in platinum(II) complexes strengthen in the excited state. ChemPhysChem 2021, 22, 2044–2049. [Google Scholar] [CrossRef]
- Freindorf, M.; Yannacone, S.; Oliveira, V.; Verma, N.; Kraka, E. Halogen bonding involving I2 and d8 transition-metal pincer complexes. Crystals 2021, 11, 373. [Google Scholar] [CrossRef]
- Eliseeva, A.A.; Khazanova, M.A.; Cheranyova, A.M.; Aliyarova, I.S.; Kravchuk, R.I.; Oganesyan, E.S.; Ryabykh, A.V.; Maslova, O.A.; Ivanov, D.M.; Bezonsyuk, S.A. Metal-involving halogen bonding confirmed using DFT calculations with periodic boundary conditions. Crystals 2023, 13, 712. [Google Scholar] [CrossRef]
- Li, G.; Stenlid, J.H.; Ahlquist, M.S.G.; Brinck, T. Utilizing the surface electrostatic potential to predict the interactions of Pt and Ni nanoparticles with Lewis acids and bases—σ-lumps and σ-holes govern the catalytic activities. J. Phys. Chem. C 2020, 124, 14696–14705. [Google Scholar] [CrossRef]
- Zierkiewicz, W.; Kizior, B.; Michalczyk, M.; Jazierska, A.; Scheiner, S. Pd and Pt Metal atoms as electron donors in σ-hole bonded complexes. Phys. Chem. Chem. Phys. 2023, 25, 26172–26184. [Google Scholar] [CrossRef]
- Rozhkov, A.V.; Krykova, M.A.; Ivanov, D.M.; Novikov, A.S.; Sinelshchikova, A.A.; Volostnykh, M.V.; Konovalov, M.A.; Grigoriev, M.S.; Gorbunova, Y.G.; Kukushkin, V.Y. Reverse arene sandwich structures based upon π-hole∙∙∙ [MII](d8 M= Pt, Pd) interactions, where positively charged metal centers play the role of a nucleophile. Angew. Chem. Int. Ed. 2019, 131, 4208–4212. [Google Scholar] [CrossRef]
- Malenov, D.P.; Zarić, S.D. Chelated metal ions modulate the strength and geometry of stacking interactions: Energies and potential energy surfaces for chelate–chelate stacking. Phys. Chem. Chem. Phys. 2018, 20, 14053–14060. [Google Scholar] [CrossRef]
- Malenov, D.P.; Michael, B.H.; Zarić, S.D. Influence of metal ion on chelate–aryl stacking interactions. Int. J. Quantum Chem. 2018, 118, e25629. [Google Scholar] [CrossRef]
- Goedecke, C.; Hillebrecht, P.; Uhlemann, T. The Dewar–Chatt–Duncanson model reversed—Bonding analysis of group-10 complexes [(PMe3)2M–EX3](M= Ni, Pd, Pt; E= B, Al, Ga, In, Tl; X= H, F, Cl, Br, I). Can. J. Chem. 2009, 87, 1470–1479. [Google Scholar] [CrossRef]
- Liu, N.; Li, Q.Z.; Scheiner, S.; Xie, X.Y. Resonance-assisted intramolecular triel bonds. Phys. Chem. Chem. Phys. 2022, 24, 15015–15024. [Google Scholar] [CrossRef]
- Niu, Z.H.; McDowell, S.A.C.; Li, Q.Z. Triel bonds with Au atoms as electron donors. ChemPhysChem 2023, 24, e202200748. [Google Scholar] [CrossRef]
- Murcia, R.A.; MacLeod-Carey, D.; Hurtado, J.J.; Muñoz-Castro, A. Formation of C60-SnI4 adducts. Insights of the role of σ-hole and tetrel-bonding in the strength and interaction nature from DFT calculations. Inorg. Chim. Acta 2023, 545, 121277. [Google Scholar] [CrossRef]
- Ulloa, C.O.; Ponce-Vargas, M.; Munoz-Castro, A. Formation of coinage-metal···fullerene adducts. Evaluation of the interaction nature between triangular coinage metal complexes (M3 = Cu, Ag, and Au) and C60 through relativistic density functional theory calculations. J. Phys. Chem. C 2018, 122, 25110–25117. [Google Scholar] [CrossRef]
- Muñoz-Castro, A.; Wang, G.; Ponduru, T.T.; Dias, H.V.R. Synthesis and characterization of N-heterocyclic carbene-M∙∙∙OEt2 complexes (M = Cu, Ag, Au). Analysis of solvated auxiliary-ligand free [(NHC)M]+ species. Phys. Chem. Chem. Phys. 2021, 23, 1577–1583. [Google Scholar] [CrossRef]
- Ulloa, C.O.; Guajardo-Maturana, R.; Rodríguez-Kessler, P.L.; Muñoz-Castro, A. Nature of the dative nitrogen-coinage metal bond in molecular motors. Evaluation of NHC-M pyrazine bond (M= Cu, Ag, Au) from relativistic DFT. Inorg. Chim. Acta 2023, 549, 121401. [Google Scholar] [CrossRef]
- Su, P.; Li, H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J. Chem. Phys. 2009, 131, 014102. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160. [Google Scholar] [CrossRef]
- Peterson, K.A.; Shepler, B.C.; Figgen, D.; Stoll, H. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J. Phys. Chem. A 2006, 110, 13877. [Google Scholar] [CrossRef]
- Wilson, A.K.; Woon, D.E.; Peterson, K.A.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J. Chem. Phys. 1999, 110, 7667. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 2002, 19, 553–566. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Interaction region indicator: A simple real space function clearly revealing both chemical bonds and weak interactions. Chemistry-Methods 2021, 1, 231–239. [Google Scholar] [CrossRef]
- Mitoraj, M.P.; Michalak, A.; Ziegler, T. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput. 2009, 5, 962–975. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Song, Y.L.; Zhang, S.; Wang, W.; Xu, Y.; Wu, D.; Wu, W.; Su, P.F. XEDA, a fast and multipurpose energy decomposition analysis program. J. Comput. Chem. 2021, 42, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Su, P.F.; Tang, Z.; Wu, W. Generalized Kohn-Sham energy decomposition analysis and its applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1460. [Google Scholar] [CrossRef]
- Zou, J.X. MOKIT Program. Available online: https://gitlab.com/jxzou/mokit (accessed on 28 December 2023).
Vs,max | |
---|---|
BH3 | 41.35 |
C5H5B | 44.07 |
C5H4BF | 52.08 |
C5H4BCN | 59.58 |
C5H4BCH3 | 43.35 |
C5H4BNH2 | 44.02 |
R | Eint | Eb | DE | |
---|---|---|---|---|
BH3-Ni | 2.842 | −4.71 | −4.47 | 0.24 |
BH3-Pd | 2.544 | −8.60 | −7.56 | 1.04 |
BH3-Pt | 2.447 | −14.09 | −11.38 | 2.71 |
C5H5B-Ni | 2.786 | −8.66 | −8.00 | 0.66 |
C5H5B-Pd | 2.356 | −16.76 | −13.16 | 3.60 |
C5H5B-Pt | 2.271 | −26.91 | −20.17 | 6.74 |
C5H4BF-Ni | 2.528 | −10.44 | −8.85 | 1.59 |
C5H4BF-Pd | 2.323 | −19.07 | −15.02 | 4.05 |
C5H4BF-Pt | 2.254 | −29.61 | −22.61 | 7.00 |
C5H4BCN-Ni | 2.466 | −12.46 | −10.30 | 2.15 |
C5H4BCN-Pd | 2.293 | −21.89 | −17.08 | 4.80 |
C5H4BCN-Pt | 2.233 | −33.18 | −25.22 | 7.96 |
C5H4BCH3-Ni | 2.604 | −8.88 | −7.71 | 1.17 |
C5H4BCH3-Pd | 2.354 | −16.72 | −13.16 | 3.56 |
C5H4BCH3-Pt | 2.269 | −26.89 | −20.20 | 6.69 |
C5H4BNH2-Ni | 2.611 | −9.03 | −7.86 | 1.18 |
C5H4BNH2-Pd | 2.346 | −16.93 | −13.38 | 3.55 |
C5H4BNH2-Pt | 2.265 | −27.11 | −20.54 | 6.57 |
ρ | ∇2ρ | H | |
---|---|---|---|
BH3-Ni | 0.0130 | 0.0264 | −0.0004 |
BH3-Pd | 0.0301 | 0.0354 | −0.0064 |
BH3-Pt | 0.0437 | 0.0200 | −0.0162 |
C5H5B-Ni | 0.0163 | 0.0196 | −0.0018 |
C5H5B-Pd | 0.0476 | −0.0067 | −0.0205 |
C5H5B-Pt | 0.0662 | −0.0489 | −0.0427 |
C5H4BF-Ni | 0.0255 | 0.0140 | −0.0059 |
C5H4BF-Pd | 0.0509 | −0.0156 | −0.0244 |
C5H4BF-Pt | 0.0683 | −0.0502 | −0.0463 |
C5H4BCN-Ni | 0.0298 | 0.0100 | −0.0079 |
C5H4BCN-Pd | 0.0553 | −0.0268 | −0.0282 |
C5H4BCN-Pt | 0.0728 | −0.0640 | −0.0509 |
C5H4BCH3-Ni | 0.0223 | 0.0179 | −0.0041 |
C5H4BCH3-Pd | 0.0477 | −0.0070 | −0.0208 |
C5H4BCH3-Pt | 0.0662 | −0.0476 | −0.0431 |
C5H4BNH2-Ni | 0.0228 | 0.0193 | −0.0040 |
C5H4BNH2-Pd | 0.0480 | −0.0082 | −0.0217 |
C5H4BNH2-Pt | 0.0662 | −0.0440 | −0.0439 |
Eele | Eex | Erep | Epol | Edisp | Ecorr | Edisp/corr | Etotal | |
---|---|---|---|---|---|---|---|---|
BH3-Ni | −3.13 | −14.5 | 22.46 | 4.64 | −4.56 | −9.56 | −14.12 | −4.65 |
BH3-Pd | −9.47 | −35.26 | 58.77 | −2.38 | −5.64 | −14.52 | −20.16 | −8.50 |
BH3-Pt | −18.24 | −54.52 | 94.45 | −15.85 | −5.95 | −13.87 | −19.82 | −13.98 |
C5H5B-Ni | −6.03 | −21.62 | 35.08 | 3.38 | −8.26 | −11.12 | −19.38 | −8.58 |
C5H5B-Pd | −16.20 | −55.47 | 96.10 | −13.02 | −9.74 | −18.28 | −28.02 | −16.61 |
C5H5B-Pt | −28.82 | −80.19 | 143.69 | −37.28 | −10.31 | −13.83 | −24.14 | −26.73 |
C5H4BF-Ni | −6.53 | −30.29 | 50.21 | 5.07 | −8.28 | −20.51 | −28.79 | −10.34 |
C5H4BF-Pd | −16.61 | −57.22 | 99.85 | −15.62 | −9.85 | −19.47 | −29.32 | −18.92 |
C5H4BF-Pt | −28.93 | −80.15 | 144.23 | −39.92 | −10.36 | −14.30 | −24.66 | −29.43 |
C5H4BCN-Ni | −7.79 | −33.63 | 56.56 | 4.27 | −8.44 | −23.31 | −31.75 | −12.34 |
C5H4BCN-Pd | −17.91 | −59.75 | 105.48 | −19.38 | −10.02 | −20.16 | −30.18 | −21.73 |
C5H4BCN-Pt | −30.47 | −82.44 | 149.99 | −45.72 | −10.48 | −13.88 | −24.36 | −33.00 |
C5H4BCH3-Ni | −6.71 | −28.17 | 46.32 | 4.70 | −8.16 | −16.76 | −24.92 | −8.78 |
C5H4BCH3-Pd | −16.19 | −55.68 | 96.38 | −12.93 | −9.76 | −18.40 | −28.16 | −16.57 |
C5H4BCH3-Pt | −28.80 | −80.38 | 143.89 | −37.06 | −10.34 | −14.02 | −24.36 | −26.71 |
C5H4BNH2-Ni | −8.22 | −29.64 | 49.03 | 3.90 | −8.17 | −15.84 | −29.32 | −8.93 |
C5H4BNH2-Pd | −16.12 | −56.16 | 97.17 | −13.27 | −9.75 | −18.65 | −28.40 | −16.78 |
C5H4BNH2-Pt | −28.68 | −80.53 | 143.94 | −37.01 | −10.33 | −14.32 | −24.65 | −26.93 |
Ni | Pd | Pt | |
---|---|---|---|
BH3 | −4.75 | −14.07 | −23.04 |
C5H5B | −5.73 | −22.70 | −34.99 |
C5H4BF | −12.29 | −25.32 | −37.06 |
C5H4BCN | −15.03 | −28.27 | −40.35 |
C5H4BCH3 | −9.47 | −22.74 | −35.01 |
C5H4BNH2 | −9.05 | −23.16 | −35.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Niu, Z.; McDowell, S.A.C.; Li, Q. Triel Bonds between BH3/C5H4BX and M(MDA)2 (X = H, CN, F, CH3, NH2; M = Ni, Pd, Pt, MDA = Enolated Malondialdehyde) and Group 10 Transition Metal Electron Donors. Molecules 2024, 29, 1602. https://doi.org/10.3390/molecules29071602
Wang X, Niu Z, McDowell SAC, Li Q. Triel Bonds between BH3/C5H4BX and M(MDA)2 (X = H, CN, F, CH3, NH2; M = Ni, Pd, Pt, MDA = Enolated Malondialdehyde) and Group 10 Transition Metal Electron Donors. Molecules. 2024; 29(7):1602. https://doi.org/10.3390/molecules29071602
Chicago/Turabian StyleWang, Xin, Zhihao Niu, Sean A. C. McDowell, and Qingzhong Li. 2024. "Triel Bonds between BH3/C5H4BX and M(MDA)2 (X = H, CN, F, CH3, NH2; M = Ni, Pd, Pt, MDA = Enolated Malondialdehyde) and Group 10 Transition Metal Electron Donors" Molecules 29, no. 7: 1602. https://doi.org/10.3390/molecules29071602
APA StyleWang, X., Niu, Z., McDowell, S. A. C., & Li, Q. (2024). Triel Bonds between BH3/C5H4BX and M(MDA)2 (X = H, CN, F, CH3, NH2; M = Ni, Pd, Pt, MDA = Enolated Malondialdehyde) and Group 10 Transition Metal Electron Donors. Molecules, 29(7), 1602. https://doi.org/10.3390/molecules29071602