Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae
Abstract
:1. Introduction
2. Chemical Constitution
2.1. Bisabolane-Type Sesquiterpenes
2.2. Norbisabolane-Type Sesquiterpenes
2.3. Eudesmane-Type Sesquiterpenes
2.4. Guaiane-Type Sesquiterpenes
2.5. Eremophilane-Type Sesquiterpenes
2.6. Isodaucane-Type Sesquiterpenes
2.7. Acorane-Type Sesquiterpenes
2.8. Cadinane-Type Sesquiterpenes
2.9. Aristolane-Type Sesquiterpenes
2.10. Aromadendrane-Type Sesquiterpenes
2.11. Other Types of Sesquiterpenes
3. Pharmacological Activities
3.1. Antimalarial Activity
3.2. Antibacterial and Antifungal Activity
3.3. Antitumor Activity
3.4. Anti-Inflammatory and Analgesic Activity
3.5. Antiviral Activity
3.6. Antioxidant Activity
3.7. Discussion on Structure-Activity Relationships
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NMR | Nuclear magnetic resonance |
FPP | Farnesyl diphosphate |
LPS | Lipopolysaccharide |
STS | Sesquiterpene synthase |
SERT | Regulating serotonin transporter |
IC50 | Half maximal inhibitory concentration |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
PI3K | Phosphoinositide 3-kinase |
AKT | Protein kinase B |
mTOR | Mammalian target of rapamycin |
S6K1 | Ribosomal protein S6 kinase 1 |
MAPK | Mitogen-activated protein kinase |
ERK | Extracellular signal-regulated kinase |
JNK | c-Jun N-terminal kinase |
iNOS | Inducible nitric oxide synthase |
COX-2 | Cyclooxygenase-2 |
mRNA | Messenger RNA |
TNF-α | Tumor necrosis factor α |
COVID-19 | Coronavirus disease 2019 |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
anti-HIV-1 | Anti-human immunodeficiency virus type 1 |
HIV-1 RT | Human immunodeficiency virus type 1 reverse transcriptase |
References
- Cascaes, M.M.; Carneiro, O.D.; Nascimento, L.D.; de Moraes, Â.A.; de Oliveira, M.S.; Cruz, J.N.; Guilhon, G.M.; Andrade, E.H. Essential Oils from Annonaceae Species from Brazil: A Systematic Review of Their Phytochemistry, and Biological Activities. Int. J. Mol. Sci. 2021, 22, 12140. [Google Scholar] [CrossRef]
- Jourjine, I.A.P.; Bauernschmidt, C.; Müller, C.; Bracher, F. A GC-MS Protocol for the Identification of Polycyclic Aromatic Alkaloids from Annonaceae. Molecules 2022, 27, 8217. [Google Scholar] [CrossRef]
- Yao, L.J.; Jalil, J.; Attiq, A.; Hui, C.C.; Zakaria, N.A. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). J. Ethnopharmacol. 2019, 229, 303–325. [Google Scholar] [CrossRef]
- Santos, A.C.d.; Nogueira, M.L.; Oliveira, F.P.d.; Costa, E.V.; Bezerra, D.P. Essential Oils of Duguetia Species A. St. Hill (Annonaceae): Chemical Diversity and Pharmacological Potential. Biomolecules 2022, 12, 615. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.d.S.; Nery, D.A.; Oliveira, A.P.d.; Oliveira-Júnior, R.G.d.; Rolim, L.A.; Lopes, N.P.; Silva, M.F.d.S.; Pessoa, C.d.Ó.; Braz-Filho, R.; Dutra, L.M.; et al. New ent-kaurene-type nor-diterpene and other compounds isolated from Annona vepretorum Mart. (Annonaceae). Nat. Prod. Res. 2023, 37, 1565–1572. [Google Scholar] [CrossRef]
- Lorenzo, V.P.; Scotti, L.; da Silva Almeida, J.R.G.; Scotti, M.T. Annonaceae Family Alkaloids as Agents against Leishmaniasis: A Review and Molecular Docking Evaluation. Curr. Drug Metab. 2020, 21, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Lúcio, A.S.; Almeida, J.R.; Da-Cunha, E.V.; Tavares, J.F.; Barbosa Filho, J.M. Alkaloids of the Annonaceae: Occurrence and a compilation of their biological activities. Alkaloids Chem. Biol. 2015, 74, 233–409. [Google Scholar] [PubMed]
- Lorenzo, V.P.; Lúcio, A.S.; Scotti, L.; Tavares, J.F.; Filho, J.M.; Lima, T.K.; Rocha, J.D.; Scotti, M.T. Structure-and Ligand-Based Approaches to Evaluate Aporphynic Alkaloids from Annonaceae as Multi-Target Agent against Leishmania donovani. Curr. Pharm. Des. 2016, 22, 5196–5203. [Google Scholar] [CrossRef]
- Nguemdjo Chimeze, V.W.; Bankoglu, E.E.; Zühlke, S.; Fannang, V.S.; Eckelmann, D.; Chi Shirri, J.; Djuidje, E.N.; Djama, C.M.; Stopper, H.; Wandji, J. Cytotoxic and genotoxic properties of artathomsonine, a new oxoberberine alkaloid from Artabotrys thomsonii (annonaceae). Nat. Prod. Res. 2022, 36, 2791–2799. [Google Scholar] [CrossRef]
- Huynh, N.V.; Nguyen Huu, D.M.; Huynh, N.T.; Chau, D.H.; Nguyen, C.D.; Nguyen Truong, Q.D.; Mai, D.T.; Dang, P.H. Anonazepine, a new alkaloid from the leaves of Annona muricata (Annonaceae). Z. Naturforschung C J. Biosci. 2022, 78, 247–251. [Google Scholar] [CrossRef]
- de Moraes, M.R.; Ryan, S.M.; Godoy, H.T.; Thomas, A.L.; Maia, J.G.S.; Richards, K.M.; Tran, K.; Smith, R.E. Phenolic Compounds and Metals in Some Edible Annonaceae Fruits. Biol. Trace Elem. Res. 2020, 197, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Maia, D.S.; Lopes, C.F.; Saldanha, A.A.; Silva, N.L.; Sartori, Â.L.B.; Carollo, C.A.; Sobral, M.G.; Alves, S.N.; Silva, D.B.; de Siqueira, J.M. Larvicidal effect from different Annonaceae species on Culex quinquefasciatus. Environ. Sci. Pollut. Res. 2020, 27, 36983–36993. [Google Scholar] [CrossRef] [PubMed]
- Rady, I.; Bloch, M.B.; Chamcheu, R.N.; Banang Mbeumi, S.; Anwar, M.R.; Mohamed, H.; Babatunde, A.S.; Kuiate, J.R.; Noubissi, F.K.; El Sayed, K.A.; et al. Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review. Oxid. Med. Cell. Longev. 2018, 2018, 1826170. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.V.; de Souza, C.A.S.; Galvão, A.F.C.; Silva, V.R.; Santos, L.d.S.; Dias, R.B.; Rocha, C.A.G.; Soares, M.B.P.; da Silva, F.M.A.; Koolen, H.H.F.; et al. Duguetia pycnastera Sandwith (Annonaceae) Leaf Essential Oil Inhibits HepG2 Cell Growth In Vitro and In Vivo. Molecules 2022, 27, 5664. [Google Scholar] [CrossRef] [PubMed]
- Galvão, A.F.C.; Araújo, M.d.S.; Silva, V.R.; Santos, L.d.S.; Dias, R.B.; Rocha, C.A.G.; Soares, M.B.P.; Silva, F.M.A.d.; Koolen, H.H.F.; Zengin, G.; et al. Antitumor Effect of Guatteria olivacea R. E. Fr. (Annonaceae) Leaf Essential Oil in Liver Cancer. Molecules 2022, 27, 4407. [Google Scholar] [CrossRef] [PubMed]
- Terezan, A.P.; Junqueira, J.G.M.; Wakui, V.G.; Kato, L.; Oliveira, C.M.A.; Martins, C.H.G.; Santiago, M.B.; Severino, V.G.P. Qualitative analysis of the acetogenins from Annona coriacea (Annonaceae) leaves by HPLC-Q-Orbitrap and their antibacterial potential against oral pathogens. Nat. Prod. Res. 2022, 36, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Aminimoghadamfarouj, N.; Nematollahi, A.; Wiart, C. Annonaceae: Bio-resource for tomorrow’s drug discovery. J. Asian Nat. Prod. Res. 2011, 13, 465–476. [Google Scholar] [CrossRef]
- Okpekon, T.A.; Kabran, F.A.; Say, V.M.; Evanno, L.; Maciuk, A.; Loiseau, P.; Champy, P.; Figadère, B. Apoprunellelactone (APL), an antiprotozoal lactone from the stem barks of Isolona cooperi Hutch. & Dalziel (Annonaceae). Nat. Prod. Res. 2021, 35, 5112–5119. [Google Scholar]
- Kayo, M.T.; Simo, M.K.; Tagatsing Fotsing, M.; Talla, E.; Laurent, S.; Elst, L.V.; Henoumont, C.; Yankep, E.; Alfred Ngenge, T.; Keumoe, R.; et al. Antifungal potential of extracts, fractions and compounds from Uvaria comperei (Annonaceae) and Oxyanthus unilocularis (Rubiaceae). Nat. Prod. Res. 2021, 35, 5732–5736. [Google Scholar] [CrossRef]
- Tundis, R.; Xiao, J.; Loizzo, M.R. Annona species (Annonaceae): A rich source of potential antitumor agents? Ann. N. Y. Acad. Sci. 2017, 1398, 30–36. [Google Scholar] [CrossRef]
- Andriamadio, J.H.; Rasoanaivo, L.H.; Benedec, D.; Vlase, L.; Gheldiu, A.M.; Duma, M.; Toiu, A.; Raharisololalao, A.; Oniga, I. HPLC/MS analysis of polyphenols, antioxidant and antimicrobial activities of Artabotrys hildebrandtii O. Hffm. extracts. Nat. Prod. Res. 2015, 29, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Quang Hop, N.; The Son, N. Botanical Description, Traditional Uses, Phytochemistry, and Pharmacology of the Genus Artabotrys: A Review. Chem. Biodivers. 2022, 19, e202200725. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.J.; Chang, F.R.; Chia, Y.C.; Chen, C.Y.; Lin, H.C.; Chiu, H.F.; Wu, Y.C. The Alkaloids of Artabotrys uncinatus. J. Nat. Prod. 2001, 64, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.K.; Khoo, T.J.; Rajagopal, M.; Wiart, C. Antibacterial alkaloids from Artabotrys crassifolius Hook.f. & Thomson. Nat. Prod. Res. 2015, 29, 2346–2349. [Google Scholar] [PubMed]
- Wong, H.F.; Brown, G.D. β-Methoxy-γ-methylene-α,β-unsaturated-γ-butyrolactones from Artabotrys hexapetalus. Phytochemistry 2002, 59, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.T.; Cao, S.; Brodie, P.J.; Miller, J.S.; Ratovoson, F.; Birkinshaw, C.; Rakotobe, E.; Rasamison, V.E.; Tendyke, K.; Suh, E.M.; et al. Antiproliferative compounds of Artabotrys madagascariensis from the Madagascar rainforest. Nat. Prod. Res. 2008, 22, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.Y.; Liu, Y.P.; Ju, P.K.; Luo, X.L.; Zhang, Z.J.; Ren, P.; Lai, L.; Chen, G.Y.; Fu, Y.H. A new polyoxygenated cyclohexene derivative from Artabotrys hainanensis. Nat. Prod. Res. 2018, 32, 1727–1732. [Google Scholar] [CrossRef]
- Liu, Y.P.; Tang, J.Y.; Hua, Y.; Lai, L.; Luo, X.L.; Zhang, Z.J.; Yin, W.Q.; Chen, G.Y.; Fu, Y.H. Bioactive polyoxygenated seco-cyclohexenes from Artabotrys hongkongensis. Bioorg. Chem. 2018, 76, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Jingguang, Y.; Tongmei, L.; Lan, S.; Xiuzhen, L. Neo-Lignans and Hemiterpenoid from the Seeds of Artabostrys hexapetalus (Annonaceae). J. Chin. Pharm. Sci. 2002, 11, 4–10. [Google Scholar]
- Somanawat, J.; Talangsri, N.; Deepolngam, S.; Kaewamatawong, R. Flavonoid and megastigmane glycosides from Artabotrys hexapetalus leaves. Biochem. Syst. Ecol. 2012, 44, 124–127. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, N.; Jafri, M.; Mehta, B. Anthraquinones from Artabotrys odoratissimus (Leaves). Indian J. Chem. 2005, 44, 1740–1741. [Google Scholar]
- Xi, F.M.; Ma, S.G.; Liu, Y.B.; Li, L.; Yu, S.S. Artaboterpenoids A and B, Bisabolene-Derived Sesquiterpenoids from Artabotrys hexapetalus. Org. Lett. 2016, 18, 3374–3377. [Google Scholar] [CrossRef]
- Achoub, H.; Mencherini, T.; Esposito, T.; Luca, R.; Aquino, R.; Gazzerro, P.; Zaiter, L.; Benayache, F.; Benayache, S. New sesquiterpenes from Asteriscus graveolens. Nat. Prod. Res. 2021, 35, 2190–2198. [Google Scholar] [CrossRef] [PubMed]
- Eddin, L.B.; Jha, N.K.; Goyal, S.N.; Agrawal, Y.O.; Subramanya, S.B.; Bastaki, S.M.A.; Ojha, S. Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol. Nutrients 2022, 14, 1370. [Google Scholar] [CrossRef] [PubMed]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Zhao, J.P.; Hu, J.; Yang, M.; Jacob, M.; Cai, X.; Zeng, R.; Chen, S.H.; Huang, H.Y.; Khan, I.; et al. Two new bicyclic sesquiterpenes from the stems of Kadsura heteroclita. Nat. Prod. Res. 2014, 28, 1197–1201. [Google Scholar] [CrossRef] [PubMed]
- Le Bideau, F.; Kousara, M.; Chen, L.; Wei, L.; Dumas, F. Tricyclic Sesquiterpenes from Marine Origin. Chem. Rev. 2017, 117, 6110–6159. [Google Scholar] [CrossRef]
- Hemtasin, C.; Kanokmedhakul, S.; Kanokmedhakul, K.; Hahnvajanawong, C.; Soytong, K.; Prabpai, S.; Kongsaeree, P. Cytotoxic Pentacyclic and Tetracyclic Aromatic Sesquiterpenes from Phomopsis archeri. J. Nat. Prod. 2011, 74, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Zhang, F.L.; Feng, T. Sesquiterpenoids Specially Produced by Fungi: Structures, Biological Activities, Chemical and Biosynthesis (2015–2020). J. Fungi 2021, 7, 1026. [Google Scholar] [CrossRef]
- Durairaj, J.; Di Girolamo, A.; Bouwmeester, H.J.; de Ridder, D.; Beekwilder, J.; van Dijk, A.D. An analysis of characterized plant sesquiterpene synthases. Phytochemistry 2019, 158, 157–165. [Google Scholar] [CrossRef]
- Yan, H.; Xu, L.L.; Zheng, X.F.; Zou, X.F.; Xiao, L.G.; Zhou, Y.S.; He, L.; Liu, H.Y. Sesquiterpenes from Chloranthus holostegius with anti-inflammatory activities. Fitoterapia 2024, 172, 105766. [Google Scholar] [CrossRef] [PubMed]
- Rajachan, O.a.; Sangdee, A.; Kanokmedhakul, K.; Tontapha, S.; Amornkitbamrung, V.; Kanokmedhakul, S. Cyclofarnesane sesquiterpenoids from the fungus Sanghuangporus sp. Phytochem. Lett. 2020, 37, 17–20. [Google Scholar] [CrossRef]
- Zou, J.X.; Song, Y.P.; Liu, X.H.; Li, X.N.; Ji, N.Y. Bisabolane, cadinane, and cyclonerane sesquiterpenes from an algicolous strain of Trichoderma asperelloides. Bioorg. Chem. 2021, 115, 105223. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.F.; Liu, J.X.; Xie, Z.Q.; Wang, D.S.; Nie, W.; Song, L.D.; Wu, X.D.; Zhao, Q.S. Magnograndins J-M, elemane sesquiterpenoids from the leaves of Magnolia grandiflora and their inhibitory effects on nitric oxide production. Phytochem. Lett. 2019, 31, 121–124. [Google Scholar] [CrossRef]
- Wu, Q.X.; Shi, Y.P.; Jia, Z.J. Eudesmane sesquiterpenoids from the Asteraceae family. Nat. Prod. Rep. 2006, 23, 699–734. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.P.; Savchenko, A.I.; Agnew-Francis, K.A.; Boyle, G.M.; Bernhardt, P.V.; Fraser, J.A.; Williams, C.M. Kalparinol, a Salvialane (Isodaucane) Sesquiterpenoid Derived from Native Australian Dysphania Species That Suggests a Putative Biogenetic Link to Zerumbone. J. Nat. Prod. 2020, 83, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.M.; Zhang, D.W.; Du, W.Y.; Zhang, M.; Zhao, J.L.; Chen, R.D.; Xie, K.B.; Dai, J.G. Sesquiterpenes from the endophytic fungus Periconia sp. F-31. J. Asian Nat. Prod. Res. 2022, 24, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, J.; Wang, W.; Li, L.; Zhang, L.; Zhao, X.F.; Liu, Q.R.; Liu, F.; Yang, M.; Khan, I.A.; et al. New Acorane-Type Sesquiterpene from Acorus calamus L. Molecules 2017, 22, 529. [Google Scholar] [CrossRef] [PubMed]
- Yuyama, K.T.; Fortkamp, D.; Abraham, W.R. Eremophilane-type sesquiterpenes from fungi and their medicinal potential. Biol. Chem. 2017, 399, 13–28. [Google Scholar] [CrossRef]
- Arizmendi, N.; Hou, C.; Guo, F.; Li, Y.; Kulka, M. Bicyclic eremophilane-type petasite sesquiterpenes potentiate peroxisome proliferator-activated receptor γ activator-mediated inhibition of dendritic cells. Int. J. Immunopathol. Pharmacol. 2018, 32, 2058738418787739. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, X.; Liu, H.; Luo, X.; Sung, P.J.; Li, P.; Li, G. Clavukoellians G–K, New Nardosinane and Aristolane Sesquiterpenoids with Angiogenesis Promoting Activity from the Marine Soft Coral Lemnalia sp. Mar. Drugs 2020, 18, 171. [Google Scholar] [CrossRef]
- Buechi, G.; Hofheinz, W.; Paukstelis, J.V. Synthesis of (-)-aromadendrene and related sesquiterpenes. J. Am. Chem. Soc. 1969, 91, 6473–6478. [Google Scholar] [CrossRef]
- Li, C.; Liu, K.; Liu, S.; Aerqin, Q.; Wu, X. Role of Ginkgolides in the Inflammatory Immune Response of Neurological Diseases: A Review of Current Literatures. Front. Syst. Neurosci. 2020, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Hien, N.T.; Cuc, D.T.; Thuy, N.T.T.; Hiep, H.; Huyen, V.T.; Ai, D.T.T.; Nhiem, N.X. Labdane- type diterpenoids and sesquiterpenes from Curcuma aromatica and their nitric oxide inhibitory activity in lipopolysaccharide-stimulated RAW264.7 macrophages. J. Asian Nat. Prod. Res. 2023, 26, 387–393. [Google Scholar] [CrossRef]
- Park, H.J.; Kwon, S.H.; Yoo, K.O.; Sohn, I.C.; Lee, K.T.; Lee, H.K. Sesquiterpenes from the leaves of Ligularia fischeri var. spiciformis. Planta Med. 2000, 66, 783–784. [Google Scholar] [CrossRef] [PubMed]
- Descoins, C., Jr.; Bazzocchi, I.L.; Ravelo, A.G. New Sesquiterpenes from Euonymus europaeus (Celastraceae). Chem. Pharm. Bull. 2002, 50, 199–202. [Google Scholar] [CrossRef]
- Yang, X.Y.; Niu, W.R.; Li, R.T.; Cui, X.M.; Liu, J.K. Two new sesquiterpenes from cultures of the higher fungus Pholiota nameko. Nat. Prod. Res. 2019, 33, 1992–1996. [Google Scholar] [CrossRef]
- Shi, Z.Z.; Fang, S.T.; Miao, F.P.; Yin, X.L.; Ji, N.Y. Trichocarotins A–H and trichocadinin A, nine sesquiterpenes from the marine-alga-epiphytic fungus Trichoderma virens. Bioorg. Chem. 2018, 81, 319–325. [Google Scholar] [CrossRef]
- Rodriguez, S.; Kirby, J.; Denby, C.M.; Keasling, J.D. Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nat. Protoc. 2014, 9, 1980–1996. [Google Scholar] [CrossRef]
- Song, Y.P.; Fang, S.T.; Miao, F.P.; Yin, X.L.; Ji, N.Y. Diterpenes and Sesquiterpenes from the Marine Algicolous Fungus Trichoderma harzianum X-5. J. Nat. Prod. 2018, 81, 2553–2559. [Google Scholar] [CrossRef]
- Torii, M.; Kato, H.; Hitora, Y.; Angkouw, E.D.; Mangindaan, R.E.P.; de Voogd, N.J.; Tsukamoto, S. Lamellodysidines A and B, Sesquiterpenes Isolated from the Marine Sponge Lamellodysidea herbacea. J. Nat. Prod. 2017, 80, 2536–2541. [Google Scholar] [CrossRef] [PubMed]
- Thebtaranonth, C.; Thebtaranonth, Y.; Wanauppathamkul, S.; Yuthavong, Y. Antimalarial sesquiterpenes from tubers of Cyperus rotundus: Structure of 10,12-Peroxycalamenene, a sesquiterpene endoperoxide. Phytochemistry 1995, 40, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Bartikova, H.; Hanusova, V.; Skalova, L.; Ambroz, M.; Bousova, I. Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Curr. Top. Med. Chem. 2014, 14, 2478–2494. [Google Scholar] [CrossRef] [PubMed]
- Nuermaimaiti, M.; Turak, A.; Yang, Q.; Tang, B.; Zang, Y.; Li, J.; Aisa, H.A. Sesquiterpenes from Artemisia Sieversiana and their anti-inflammatory activities. Fitoterapia 2021, 154, 104996. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Li, B.C.; Dai, W.F.; Liu, L.; Zhang, M. Highly oxidized sesquiterpenes from Artemisia austro-yunnanensis. Fitoterapia 2016, 115, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Xu, W.; Liu, C.; Zhou, D.; Liu, X.; Qin, Y.; Cao, F.; Li, J.; Yang, R.; Qin, J. Eremophilane sesquiterpenes from the endophytic fungus Xylaria sp. GDG-102. Nat. Prod. Res. 2019, 33, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Hansson, D.; Menkis, A.; Himmelstrand, K.; Thelander, M.; Olson, Å.; Stenlid, J.; Karlsson, M.; Broberg, A. Sesquiterpenes from the conifer root rot pathogen Heterobasidion occidentale. Phytochemistry 2012, 82, 158–165. [Google Scholar] [CrossRef]
- Lim, P.C.; Ali, Z.; Khan, I.A.; Khan, S.I.; Kassim, N.K.; Awang, K.; Shaari, K.; Ismail, A. Cytotoxic constituent of Melicope latifolia (DC.) T. G. Hartley. Nat. Prod. Res. 2022, 36, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.l.; Li, J.Y.; Sun, Z.S.; Yang, Y.X.; Xu, X.K.; Li, H.L.; Zhang, W.D. Vlasouliodes A-D, four new C30 dimeric sesquiterpenes exhibiting potential inhibition of MCF-7 cells from Vladimiria souliei. Fitoterapia 2022, 161, 105234. [Google Scholar] [CrossRef]
- Li, C.S.; Liu, L.T.; Yang, L.; Li, J.; Dong, X. Chemistry and Bioactivity of Marine-Derived Bisabolane Sesquiterpenoids: A Review. Front. Chem. 2022, 10, 881767. [Google Scholar] [CrossRef]
- Hu, S.; Ma, Y.L.; Guo, J.M.; Wen, Q.; Yan, G.; Yang, S.; Fu, Y.H.; Liu, Y.P. Bisabolane sesquiterpenes from Clausena sanki with their potential anti-inflammatory activities. Nat. Prod. Res. 2020, 34, 3499–3505. [Google Scholar] [CrossRef]
- Shu, H.Z.; Peng, C.; Bu, L.; Guo, L.; Liu, F.; Xiong, L. Bisabolane-type sesquiterpenoids: Structural diversity and biological activity. Phytochemistry 2021, 192, 112927. [Google Scholar] [CrossRef]
- Liang, X.T.; Yu, D.Q.; Wu, W.L.; Deng, H.C. The structure of yingzhaosu A. Acta Chim. Sin. 1979, 37, 215–230. [Google Scholar]
- Liang, X.T.; Yu, D.Q.; Pan, W.D. The structure of yingzhaosu B. Acta Chim. Sin. 1979, 37, 231–240. [Google Scholar]
- Zhang, L.; Zhou, W.S.; Xu, X. A new sesquiterpene peroxide (yingzhaosu C) and sesquiterpenol (yingzhaosu D) from Artabotrys unciatus (L.) Meer. J. Chem. Soc. Chem. Commun. 1988, 523–524. [Google Scholar]
- Xi, F.M.; Liu, Y.B.; Qu, J.; Li, Y.; Tang, Z.H.; Li, L.; Li, Y.H.; Chen, X.G.; Ma, S.G.; Yu, S.S. Bioactive sesquiterpenoids from the roots of Artabotrys hexapetalus. Tetrahedron 2017, 73, 571–582. [Google Scholar] [CrossRef]
- Wang, T.W. Study on Structures and Antitumor Activities of Chemical Constituents from Artabotrys pilosus. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2016. [Google Scholar]
- Gu, C.; Yin, A.P.; Yuan, H.Y.; Yang, K.; Luo, J.; Zhan, Y.J.; Yang, C.R.; Zuo, D.M.; Li, H.Z.; Xu, M. New anti-HBV norbisabolane sesquiterpenes from Phyllantus acidus. Fitoterapia 2019, 137, 104151. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.L.; Liu, Y.P.; Chen, G.Y.; Han, C.R.; Song, X.P.; Zhong, X.; Fu, Y.H. Sesquiterpenes from Artabotrys hongkongensis. China J. Chin. Mater. Med. 2017, 42, 3146–3151. [Google Scholar]
- Jang, H.J.; Lee, S.; Lee, S.J.; Lim, H.J.; Jung, K.; Kim, Y.H.; Lee, S.W.; Rho, M.C. Anti-inflammatory Activity of Eudesmane-Type Sesquiterpenoids from Salvia plebeia. J. Nat. Prod. 2017, 80, 2666–2676. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cai, C.H.; Guo, Z.K.; Wang, H.; Zuo, W.J.; Dong, W.H.; Mei, W.L.; Dai, H.F. Five new eudesmane-type sesquiterpenoids from Chinese agarwood induced by artificial holing. Fitoterapia 2015, 100, 44–49. [Google Scholar] [CrossRef]
- Alarif, W.M.; Al-Footy, K.O.; Zubair, M.S.; Halid Ph, M.; Ghandourah, M.A.; Basaif, S.A.; Al-Lihaibi, S.S.; Ayyad, S.E.N.; Badria, F.A. The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red alga Laurencia obtusa as potential antifungal–antitumour agents. Nat. Prod. Res. 2016, 30, 1150–1155. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhu, R.; Li, Y.; Li, Y.; Qiao, Y.; Zhou, J.; Lou, H. Cyperane and eudesmane-type sesquiterpenoids from Chinese liverwort and their anti-diabetic nephropathy potential. RSC Adv. 2018, 8, 39091–39097. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.F.; Xu, H.; Wang, J.D.; Tong, X.M.; Zhan, Z.J.; Ying, Y.M.; Wang, J.W.; Zhang, H.; Shan, W.G. Three new eudesmane sesquiterpenoids and a new dimer from the aerial part of Salvia plebeia R. Br. Phytochem. Lett. 2018, 25, 122–125. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, Y.P.; Yan, G.; Yang, S.; Hu, S.; Hua, J.; Yin, W.Q.; Chen, G.Y.; Fu, Y.H. Bioactive Eudesmane sesquiterpenes from Artabotrys hongkongensis Hance. Nat. Prod. Res. 2020, 34, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.Y. Study on the Chemical Constituents and Antitumor Activities of Artabotrys hainanensis R.E.Fries. Master’s Thesis, Fujian University of Tradition Chinese Medicine, Fuzhou, China, 2018. [Google Scholar]
- Li, Y.; Liu, J.; Wu, Y.; Li, Y.; Guo, F. Guaiane-type sesquiterpenes from Curcuma wenyujin. Phytochemistry 2022, 198, 113164. [Google Scholar] [CrossRef]
- Ma, G.H.; Chen, K.X.; Zhang, L.Q.; Li, Y.M. Advance in biological activities of natural guaiane-type sesquiterpenes. Med. Chem. Res. 2019, 28, 1339–1358. [Google Scholar] [CrossRef]
- Fleischer, T.C.; Waigh, R.D.; Waterman, P.G. Pogostol O-methyl ether and artabotrol: Two novel sesquiterpenes from the stem bark of Artabotrys stenopetalus. J. Nat. Prod. 1997, 60, 1054–1056. [Google Scholar] [CrossRef]
- Achenbach, H.; Schwinn, A. Aporphinoid alkaloids and terpenoids from Piptostigma fugax. Phytochemistry 1995, 38, 1037–1048. [Google Scholar] [CrossRef]
- Chen, G.Y.; Zhu, G.Y.; Han, C.R.; Li, Q.Y.; Fang, H.X.; Bi, H.P. Studies on sesquiterpenoids from the flowers of Artabotrys hainanensis. Chin. Tradit. Herb. Drugs 2005, 36, 1619–1620. [Google Scholar]
- Peng, G.P.; Tian, G.; Huang, X.F.; Lou, F.C. Guaiane-type sesquiterpenoids from Alisma orientalis. Phytochemistry 2003, 63, 877–881. [Google Scholar] [CrossRef]
- Ai, H.L.; Lv, X.; Ye, K.; Wang, M.X.; Huang, R.; Shi, B.B.; Li, Z.H. Four New Highly Oxygenated Eremophilane Sesquiterpenes from an Endophytic Fungus Boeremia exigua Isolated from Fritillaria hupehensis. J. Fungi 2022, 8, 492. [Google Scholar] [CrossRef]
- Niu, S.; Liu, D.; Shao, Z.; Proksch, P.; Lin, W. Eremophilane-type sesquiterpenoids in a deep-sea fungus Eutypella sp. activated by chemical epigenetic manipulation. Tetrahedron 2018, 74, 7310–7325. [Google Scholar] [CrossRef]
- Zhang, W.; Meng, Q.; Wu, J.; Cheng, W.; Liu, D.; Huang, J.; Fan, A.; Xu, J.; Lin, W. Acorane sesquiterpenes from the deep-sea derived Penicillium bilaiae fungus with anti-neuroinflammatory effects. Front. Chem. 2022, 10, 1036212. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.Y.; Li, M.; Li, W.R.; Gao, R.M.; Su, G.Z.; Wang, H.Q.; Yang, J.; Li, L.; Li, Y.H.; Scott, P.; et al. Seco-Sesquiterpenes and acorane-type sesquiterpenes with antiviral activity from the twigs and leaves of Illicium henryi Diels. Bioorg. Chem. 2023, 131, 106324. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Ren, Q.; Tang, Y.X.; Zhao, F.; Lin, B.; Huang, X.X.; Song, S.J. Sesquiterpenoids from the roots of Daphne genkwa Siebold et Zucc. with potential anti-inflammatory activity. Phytochemistry 2020, 174, 112348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, J.L.; Liu, J.M.; Chen, R.D.; Xie, K.B.; Chen, D.W.; Feng, K.P.; Zhang, D.; Dai, J.G. Neural anti-inflammatory sesquiterpenoids from the endophytic fungus Trichoderma sp. Xy24. J. Asian Nat. Prod. Res. 2017, 19, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wen, Y.; Peng, Y.; Chen, T.; Chen, J.; Yang, J.; Gong, T.; Zhu, P. Advances in biosynthesis of cadinane sesquiterpenes. Chin. J. Biotechnol. 2021, 37, 1952–1967. [Google Scholar]
- Zhou, C.X.; Zhang, L.S.; Chen, F.F.; Wu, H.S.; Mo, J.X.; Gan, L.S. Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells. Fitoterapia 2017, 121, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.C.; Han, C.; Xu, J.L.; Liu, R.H.; Yin, Y.; Wang, X.B.; Yang, M.H.; Kong, L.Y. Twelve formyl phloroglucinol meroterpenoids from the leaves of Eucalyptus robusta. Phytochemistry 2019, 163, 111–117. [Google Scholar] [CrossRef]
- Qin, D.P.; Pan, D.B.; Xiao, W.; Li, H.B.; Yang, B.; Yao, X.J.; Dai, Y.; Yu, Y.; Yao, X.S. Dimeric Cadinane Sesquiterpenoid Derivatives from Artemisia annua. Org. Lett. 2018, 20, 453–456. [Google Scholar] [CrossRef]
- Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496, 528–532. [Google Scholar] [CrossRef]
- Wang, L.X.; Jiang, X.J.; Li, X.M.; Mao, M.F.; Wei, G.Z.; Wang, F. Aristolane-type Sesquiterpenoids from Nardostachys chinensis and Revised Structure of Aristolanhydride. Nat. Prod. Bioprospect. 2019, 9, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Durán-Peña, M.J.; Botubol Ares, J.M.; Hanson, J.R.; Collado, I.G.; Hernández-Galán, R. Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit. Nat. Prod. Rep. 2015, 32, 1236–1248. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Ying, S.S.; Zheng, H.H.; Liu, Y.T.; Wang, Z.P.; Zhang, H.; Deng, X.; Wu, Y.J.; Gao, X.M.; Li, T.X.; et al. Novel serotonin transporter regulators: Natural aristolane- and nardosinane- types of sesquiterpenoids from Nardostachys chinensis Batal. Sci. Rep. 2017, 7, 15114. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.H.; Wang, H.Y.; Wu, C.C.; Chen, S.L.; Chang, C.L.; Chang, F.R.; Wu, Y.C. New Constituents from Stems of Artabotrys uncinatus. Chem. Pharm. Bull. 2007, 55, 1597–1599. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.M.; Yang, Q.; Zang, Y.; Li, J.; Liu, X.; Guo, Y.W. Anti-inflammatory aromadendrane-and cadinane-type sesquiterpenoids from the South China Sea sponge Acanthella cavernosa. Beilstein J. Org. Chem. 2022, 18, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Zhang, J.Z.; Li, Y.L.; Xu, Z.J.; Qiao, Y.N.; Yuan, S.Z.; Tang, Y.J.; Lou, H.X. Heterodimers of Aromadendrane Sesquiterpenoid with Benzoquinone from the Chinese Liverwort Mylia nuda. J. Nat. Prod. 2024, 87, 132–140. [Google Scholar] [CrossRef]
- Mahidol, C.; Chimnoi, N.; Chokchaichamnankit, D.; Techasakul, S. Identification of volatile constituents in Artabotrys hexapetalus flowers using simple headspace solvent-trapping technique in combination with gas chromatography-mass spectrometry and retention indices. Acta Hortic. 2005, 667, 43–50. [Google Scholar] [CrossRef]
- Brabin, B.J. Malaria’s contribution to World War One–the unexpected adversary. Malar. J. 2014, 13, 497. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, Z.Q.; Wang, D.; Hu, Y.B.; Qian, D.; Yang, C.Y.; Zhou, R.M.; Li, S.H.; Lu, D.L.; Zhang, H.W. One Health approach to improve the malaria elimination programme in Henan Province. Adv. Parasitol. 2022, 116, 153–186. [Google Scholar]
- Garrido-Cardenas, J.A.; González-Cerón, L.; Manzano-Agugliaro, F.; Mesa-Valle, C. Plasmodium Genomics: An approach for learning about and ending human malaria. Parasitol. Res. 2019, 118, 1–27. [Google Scholar] [CrossRef]
- Barber, B.E.; Grigg, M.J.; Cooper, D.J.; van Schalkwyk, D.A.; William, T.; Rajahram, G.S.; Anstey, N.M. Clinical management of Plasmodium knowlesi malaria. Adv. Parasitol. 2021, 113, 45–76. [Google Scholar] [PubMed]
- Fuehrer, H.P.; Campino, S.; Sutherland, C.J. The primate malaria parasites Plasmodium malariae, Plasmodium brasilianum and Plasmodium ovale spp.: Genomic insights into distribution, dispersal and host transitions. Malar. J. 2022, 21, 138. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S. Immunity to malaria. Proc. R. Soc. Lond. B Biol. Sci. 1979, 203, 323–345. [Google Scholar]
- Walker, I.S.; Rogerson, S.J. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023, 14, 2150456. [Google Scholar] [CrossRef] [PubMed]
- White, N.J. The role of anti-malarial drugs in eliminating malaria. Malar. J. 2008, 7, S8. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.Y.; Tan, R.X. Artemisinin, a miracle of traditional Chinese medicine. Nat. Prod. Rep. 2015, 32, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C.; Hénichart, J.P. Advocacy for the Medicinal Plant Artabotrys hexapetalus (Yingzhao) and Antimalarial Yingzhaosu Endoperoxides. Molecules 2022, 27, 6192. [Google Scholar] [CrossRef]
- Liu, S.; Wei, C.; Liu, T.; Ma, S.G.; Chen, C.; Lin, H.; Zhang, L.; Wang, H.; Zhang, C.J.; Yu, S.S. A heme-activatable probe and its application in the high-throughput screening of Plasmodium falciparum ring-stage inhibitors. Signal Transduct. Tar. 2022, 7, 160. [Google Scholar] [CrossRef]
- Boukouvalas, J.; Pouliot, R.; Fréchette, Y. Concise synthesis of yingzhaosu C and epi-yingzhaosu C by peroxyl radical cyclization. Assignment of relative configuration. Tetrahedron Lett. 1995, 36, 4167–4170. [Google Scholar] [CrossRef]
- Xu, X.; Xie, X. Total synthesis of Yingzhaosu B and its three diastereoisomers. Chin. J. Chem. 2010, 12, 381–384. [Google Scholar] [CrossRef]
- Xu, X.X.; Hu, Q.S. Synthesis of the diastereoisomeric Yingzhaosu D. Chin. J. Chem. 1992, 10, 285–288. [Google Scholar]
- Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 2018, 146, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, L.; Bian, Y.; Li, Y.; Qu, J.; Song, F. The Antibacterial Activity of Quinazoline and Quinazolinone Hybrids. Curr. Top. Med. Chem. 2022, 22, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Rani, P.; Atanasov, A.G.; Alzahrani, Q.; Gupta, R.; Kapoor, B.; Gulati, M.; Chawla, P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev. Med. Chem. 2022, 22, 984–1029. [Google Scholar] [PubMed]
- D’Agostino, I.; Ardino, C.; Poli, G.; Sannio, F.; Lucidi, M.; Poggialini, F.; Visaggio, D.; Rango, E.; Filippi, S.; Petricci, E.; et al. Antibacterial alkylguanidino ureas: Molecular simplification approach, searching for membrane-based MoA. Eur. J. Med. Chem. 2022, 231, 114158. [Google Scholar] [CrossRef] [PubMed]
- Paulin, S.; Alm, R.A.; Beyer, P. A novel pre-clinical antibacterial pipeline database. PLoS ONE 2020, 15, e0236604. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Moreno-Morales, J.; Ballesté-Delpierre, C. Current landscape in the discovery of novel antibacterial agents. Clin. Microbiol. Infect. 2020, 26, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Cattoir, V.; Felden, B. Future Antibacterial Strategies: From Basic Concepts to Clinical Challenges. J. Infect. Dis. 2019, 220, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Nyandoro, S.S.; Joseph, C.C.; Nkunya, M.H.H.; Hosea, K.M.M. New antimicrobial, mosquito larvicidal and other metabolites from two Artabotrys species. Nat. Prod. Res. 2013, 27, 1450–1458. [Google Scholar] [CrossRef]
- Tan, M.; Zhou, L.; Huang, Y.; Wang, Y.; Hao, X.; Wang, J. Antimicrobial activity of globulol isolated from the fruits of Eucalyptus globulus Labill. Nat. Prod. Res. 2008, 22, 569–575. [Google Scholar] [CrossRef]
- Chulalaksananukul, W. Chemical composition and antibacterial activity of extracts from freshwater green algae, Cladophora glomerata Kützing and Microspora floccosa (Vaucher) Thuret. J. BioScience Biotechnol. 2014, 3, 211. [Google Scholar]
- Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tian, F.; Zhang, H.B.; Pilarinou, E.; McLaughlin, J.L. Biologically Active Blumenol A from the Leaves of Annona Glabra. Nat. Prod. Rep. 1999, 14, 77–81. [Google Scholar]
- Das, M.; Prakash, S.; Nayak, C.; Thangavel, N.; Singh, S.K.; Manisankar, P.; Devi, K.P. Dihydroactinidiolide, a natural product against Aβ25–35 induced toxicity in Neuro2a cells: Synthesis, in silico and in vitro studies. Bioorg. Chem. 2018, 81, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Park, K.R.; Nam, D.; Yun, H.M.; Lee, S.G.; Jang, H.J.; Sethi, G.; Cho, S.K.; Ahn, K.S. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett. 2011, 312, 178–188. [Google Scholar] [CrossRef]
- Martin, G.S. Cell signaling and cancer. Cancer Cell 2003, 4, 167–174. [Google Scholar] [CrossRef]
- Castaneda, C.A.; Cortes-Funes, H.; Gomez, H.L.; Ciruelos, E.M. The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metastasis Rev. 2010, 29, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, K.K.A.; Herath, K.H.I.N.M.; Yang, H.W.; Choi, C.S.; Jeon, Y.J. Anti-Inflammatory Mechanisms of Fucoidans to Treat Inflammatory Diseases: A Review. Mar. Drugs 2021, 19, 678. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- Rocha, D.H.A.; Pinto, D.C.G.A.; Silva, A.M.S. Macroalgae Specialized Metabolites: Evidence for Their Anti-Inflammatory Health Benefits. Mar. Drugs 2022, 20, 789. [Google Scholar] [CrossRef]
- Dinarello, C.A. Anti-inflammatory Agents: Present and Future. Cell 2010, 140, 935–950. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, S.; Shirzad, H.; Rafieian-Kopaei, M. Recent Findings in Molecular Basis of Inflammation and Anti-inflammatory Plants. Curr. Pharm. Des. 2018, 24, 1551–1562. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Jachak, S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 2009, 29, 767–820. [Google Scholar] [CrossRef]
- Cruz-Martins, N. Molecular Mechanisms of Anti-Inflammatory Phytochemicals. Int. J. Mol. Sci. 2022, 23, 11016. [Google Scholar] [CrossRef]
- Pekacar, S.; Bulut, S.; Özüpek, B.; Orhan, D.D. Anti-Inflammatory and Analgesic Effects of Rosehip in Inflammatory Musculoskeletal Disorders and Its Active Molecules. Curr. Mol. Pharmacol. 2021, 14, 731–745. [Google Scholar] [CrossRef]
- Elbandy, M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. Molecules 2023, 28, 2. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, T.J. Mechanisms of Phytochemicals in Anti-Inflammatory and Anti-Cancer. Int. J. Mol. Sci. 2023, 24, 7863. [Google Scholar] [CrossRef] [PubMed]
- Delgado, G.; del Socorro Olivares, M.; Chávez, M.I.; Ramírez-Apan, T.; Linares, E.; Bye, R.; Espinosa-García, F.J. Antiinflammatory Constituents from Heterotheca inuloides. J. Nat. Prod. 2001, 64, 861–864. [Google Scholar] [CrossRef]
- do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.D.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; et al. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef]
- Shi, D.; Song, X.; Guo, Y.; Xu, J.; Liu, Y.; Zhang, J.; Cui, C.A.; Jin, D.Q. Alismol, a Sesquiterpenoid Isolated from Vladimiria souliei, Suppresses Proinflammatory Mediators in Lipopolysaccharide-Stimulated Microglia. J. Mol. Neurosci. 2017, 62, 106–113. [Google Scholar] [CrossRef]
- Kumari, R.; Sharma, S.D.; Kumar, A.; Ende, Z.; Mishina, M.; Wang, Y.; Falls, Z.; Samudrala, R.; Pohl, J.; Knight, P.R.; et al. Antiviral Approaches against Influenza Virus. Clin. Microbiol. Rev. 2023, 36, e0004022. [Google Scholar] [CrossRef] [PubMed]
- Gudima, G.; Kofiadi, I.; Shilovskiy, I.; Kudlay, D.; Khaitov, M. Antiviral Therapy of COVID-19. Int. J. Mol. Sci. 2023, 24, 8867. [Google Scholar] [CrossRef] [PubMed]
- Beheshtirouy, S.; Khani, E.; Khiali, S.; Entezari-Maleki, T. Investigational antiviral drugs for the treatment of COVID-19 patients. Arch. Virol. 2022, 167, 751–805. [Google Scholar] [CrossRef] [PubMed]
- Chareonkla, A.; Pohmakotr, M.; Reutrakul, V.; Yoosook, C.; Kasisit, J.; Napaswad, C.; Tuchinda, P. A new diarylheptanoid from the rhizomes of Zingiber mekongense. Fitoterapia 2011, 82, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Yanda, L.; Tatsimo, S.J.N.; Tamokou, J.D.D.; Matsuete-Takongmo, G.; Meffo-Dongmo, S.C.; Meli Lannang, A.; Sewald, N. Antibacterial and Antioxidant Activities of Isolated Compounds from Prosopis africana Leaves. Int. J. Anal. Chem. 2022, 2022, 4205823. [Google Scholar] [CrossRef]
- Chaudhary, A.K.; Ahmad, S.; Mazumder, A. Isolation, structural elucidation and in vitro antioxidant activity of compounds from chloroform extract of Cedrus deodara (Roxb.) Loud. Nat. Prod. Res. 2015, 29, 268–273. [Google Scholar] [CrossRef]
No. | Species | Distribution |
---|---|---|
1 | Artabotrys aereus Ast | Vietnam |
2 | Artabotrys antunesii Engl. & Diels | Angola |
3 | Artabotrys arachnoides J.Sinclair | New Guinea |
4 | Artabotrys atractocarpus I.M.Turner | Borneo |
5 | Artabotrys aurantiacus Engl. | Cameroon, Central African Repu, Congo, Gabon, Zaïre |
6 | Artabotrys blumei Hook.f. & Thomson | China South-Central, China Southeast, Hainan, Vietnam |
7 | Artabotrys brachypetalus Benth. | Botswana, Caprivi Strip, Malawi, Mozambique, Northern Provinces, Tanzania, Zambia, Zaïre, Zimbabwe |
8 | Artabotrys brevipes Craib | Laos, Thailand |
9 | Artabotrys burmanicus A.DC. | Assam, Myanmar |
10 | Artabotrys byrsophyllus I.M.Turner & Utteridge | Malaya, Thailand |
11 | Artabotrys cagayanensis Merr. | Philippines |
12 | Artabotrys camptopetalus Diels | New Guinea |
13 | Artabotrys carnosipetalus Jessup | Queensland |
14 | Artabotrys caudatus Wall. ex Hook.f. & Thomson | Assam, Bangladesh, East Himalaya |
15 | Artabotrys chitkokoi K.Z.Hein, Naive & J.Chen | Myanmar |
16 | Artabotrys coccineus Keay | Nigeria |
17 | Artabotrys collinus Hutch. | Tanzania, Zambia |
18 | Artabotrys congolensis De Wild. & T.Durand | Cameroon, Central African Repu, Congo, Gabon, Zaïre |
19 | Artabotrys costatus King | Borneo, Malaya |
20 | Artabotrys crassifolius Hook.f. & Thomson | Malaya, Myanmar, Thailand |
21 | Artabotrys crassipetalus Pellegr. | Gabon |
22 | Artabotrys cumingianus S.Vidal | Philippines |
23 | Artabotrys darainensis Deroin & L.Gaut. | Madagascar |
24 | Artabotrys dielsianus Le Thomas | Cameroon |
25 | Artabotrys fragrans Jovet-Ast | China South-Central, China Southeast, Vietnam |
26 | Artabotrys gossweileri Baker f. | Cabinda |
27 | Artabotrys gracilis King | Borneo, Malaya, Sumatera |
28 | Artabotrys grandifolius King | Malaya, Sumatera |
29 | Artabotrys hainanensis R.E.Fr. | China Southeast, Hainan |
30 | Artabotrys harmandii Finet & Gagnep. | Cambodia, Laos, Thailand, Vietnam |
31 | Artabotrys hexapetalus (L.f.) Bhandari | Comoros, India, Laos, Sri Lanka |
32 | Artabotrys hienianus Bân | Vietnam |
33 | Artabotrys hildebrandtii O.Hoffm. | Madagascar |
34 | Artabotrys hirtipes Ridl. | Borneo |
35 | Artabotrys hispidus Sprague & Hutch. | Guinea, Ivory Coast, Liberia, Sierra Leone |
36 | Artabotrys inodorus Zipp. | New Guinea |
37 | Artabotrys insignis Engl. & Diels | Benin, Cameroon, Congo, Gabon, Ghana, Guinea, Ivory Coast, Liberia, Sierra Leone, Zaïre |
38 | Artabotrys insurae Junhao Chen & Eiadthong | Thailand |
39 | Artabotrys jacques-felicis Pellegr. | Cameroon, Central African Repu, Zaïre |
40 | Artabotrys javanicus I.M.Turner | Jawa |
41 | Artabotrys jollyanus Pierre | Cameroon, Guinea, Ivory Coast, Liberia |
42 | Artabotrys kinabaluensis I.M.Turner | Borneo |
43 | Artabotrys kurzii Hook.f. & Thomson | Myanmar |
44 | Artabotrys lanuginosus Boerl. | Borneo, Sulawesi, Sumatera |
45 | Artabotrys lastoursvillensis Pellegr. | Gabon, Uganda |
46 | Artabotrys letestui Pellegr. | Congo, Gabon |
47 | Artabotrys libericus Diels | Liberia |
48 | Artabotrys likimensis De Wild. | Burundi, Central African Repu, Kenya, Rwanda, Uganda, Zaïre |
49 | Artabotrys longipetalus Junhao Chen & Eiadthong | Thailand |
50 | Artabotrys longistigmatus Nurainas | Sumatera |
51 | Artabotrys lowianus King | Malaya |
52 | Artabotrys luteus Elmer | Philippines |
53 | Artabotrys luxurians Ghesq. ex Cavaco & Keraudr. | Madagascar |
54 | Artabotrys macrophyllus Hook.f. | Gulf of Guinea Is. |
55 | Artabotrys macropodus I.M.Turner | Borneo |
56 | Artabotrys madagascariensis Miq. | Madagascar |
57 | Artabotrys maingayi Hook.f. & Thomson | Borneo, Malaya |
58 | Artabotrys manoranjanii M.V.Ramana, J.Swamy & K.C.Mohan | Andaman Is. |
59 | Artabotrys modestus Diels | Tanzania |
60 | Artabotrys monteiroae Oliv. | Angola, Burundi, Ethiopia, Kenya, KwaZulu-Natal, Madagascar, Malawi, Mozambique, Northern Provinces, Rwanda, Sudan, Swaziland, Tanzania, Uganda, Zambia, Zaïre, Zimbabwe |
61 | Artabotrys multiflorus C.E.C.Fisch. | China South-Central, China Southeast, Myanmar, Thailand |
62 | Artabotrys nicobarianus D.Das | Andaman Is., Nicobar Is. |
63 | Artabotrys oblanceolatus Craib | Thailand |
64 | Artabotrys oblongus King | Cambodia, Malaya |
65 | Artabotrys ochropetalus I.M.Turner | Borneo |
66 | Artabotrys oliganthus Engl. & Diels | Cameroon, Central African Repu, Gabon, Guinea, Ivory Coast, Liberia |
67 | Artabotrys oxycarpus King | Malaya, Thailand |
68 | Artabotrys pachypetalus B.Xue & Junhao Chen | China Southeast |
69 | Artabotrys pallens Ast | Vietnam |
70 | Artabotrys palustris Louis ex Boutique | Zaïre |
71 | Artabotrys pandanicarpus I.M.Turner | Borneo |
72 | Artabotrys parkinsonii Chatterjee | Myanmar |
73 | Artabotrys petelotii Merr. | Laos, Vietnam |
74 | Artabotrys phuongianus Bân | Vietnam |
75 | Artabotrys pierreanus Engl. & Diels | Cameroon, Congo, Gabon, Zaïre |
76 | Artabotrys pilosus Merr. & Chun | China Southeast, Hainan |
77 | Artabotrys pleurocarpus Maingay ex Hook.f. & Thomson | Malaya, Thailand |
78 | Artabotrys polygynus Miq. | Borneo |
79 | Artabotrys porphyrifolius Nurainas | Sumatera |
80 | Artabotrys punctulatus C.Y.Wu | China South-Central, Thailand |
81 | Artabotrys rhynchocarpus C.Y.Wu | China South-Central, China Southeast |
82 | Artabotrys roseus Boerl. | Borneo |
83 | Artabotrys rufus De Wild. | Benin, Cameroon, Central African Repu, Congo, Gabon, Nigeria, Togo, Zaïre |
84 | Artabotrys rupestris Diels | Tanzania |
85 | Artabotrys sahyadricus Robi, K.M.P.Kumar & Hareesh | India |
86 | Artabotrys sarawakensis I.M.Turner | Borneo |
87 | Artabotrys scortechinii King | Malaya |
88 | Artabotrys scytophyllus (Diels) Cavaco & Keraudren | Madagascar |
89 | Artabotrys sericeus Sujana & Vadhyar | India |
90 | Artabotrys siamensis Miq. | Myanmar, Thailand |
91 | Artabotrys spathulatus Jun H.Chen, Chalermglin & R.M.K.Saunders | Thailand |
92 | Artabotrys speciosus Kurz ex Hook.f. & Thomson | Andaman Is. |
93 | Artabotrys spinosus Craib | Cambodia, Laos, Thailand, Vietnam |
94 | Artabotrys suaveolens (Blume) Blume | Borneo, Jawa, Lesser Sunda Is., Malaya, Maluku, Myanmar, New Guinea, Nicobar Is., Philippines, Sulawesi, Sumatera, Thailand, Bangladesh |
95 | Artabotrys sumatranus Miq. | Borneo, Jawa, Sumatera |
96 | Artabotrys tanaosriensis Jun H.Chen, Chalermglin & R.M.K.Saunders | Thailand |
97 | Artabotrys taynguyenensis Bân | Vietnam |
98 | Artabotrys tetramerus Bân | Vietnam |
99 | Artabotrys thomsonii Oliv. | Cabinda, Cameroon, Central African Repu, Congo, Gabon, Liberia, Nigeria, Zaïre |
100 | Artabotrys tipulifer I.M.Turner & Utteridge | Malaya, Thailand |
101 | Artabotrys tomentosus Nurainas | Sumatera |
102 | Artabotrys uniflorus (Griff.) Craib | Myanmar, Thailand |
103 | Artabotrys veldkampii I.M.Turner | Borneo |
104 | Artabotrys velutinus Scott Elliot | Benin, Cabinda, Cameroon, Central African Repu, Congo, Gabon, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Nigeria, Senegal, Sierra Leone, Uganda, Zaïre |
105 | Artabotrys venustus King | Borneo, Malaya, Sumatera, Thailand |
106 | Artabotrys vidalianus Elmer | Philippines |
107 | Artabotrys vietnamensis Bân | Vietnam |
108 | Artabotrys vinhensis Ast | Vietnam |
109 | Artabotrys wrayi King | Malaya |
110 | Artabotrys zeylanicus Hook.f. & Thomson | India, Sri Lanka |
No. | Name of Compound | Source | Reference |
---|---|---|---|
1 | Yingzhaosu A | A. uncinatus | [73] |
2 | Yingzhaosu B | A. uncinatus | [74] |
3 | Yingzhaosu C | A. uncinatus | [75] |
4 | Yingzhaosu D | A. uncinatus | [75] |
5 | (4R,10S,11E)-Yingzhaosu F | A. hexapetalus | [76] |
6 | (4S,10S,11E)-Yingzhaosu F | A. hexapetalus | [76] |
7 | (1R,2S,3S,4E)-Yingzhaosu G | A. hexapetalus | [76] |
8 | (1S,2R,3R,4E)-Yingzhaosu G | A. hexapetalus | [76] |
9 | (4R,8E,11S,12S)-Yingzhaosu H | A. hexapetalus | [76] |
10 | (4R,8E,11R,12R)-Yingzhaosu H | A. hexapetalus | [76] |
11 | (4S,8S,10S,11S)-Yingzhaosu I | A. hexapetalus | [76] |
12 | (4R,8S,10S,11S)-Yingzhaosu I | A. hexapetalus | [76] |
13 | (4R,8E,11R,12S)-Yingzhaosu J | A. hexapetalus | [76] |
14 | (4S,8E,11S,12R)-Yingzhaosu J | A. hexapetalus | [76] |
15 | (4R,8Z,11S,12S)-Yingzhaosu K | A. hexapetalus | [76] |
16 | (4S,8Z,11R,12R)-Yingzhaosu K | A. hexapetalus | [76] |
17 | (1S,2R,4R,8S,10E)-Yingzhaosu L | A. hexapetalus | [76] |
18 | Chlospicate E | A. pilosus | [77] |
19 | Arbisabol-9-en-7,11-diol | A. pilosus | [77] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
20 | (1R,2S,4R,8R,10E)-Yingzhaosu M | A. hexapetalus | [77] |
21 | Blumenol A | A. hongkongensis | [79] |
22 | 4,5-Dihydroblumenol A | A. hongkongensis | [79] |
23 | (6R,9S)-3-Oxo-α-ionol | A. hongkongensis | [79] |
24 | 3-Hydroxy-β-ionone | A. hongkongensis | [79] |
25 | Dehydrovomifoliol | A. hongkongensis | [79] |
26 | (3R,6R,7E)-3-Hydroxy-4,7-Megastigmadien-9-one | A. hongkongensis | [79] |
27 | Sarmentol F | A. hongkongensis | [79] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
28 | 1α-Hydroxy-5,11-eudesmadiene | A. hongkongensis | [85] |
29 | 5-Eudesmene-1β,4α-diol | A. hongkongensis | [85] |
30 | 1β,11-Dihydroxy-5-eudesmene | A. hongkongensis | [85] |
31 | 1β-Hydroxy-11-methoxy-5-eudesmene | A. hongkongensis | [85] |
32 | 2α-Hydroxy pterodontic acid | A. hongkongensis | [85] |
33 | 1β,9β-Dihydroxy-4aH-eudesma-5,11(13)-Dien-12-oic acid | A. hongkongensis | [85] |
34 | 1β,3α-Dihydroxyeudesma-5,11(13)-Dien-12-oic acid | A. hongkongensis | [85] |
35 | Cryptomeridiol | A. hainanensis | [86] |
36 | 4,10-Epi-5β-hydroxydihydroeiidesmol | A. hainanensis | [86] |
37 | Eudesm-4(14)-ene-3α,11-diol | A. hainanensis | [86] |
38 | Oplodiol | A. hainanensis | [86] |
39 | β-Eudesmol | A. hainanensis A. hongkongensis | [86] [79] |
40 | Trans-3β-(1-hydroxy-1-methylethyl)-8αβ-methyl-5-methylenedecalin-2-one | A. hongkongensis | [79] |
41 | 1β,6α-Dihydroxy-4α (15)-Epoxyeudesmane | A. pilosus | [77] |
42 | 7-Trinoreudesma-4(15),8-dien-1β-ol-7-one | A. pilosus | [77] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
43 | Liguducin A | A. hainanensis | [86] |
44 | Alpinenone | A. hainanensis | [86] |
45 | Guaianediol | A. pilosus | [77] |
46 | Guaiane pogostol O-methyl ether | A. stenopetalus | [89] |
47 | Alismol | A. hainanensis | [91] |
48 | Alismoxide | A. hainanensis | [86] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
49 | Fukinone | A. hongkongensis | [79] |
50 | Petasitolone | A. hongkongensis | [79] |
51 | 11-Hydroxy-valenc-1(10)-en-2-one | A. hainanensis | [86] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
52 | 10-Oxo-isodauc-3-en-15-oic acid | A. hongkongensis | [79] |
53 | Artabotrol | A. stenopetalus | [89] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
54 | (3R,4S,8R,12R)-Yingzhaosu E | A. hexapetalus | [76] |
55 | (3S,4R,8S,12S)-Yingzhaosu E | A. hexapetalus | [76] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
56 | 10β,15-Hydroxy-α-cadinol | A. pilosus A. hainanensis | [77] [86] |
57 | Amorph-4-en-10α-ol | A. hainanensis | [86] |
58 | 15-Hydroxy-t-muurolol | A. pilosus | [77] |
59 | 10α-Hydroxycadin-4-en-15-al | A. pilosus | [77] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
60 | 10-Hydroxyaristolan-9-one | A. uncinatus A. hongkongensis | [107] [79] |
61 | Aristol-8-en-1-one | A. hongkongensis | [79] |
62 | Aristolan-9-en-1-one | A. hongkongensis | [79] |
63 | Aristolan-1,9-diene | A. hongkongensis | [79] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
64 | Spathulenol | A. hainanensis | [86] |
65 | (-)-Ent-4β-hydroxy-10α-Methoxyaromadendrane | A. uncinatus | [107] |
66 | Globulol | A. hexapetalus | [110] |
67 | β-Gurjunene | A. hexapetalus | [110] |
No. | Name of Compound | Source | Reference |
---|---|---|---|
68 | β-Caryophyllene oxide | A. stenopetalus | [89] |
69 | 4-Hydroxy-4,7-dimethyl-1-tetralone | A. pilosus A. hainanensis | [77] [86] |
70 | Oxyphyllone D | A. pilosus | [77] |
71 | 1β-Hydroxy-4(15),5E,10(14)-germacratriene | A.hainanensis | [86] |
72 | Artahongkongol A | A. hongkongensis | [85] |
73 | Clovane-2β,9α-diol | A. hainanensis | [91] |
74 | Tricyclohumuladiol | A. hainanensis | [91] |
75 | 1-Methoxy-9-caryolanol | A. uncinatus | [107] |
76 | Caryolane-1,9β-diol | A. uncinatus | [107] |
77 | Litseachromolaevane A | A. hainanensis | [86] |
78 | Dihydroactinidiolide | A. hainanensis | [86] |
79 | 10β-Hydroxyisodauc-6-en-14-al | A. pilosus A. hainanensis | [77] [86] |
80 | Homalomenol C | A. hainanensis | [86] |
81 | (4R,5R,7R)-1(10)-spirovetiven-11-ol-2-one | A. hainanensis | [86] |
82 | (2R,4S,8S,10R)-Artaboterpenoid A | A. hexapetalus | [32] |
83 | (−)-8R-Artaboterpenoid B | A. hexapetalus | [32] |
84 | (+)-8S-Artaboterpenoid B | A. hexapetalus | [32] |
85 | Junipediol | A. hainanensis | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Xin, J.; Xu, Y.; Wang, X.; Zhao, F.; Niu, C.; Liu, S. Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae. Molecules 2024, 29, 1648. https://doi.org/10.3390/molecules29071648
Sun Y, Xin J, Xu Y, Wang X, Zhao F, Niu C, Liu S. Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae. Molecules. 2024; 29(7):1648. https://doi.org/10.3390/molecules29071648
Chicago/Turabian StyleSun, Yupei, Jianzeng Xin, Yaxi Xu, Xuyan Wang, Feng Zhao, Changshan Niu, and Sheng Liu. 2024. "Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae" Molecules 29, no. 7: 1648. https://doi.org/10.3390/molecules29071648
APA StyleSun, Y., Xin, J., Xu, Y., Wang, X., Zhao, F., Niu, C., & Liu, S. (2024). Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae. Molecules, 29(7), 1648. https://doi.org/10.3390/molecules29071648