Study on the Synthesis, Surface Activity, and Self-Assembly Behavior of Anionic Non-Ionic Gemini Surfactants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
- C8EO-5: 1H NMR (400 MHz, CDCl3, TMS) δ ppm: d: 0.84–0.94(t, 6H, CH2-CH3), 1.18–1.41 (m, 16H, CH2-CH3), 1.56–1.69 (m, 4H, CH3-(CH2)4-CH2), 1.69–1.90 (m, 4H, CH2-CH2-CH2-O), 1.9–2.10 (m, 2H, N-CH2-CH2), 2.35–2.44 (m, 8H, CH2-CH2-SO3, N-(CH2)3), 3.21–3.28 (m, 2H, CH-CH2-OH), 3.35–3.39 (m, 4H, CH2-CH2-CH2-O), 3.44–3.69 (m, 24H, O-CH2-CH2-O, CH-CH2-OH), 4.89–4.98 (s, 2H, CH-CH2-OH). Anal. Calcd. for C45H92NO17SNa %: C, 55.48; H, 9.52; N, 1.44; S, 3.29. Found %: C, 55.39; H, 9.63; N, 1.41; S, 3.27.
- C12EO-5: 1H NMR (400 MHz, CDCl3, TMS) δ ppm: d: 0.85–0.91(t, 6H, CH2-CH3), 1.20–1.42 (m, 32H, CH2-CH3), 1.56–1.71 (m, 4H, CH3-(CH2)4-CH2), 1.78–1.89 (m, 4H, CH2-CH2-CH2-O), 1.99–2.06 (m, 2H, N-CH2-CH2), 2.36–2.52 (m, 8H, CH2-CH2-SO3, N-(CH2)3), 3.20–3.29 (m, 2H, CH-CH2-OH), 3.32–3.40 (m, 4H, CH2-CH2-CH2-O), 3.46–3.63 (m, 24H, O-CH2-CH2-O, CH-CH2-OH), 4.87–4.99(s, 2H, CH-CH2-OH). Anal. Calcd. for C45H92NO17SNa %: C, 55.48; H, 9.52; N, 1.44; S, 3.29. Found %: C, 55.39; H, 9.63; N, 1.41; S, 3.27.
- C16EO-5: 1H NMR (400 MHz, CDCl3, TMS) δ ppm: d: 0.81–0.93 (t, 6H, CH2-CH3), 1.20–1.42 (m, 48H, CH2-CH3), 1.55–1.72 (m, 4H, CH3-(CH2)4-CH2), 1.69–1.90 (m, 4H, CH2-CH2-CH2-O), 1.97–2.10 (m, 2H, N-CH2-CH2), 2.34–2.51 (m, 8H, CH2-CH2-SO3, N-(CH2)3), 3.18–3.29 (m, 2H, CH-CH2-OH), 3.30–3.38 (m, 4H, CH2-CH2-CH2-O), 3.43–3.62 (m, 24H, O-CH2-CH2-O, CH-CH2-OH), 4.86–4.97 (s, 2H, CH-CH2-OH). Anal. Calcd. for C60H122NO17SNa %: C, 60.83; H, 10.38; N, 1.18; S, 2.71. Found %: C, 60.77; H, 10.42; N, 1.19; S, 2.69.
- Due to the difference in the length of hydrophobic alkyl chains among the three surfactants, the chemical shifts of some characteristic functional groups (such as EO, sulfonic acid ions, etc.) in 1H NMR do not show significant changes. By combining data such as nuclear magnetic resonance hydrogen spectroscopy and elemental analysis, it is proven that the synthesized compound is the designed target product.
2.2. Krafft Point
2.3. Surface Activity
Surfactant | CMC (mM) | γCMC (mN m−1) | Гmax/10−6 (mol m−2) | Amin (nm2) | πCMC (mN m−1) | pC20 |
---|---|---|---|---|---|---|
C8EO-5 | 0.51 | 26.96 | 2.35 | 0.71 | 45.29 | 4.29 |
C12EO-5 | 0.107 | 29.69 | 1.71 | 0.97 | 42.51 | 4.97 |
C16EO-5 | 0.037 | 32.84 | 1.40 | 1.19 | 39.36 | 5.31 |
GAES-0805 | 1.35 a | 28.94 a | 2.24 a | 0.74 a | - | - |
SDS | 1.63 b | 39.0 b | - | - | - | - |
2.4. Thermodynamic Function of Micellization
2.5. Micropolarity
2.6. Research on Self-Assembly Behavior of CnEO-5
2.7. Foam Performance
3. Materials and Methods
3.1. Experimental Materials
3.2. Experimental Apparatus
3.3. Experimental Method for the Synthesis of Anionic Non-Ionic Gemini Surfactant
3.4. Experimental Methods for Testing and Characterization
3.4.1. Krafft Point Test
3.4.2. Surface Tension Test
3.4.3. Conductivity Test
3.4.4. Steady-State Fluorescence Test
3.4.5. Dynamic Light Scattering Test
3.4.6. Transmission Electron Microscope
3.4.7. Foam Performance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, G.; Mu, M.; Shu, Q.; Zhang, Y. Quaternary ammonium-based and imidazolium-based gemini surfactants: A comparison study. Colloids Surf. A Physicochem. Eng. Asp. 2024, 683, 133023. [Google Scholar] [CrossRef]
- El Basiony, N.M.; Nasser, A.; Hafez, E.; Elaraby, A.; Shafek, S.; Elged, A.; Kim, D.; Shaban, S.M. Retard the corrosion reaction of carbon steel in acid solutions using Gemini-nonionic surfactant: Theoretical and experimental studies. Mater. Today Commun. 2023, 37, 107378. [Google Scholar] [CrossRef]
- Zheng, L.-C.; Tong, Q.-X. Synthesis, surface adsorption, micellization behavior and antibacterial activity of novel gemini surfactants with morpholinium headgroup and benzene-based spacer. J. Mol. Liq. 2021, 331, 115781. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Wang, Y.; Jiang, B.; Song, H. Spherical Multishell Hollow Carbon-based Catalyst with Controllable N-Species Content for Oxygen Reduction Reaction in Air-breath Cathode Microbial Fuel Cell. React. Chem. Eng. 2022, 7, 978–986. [Google Scholar] [CrossRef]
- Liu, D.; Yang, X.; Liu, P.; Mao, T.; Shang, X.; Wang, L. Synthesis and characterization of gemini ester surfactant and its application in efficient fabric softening. J. Mol. Liq. 2020, 299, 112236. [Google Scholar] [CrossRef]
- Cui, C.; Zhou, Z.; He, Z. Enhance oil recovery in low permeability reservoirs: Optimization and evaluation of ultra-high molecular weight HPAM/phenolic weak gel system. J. Pet. Sci. Eng. 2020, 195, 107908. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, Y.; Zhang, L.; Xuan, L.; Qin, C. Synthesis, properties, and applications of an anionic–nonionic Gemini surfactant for highly efficient remediation of perchloroethylene-contaminated aquifers. J. Clean. Prod. 2022, 333, 130143. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Dong, X.-H.; Yu, X.; Guo, K.; Su, H.; Yue, K.; Wesdemiotis, C.; Cheng, S.Z.D.; Zhang, W.-B. Giant gemini surfactants based on polystyrene–hydrophilic polyhedral oligomeric silsesquioxane shape amphiphiles: Sequential “click” chemistry and solution self-assembly. Chem. Sci. 2013, 4, 1345–1352. [Google Scholar] [CrossRef]
- Pal, N.; Samanta, K.; Mandal, A. A novel family of non-ionic gemini surfactants derived from sunflower oil: Synthesis, characterization and physicochemical evaluation. J. Mol. Liq. 2019, 275, 638–653. [Google Scholar] [CrossRef]
- Ma, T.; Feng, H.; Wu, H.; Li, Z.; Jiang, J.; Xu, D.; Meng, Z.; Kang, W. Property evaluation of synthesized anionic-nonionic gemini surfactants for chemical enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123800. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, G. Improvement of Ca2+-tolerance by the introduction of EO groups for the anionic surfactants: Molecular dynamics simulation. Colloids Surf. A Physicochem. Eng. Asp. 2013, 424, 26–32. [Google Scholar] [CrossRef]
- Wang, X.; Ding, W. Two new cationic Gemini surfactants: Synthesis, surface activity, and applicability as a corrosion inhibitor. J. Dispers. Sci. Technol. 2023, 44, 1288–1295. [Google Scholar] [CrossRef]
- Xu, D.; Ni, X.; Zhang, C.; Mao, J.; Song, C. Synthesis and properties of biodegradable cationic gemini surfactants with diester and flexible spacers. J. Mol. Liq. 2017, 240, 542–548. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, M.; Tu, H. Effect of linking groups and hydrophobic groups on properties of sulfate Gemini surfactants. J. Mol. Liq. 2022, 367, 120346. [Google Scholar] [CrossRef]
- Liang, Y.; Li, H.; Li, M.; Mao, X.; Li, Y.; Wang, Z.; Xue, L.; Chen, X.; Hao, X. Synthesis and physicochemical properties of ester-bonded gemini pyrrolidinium surfactants and a comparison with single-tailed amphiphiles. J. Mol. Liq. 2019, 280, 319–326. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y.; Bai, J.; Dong, J.; Li, W.; Mo, Y.; Jiang, D.; Zhang, W. Feasibility evaluation of novel anionic-nonionic gemini surfactants for surfactant-enhanced aquifer remediation. J. Clean. Prod. 2023, 393, 136338. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, H.; Kang, Y.; Zhang, J.; Bai, Y.; Zhang, J.; You, Z. Physical plugging of lost circulation fractures at microscopic level. Fuel 2022, 317, 123477. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, H.; She, J.; Jiang, G.; Peng, C.; You, Z. Experimental study on fracture plugging effect of irregular-shaped lost circulation materials. Energy 2023, 276, 127544. [Google Scholar] [CrossRef]
- Li, P.; Guo, Y.; Lu, Z.; Zhang, W.; Hou, L. Syntheses, surface activities and aggregation morphologies of a series of novel itaconic acid based asymmetrical gemini surfactants. J. Mol. Liq. 2019, 290, 111218. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, T.; Ma, J.; He, X. Synthesis, surface activities and aggregation properties of asymmetric Gemini surfactants. Phys. Chem. Chem. Phys. 2021, 23, 27460–27467. [Google Scholar] [CrossRef]
- Wang, H.; Wettig, S.D. Synthesis and aggregation properties of dissymmetric phytanyl-gemini surfactants for use as improved DNA transfection vectors. Phys. Chem. Chem. Phys. 2011, 13, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Tehrani-Bagha, A.R.; Kärnbratt, J.; Löfroth, J.-E.; Holmberg, K. Cationic ester-containing gemini surfactants: Determination of aggregation numbers by time-resolved fluorescence quenching. J. Colloid Interface Sci. 2012, 376, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Lyu, B.; Yu, Y.; Gao, D.; Wang, Y.; Ma, J. Asymmetric sodium benzenesulfonate Gemini surfactant: Synthesis, properties and application. J. Mol. Liq. 2019, 285, 500–507. [Google Scholar] [CrossRef]
- Jia, Y.; Guo, X.; Jia, L.; Zhao, Z.; Yang, R.; Zhang, Y.; Sun, H. Novel asymmetrical bis-surfactants with naphthalene and two amide groups: Synthesis, foamability and foam stability. J. Mol. Liq. 2021, 329, 115534. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, W.; Jiang, Y.; Wang, Y.; Ju, H.; Geng, T. Studies on physicochemical properties of three Gemini surfactants with different spacer groups. J. Mol. Liq. 2021, 325, 115039. [Google Scholar] [CrossRef]
- Li, P.X.; Dong, C.C.; Thomas, R.K.; Penfold, J.; Wang, Y. Neutron reflectometry of quaternary gemini surfactants as a function of alkyl chain length: Anomalies arising from ion association and premicellar aggregation. Langmuir 2011, 27, 2575–2586. [Google Scholar] [CrossRef] [PubMed]
- Zana, R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: A review. Adv. Colloid Interface Sci. 2005, 97, 205–253. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Liu, Y.; Ye, Z. Synthesis, aggregation behavior of polyether based carbosilane surfactants in aqueous solution. J. Mol. Liq. 2019, 279, 657–661. [Google Scholar] [CrossRef]
- Ren, C.; Wang, F.; Zhang, Z.; Nie, H.; Li, N.; Cui, M. Synthesis, surface activity and aggregation behavior of Gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide. Colloids Surf. A Physicochem. Eng. Asp. 2015, 467, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, J.; Zhao, J.; Yang, X.; Zhang, W.; Lin, C.; Wang, C. The impact of dissymmetry on the aggregation properties of heterogemini surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124165. [Google Scholar] [CrossRef]
- Fu, H.; Li, Y.; Song, Y.; Li, J.; Wang, Z.; Zhao, L. Synthesis and aggregation behaviors of a new bis-quaternary ammonium surfactant. J. Mol. Liq. 2017, 230, 329–336. [Google Scholar] [CrossRef]
- Wani, F.A.; Khan, A.B.; AlShehri, A.A.; Malik, M.A.; Ahmad, R.; Patel, R. Synthesis, characterization and mixed micellization study of benzene sulphonate based gemini surfactant with sodium dodecyl sulphate. J. Mol. Liq. 2019, 285, 270–278. [Google Scholar] [CrossRef]
- Shaheen, A.; Mir, A.W.; Arif, R.; Wani, A.L. Synthesis, micellization behaviour and cytotoxic properties of imidazolium-based gemini surfactants. Colloid Interface Sci. Commun. 2020, 36, 100257. [Google Scholar] [CrossRef]
- Liang, Y.; Li, H.; Shen, J.; Zhang, S. L-cysteine-based trimeric surfactants with hexahydro-1,3,5-triazine as the central core: Synthesis and self-assembly study. J. Dispers. Sci. Technol. 2018, 39, 220–226. [Google Scholar] [CrossRef]
- Garcia, M.T.; Kaczerewska, O.; Ribosa, I.; Brycki, B.; Materna, P.; Drgas, M. Hydrophilicity and flexibility of the spacer as critical parameters on the aggregation behavior of long alkyl chain cationic gemini surfactants in aqueous solution. J. Mol. Liq. 2017, 230, 453–460. [Google Scholar] [CrossRef]
- Dai, C.; Fang, S.; Hu, M.; He, X.; Zhao, M.; Wu, X.; Yang, S.; Wu, Y. Synthesis, surface adsorption and micelle formation of a class of morpholinium gemini surfactants. J. Ind. Eng. Chem. 2017, 54, 226–233. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Geng, T.; Ju, H.; Duan, S. Synthesis, surface/interfacial properties, and biological activity of amide-based Gemini cationic surfactants with hydroxyl in the spacer group. Colloids Surf. A Physicochem. Eng. Asp. 2019, 563, 1–10. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, J.; Ma, J.; Liu, P.; Kang, Q.; Zhang, J. Cationic silicon-based gemini surfactants: Effect of hydrophobic chains on surface activity, physic-chemical properties and aggregation behaviors. J. Ind. Eng. Chem. 2017, 53, 51–61. [Google Scholar] [CrossRef]
- Tawfik, S.M. Simple one step synthesis of gemini cationic surfactant-based ionic liquids: Physicochemical, surface properties and biological activity. J. Mol. Liq. 2015, 209, 320–326. [Google Scholar] [CrossRef]
- Ao, M.; Xu, G.; Zhu, Y.; Bai, Y. Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants. J. Colloid Interface Sci. 2008, 326, 490–495. [Google Scholar] [CrossRef]
- Fu, D.; Gao, X.; Huang, B.; Wang, J.; Sun, Y.; Zhang, W.; Kan, K.; Zhang, X.; Xie, Y.; Sui, X. Micellization, surface activities and thermodynamics study of pyridinium-based ionic liquid surfactants in aqueous solution. RSC Adv. 2019, 9, 28799–28807. [Google Scholar] [CrossRef] [PubMed]
- Shaban, S.M.; Fouda, A.; Elmorsi, M.; Fayed, T.; Azazy, O. Adsorption and micellization behavior of synthesized amidoamine cationic surfactants and their biological activity. J. Mol. Liq. 2016, 216, 284–292. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Wang, X.; Jiang, B.; Song, H. Engineering Hollow Core-Shell N-C@Co/N-C Catalysts with Bits of Ni Doping Used as Efficient Electrocatalysts in Microbial Fuel Cells. ACS Appl. Mater. Interfaces 2022, 14, 41912–41923. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, J.; Zhu, R.; Sun, T.; Qu, G. Synthesis, Surface Activity, Thermodynamic Parameters, and Performance Evaluation of Branched Carboxylate Gemini Surfactants. J. Surfactants Deterg. 2019, 22, 421–430. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, J.; Ma, J.; Li, M.; Li, X. Physicochemical and antimicrobial activities of cationic gemini surfactants with polyether siloxane linked group. J. Mol. Liq. 2017, 242, 8–15. [Google Scholar] [CrossRef]
- Ahmady, A.R.; Hosseinzadeh, P.; Solouk, A.; Akbari, S.; Szulc, A.M.; Brycki, B.E. Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv. Colloid Interface Sci. 2022, 299, 102581. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Al Muslim, A.; Ayyash, D.; Gujral, S.S.; Mekhail, G.M.; Rao, P.P.N.; Wettig, S.D. Synthesis and characterization of asymmetrical gemini surfactants. Phys. Chem. Chem. Phys. 2017, 19, 1953–1962. [Google Scholar] [CrossRef]
- Farooq, U.; Ali, A.; Patel, R.; Malik, N.A. Self-aggregation of ionic liquid-cationic surfactant mixed micelles in water and in diethylene glycol–water mixtures: Conductometric, tensiometric, and spectroscopic studies. J. Mol. Liq. 2017, 234, 452–462. [Google Scholar] [CrossRef]
- Yang, X.; Azhar, U.; Wang, W.; Zhai, C.; Zhang, Q.; Zhang, S.; Zong, C. Photo-responsive azobenzene-based surfactants as fast-phototuning foam switch synthesized via thiol-ene click chemistry. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125645. [Google Scholar] [CrossRef]
- Fabozzi, A.; Vitiello, R.; Krauss, I.R.; Iuliano, M.; De Tommaso, G.; Amoresano, A.; Pinto, G.; Paduano, L.; Jones, C.; Di Serio, M.; et al. Synthesis, Surface Properties, and Self-Aggregation Behavior of a Branched N,N-Dimethylalkylamine Oxide Surfactant. J. Surfactants Deterg. 2019, 22, 115–124. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Wang, Y.; Jiang, B.; Song, H. Size-controlled, hollow and hierarchically porous Co2Ni2 alloy nanocubes for efficient oxygen reduction in microbial fuel cells. React. Chem. Eng. 2022, 7, 653–662. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Chen, K.; Yin, Y.; Wang, C. Insight into a Fast-Phototuning Azobenzene Switch for Sustainably Tailoring the Foam Stability. ACS Appl. Mater. Interfaces 2017, 9, 13778–13784. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Zhou, J.; Di Serio, M.; Ding, L.; Zhang, Y.; Liang, H.; Wu, H.; Sun, J. Synthesis and properties of dihydroxyoleic acid methyl ester ethoxylates. J. Dispers. Sci. Technol. 2018, 40, 1272–1279. [Google Scholar] [CrossRef]
- Danov, K.D.; Stanimirova, R.D.; Kralchevsky, P.A.; Slavova, T.G.; Yavrukova, V.I.; Ung, Y.W.; Tan, E.; Xu, H.; Petkov, J.T. Solubility of ionic surfactants below their Krafft point in mixed micellar solutions: Phase diagrams for methyl ester sulfonates and nonionic cosurfactants. J. Colloid Interface Sci. 2021, 601, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, J.; Yang, X.; Li, P.; Guo, C.; Li, Q. Synthesis and properties of a branched short-alkyl polyoxyethylene ether alcohol sulfate surfactant. J. Mol. Liq. 2015, 212, 597–604. [Google Scholar] [CrossRef]
- Gong, J.; Song, Y.; Sun, Y.; Sun, Q.; Liu, C.; Tan, J.; Zhao, L.; Xu, B. Vesicle-to-micelle transition in a double chain quaternary ammonium surfactant system: Interfacial behavior and molecular insights. J. Mol. Liq. 2024, 394, 123714. [Google Scholar] [CrossRef]
- Ju, H.; Jiang, Y.; Geng, T.; Wang, Y. A green and easy synthesis method of catanionic surfactant ammonium benzenesulfonate and its surface properties and aggregation behaviors. J. Mol. Liq. 2018, 264, 306–313. [Google Scholar] [CrossRef]
- Jadhav, M.; Kalhapure, R.S.; Rambharose, S.; Mocktar, C.; Govender, T. Synthesis, characterization and antibacterial activity of novel heterocyclic quaternary ammonium surfactants. J. Ind. Eng. Chem. 2017, 47, 405–414. [Google Scholar] [CrossRef]
Surfactant | Kt (°C) |
---|---|
C8EO-5 | <−5 °C |
C12EO-5 | <−2 °C |
C16EO-5 | <0 °C |
Surfactant | T (°C) | CMC (mmol L−1) | β | ΔG°mic (kJ·mol−1) | ΔH°mic (kJ·mol−1) | ΔS°mic (kJ·mol−1·K−1) | TΔS°mic (kJ·mol−1) |
---|---|---|---|---|---|---|---|
C8EO-5 | 25 | 0.525 | 0.473 | −37.33 | −7.41 | 0.1004 | 29.93 |
40 | 0.645 | 0.451 | −37.81 | −7.99 | 0.09523 | 29.82 | |
55 | 0.715 | 0.420 | −38.08 | −8.48 | 0.09020 | 29.60 | |
C12EO-5 | 25 | 0.108 | 0.487 | −32.17 | −6.73 | 0.08532 | 25.43 |
40 | 0.124 | 0.459 | −32.49 | −7.21 | 0.08073 | 25.28 | |
55 | 0.142 | 0.435 | −32.83 | −7.72 | 0.07652 | 25.11 | |
C16EO-5 | 25 | 0.0278 | 0.501 | −35.99 | −13.76 | 0.07456 | 22.230 |
40 | 0.0410 | 0.483 | −36.13 | −14.91 | 0.06776 | 21.22 | |
55 | 0.0486 | 0.458 | −36.45 | −15.95 | 0.06247 | 20.50 |
Surfactant | Vhydrophobic (nm3) | l0 (nm) | p |
---|---|---|---|
C8EO-5 | 0.7268 | 3.439 | 0.60 |
C12EO-5 | 0.8344 | 3.945 | 0.44 |
C16EO-5 | 0.942 | 3.945 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, Z.; Wu, W. Study on the Synthesis, Surface Activity, and Self-Assembly Behavior of Anionic Non-Ionic Gemini Surfactants. Molecules 2024, 29, 1725. https://doi.org/10.3390/molecules29081725
Man Z, Wu W. Study on the Synthesis, Surface Activity, and Self-Assembly Behavior of Anionic Non-Ionic Gemini Surfactants. Molecules. 2024; 29(8):1725. https://doi.org/10.3390/molecules29081725
Chicago/Turabian StyleMan, Zhiqiang, and Wenxiang Wu. 2024. "Study on the Synthesis, Surface Activity, and Self-Assembly Behavior of Anionic Non-Ionic Gemini Surfactants" Molecules 29, no. 8: 1725. https://doi.org/10.3390/molecules29081725
APA StyleMan, Z., & Wu, W. (2024). Study on the Synthesis, Surface Activity, and Self-Assembly Behavior of Anionic Non-Ionic Gemini Surfactants. Molecules, 29(8), 1725. https://doi.org/10.3390/molecules29081725