Structural and Rheological Characterization of Vegetable Crispbread Enriched with Legume Purée
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheological Properties of Legume Solutions
2.2. Water Content, Water Activity, and Color of Crispbread with Legume Purée
2.3. Structure of Crispbread with Legumine Purée
2.4. FT-IR Spectra of Crispbread with Legume Purée
2.5. The Water Vapor Adsorption Isotherms of Crispbread with Legume Purée
2.6. Sensory Evaluation of Crispbread with Legume Purée
3. Materials and Methods
3.1. Materials
3.2. Legume Solution Preparation
3.3. Legume Crispbread Preparation
3.4. Rheological Properties of Legume Solutions
3.5. Water Content of Crispbread
3.6. Water Activity of Crispbread
3.7. Color of Crispbread
3.8. Structure of Crispbread
3.9. FT-IR Spectra of Crispbread
3.10. Water Vapor Adsorption Isotherms of Crispbread
3.11. Sensory Evaluation of Crispbread
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolarinwa, I.F.; Al-Ezzi, M.F.A.; Carew, I.E.; Muhammad, K. Nutritional Value of Legumes in Relation to Human Health: A Review. Adv. J. Food Sci. Technol. 2019, 17, 72–85. [Google Scholar] [CrossRef]
- Ogrodowczyk, A.M.; Drabińska, N. Crossroad of tradition and innovation—The application of lactic acid fermentation to increase the nutritional and health-promoting potential of plant-based food products—A review. Polish J. Food Nutr. Sci. 2021, 71, 107–134. [Google Scholar] [CrossRef]
- Tas, A.A.; Shah, A.U. The replacement of cereals by legumes in extruded snack foods: Science, technology and challenges. Trends Food Sci. Technol. 2021, 116, 701–711. [Google Scholar] [CrossRef]
- Alcázar-Valle, M.; Lugo-Cervantes, E.; Mojica, L.; Morales-Hernández, N.; Reyes-Ramírez, H.; Enríquez-Vara, J.N.; García-Morales, S. Bioactive compounds, antioxidant activity, and antinutritional content of legumes: A comparison between four Phaseolus species. Molecules 2020, 25, 3528. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Ramos, F.; Sanches Silva, A. Lupin (Lupinus albus L.) Seeds: Balancing the Good and the Bad and Addressing Future Challenges. Molecules 2022, 27, 8557. [Google Scholar] [CrossRef] [PubMed]
- Carbas, B.; Machado, N.; Pathania, S.; Brites, C.; Rosa, E.A.S.; Barros, A.I.R.N.A. Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and Application of Eco-friendly Tools for Their Assessment. Food Rev. Int. 2023, 39, 160–188. [Google Scholar] [CrossRef]
- Affrifah, N.S.; Uebersax, M.A.; Amin, S. Nutritional significance, value-added applications, and consumer perceptions of food legumes: A review. Legum. Sci. 2023, 5, e192. [Google Scholar] [CrossRef]
- Keskin, S.O.; Ali, T.M.; Ahmed, J.; Shaikh, M.; Siddiq, M.; Uebersax, M.A. Physico-chemical and functional properties of legume protein, starch, and dietary fiber—A review. Legum. Sci. 2022, 4, e117. [Google Scholar] [CrossRef]
- Aluko, R.E.; Mofolasayo, O.A.; Watts, B.M. Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours. J. Agric. Food Chem. 2009, 57, 9793–9800. [Google Scholar] [CrossRef] [PubMed]
- Karaca, A.C.; Low, N.; Nickerson, M. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res. Int. 2011, 44, 2742–2750. [Google Scholar] [CrossRef]
- Klupšaitė, D.; Juodeikienė, G. Legume: Composition, protein extraction and functional properties. A review. Chem. Technol. 2015, 66, 5–12. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Amarowicz, R.; Aryee, A.N.A.; Boye, J.I.; Chung, H.J.; Martín-Cabrejas, M.A.; Domoney, C. Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. CRC Crit. Rev. Plant Sci. 2015, 34, 105–143. [Google Scholar] [CrossRef]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; Faccia, M. Legumes as basic ingredients in the production of dairy-free cheese alternatives: A review. J. Sci. Food Agric. 2022, 102, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.Z.; Subramanian, P.; Dar, B.N. Functionalization of legume proteins using high pressure processing: Effect on technofunctional properties and digestibility of legume proteins. LWT 2022, 158, 113106. [Google Scholar] [CrossRef]
- Lopes, J.S.; Simão, R.d.S.; Mendes, G.d.S.; Demarco, M.; de Moraes, J.O.; Hayashi, L.; Laurindo, J.B.; Tribuzi, G. Kappaphycus alvarezii flours as an ingredient for seaweed-enriched, rice-based, snacks: Raw algae pretreatment and physical properties of the dough and snacks. Int. J. Food Sci. Technol. 2023, 58, 2448–2457. [Google Scholar] [CrossRef]
- Mousa, M.M.H.; El-Magd, M.A.; Ghamry, H.I.; Alshahrani, M.Y.; El-Wakeil, N.H.M.; Hammad, E.M.; Asker, G.A.H. Pea peels as a value-added food ingredient for snack crackers and dry soup. Sci. Rep. 2021, 11, 22747. [Google Scholar] [CrossRef] [PubMed]
- Purohit, A.S.; Reed, C.; Mohan, A. Development and evaluation of quail breakfast sausage. LWT 2016, 69, 447–453. [Google Scholar] [CrossRef]
- Turfani, V.; Narducci, V.; Durazzo, A.; Galli, V.; Carcea, M. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT 2017, 78, 361–366. [Google Scholar] [CrossRef]
- Verma, A.K.; Banerjee, R.; Sharma, B.D. Quality characteristics of low fat chicken nuggets: Effect of salt substitute blend and pea hull flour. J. Food Sci. Technol. 2015, 52, 2288–2295. [Google Scholar] [CrossRef] [PubMed]
- Foschia, M.; Horstmann, S.W.; Arendt, E.K.; Zannini, E. Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products. Annu. Rev. Food Sci. Technol. 2017, 8, 75–96. [Google Scholar] [CrossRef] [PubMed]
- Khairuddin, M.A.N.; Lasekan, O. Gluten-free cereal products and beverages: A review of their health benefits in the last five years. Foods 2021, 10, 2523. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.d.O.; de Oliveira, V.R. Overview of the Incorporation of Legumes into New Food Options: An Approach on Versatility, Nutritional, Technological, and Sensory Quality. Foods 2023, 12, 2586. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Prasad, K. Technological, processing and nutritional aspects of chickpea (Cicer arietinum)—A review. Trends Food Sci. Technol. 2021, 109, 448–463. [Google Scholar] [CrossRef]
- Yaver, E. Novel crackers incorporated with carob and green lentil flours: Physicochemical, textural, and sensory attributes. J. Food Process. Preserv. 2022, 46, e16911. [Google Scholar] [CrossRef]
- López-Martínez, A.; Azuara-Pugliese, V.; Sánchez-Macias, A.; Sosa-Mendoza, G.; Dibildox-Alvarado, E.; Grajales-Lagunes, A. High protein and low-fat chips (snack) made out of a legume mixture. CYTA-J. Food 2019, 17, 661–668. [Google Scholar] [CrossRef]
- Kasapila, W.; Mwangwela, A.M.; Njera, D.; Matumba, L.; Ng’ong’ola Manani, T.; Banda, R.; Nyirenda, L. Sensory acceptability and nutritional quality of composite bread with added purée from biofortified beans in Malawi. Legum. Sci. 2024, 6, e214. [Google Scholar] [CrossRef]
- Uruakpa, F.O.; Fleischer, A. Sensory and Nutritional Attributes of Black Bean Brownies. Am. J. Food Sci. Nutr. 2016, 3, 27–36. [Google Scholar]
- Romanchik-Cerpovicz, J.E.; Jeffords, M.J.A.; Onyenwoke, A.C. College student acceptance of chocolate bar cookies containing purée of canned green peas as a fat-ingredient substitute. J. Culin. Sci. Technol. 2019, 17, 507–518. [Google Scholar] [CrossRef]
- Richardson, A.M.; Tyuftin, A.A.; Kilcawley, K.N.; Gallagher, E.; O’sullivan, M.G.; Kerry, J.P. The application of puréed butter beans and a combination of inulin and rebaudioside a for the replacement of fat and sucrose in sponge cake: Sensory and physicochemical analysis. Foods 2021, 10, 254. [Google Scholar] [CrossRef] [PubMed]
- Goryńska-Goldmann, E. Bulding competetitive adventage through product innovations based on raw material modyfications. J. Agribus. Rural Dev. 2017, 46, 755–762. [Google Scholar] [CrossRef]
- Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Swami Hulle, N.R. Citrus pectins: Structural properties, extraction methods, modifications and applications in food systems—A review. Appl. Food Res. 2022, 2, 100215. [Google Scholar] [CrossRef]
- Nindo, C.I.; Tang, J.; Powers, J.R.; Takhar, P.S. Rheological properties of blueberry purée for processing applications. LWT 2007, 40, 292–299. [Google Scholar] [CrossRef]
- Dankar, I.; Haddarah, A.; Sepulcre, F.; Pujolà, M. Assessing mechanical and rheological properties of potato purée: Effect of different ingredient combinations and cooking methods on the feasibility of 3d printing. Foods 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Picot-Allain, M.C.N.; Ramasawmy, B.; Emmambux, M.N. Extraction, Characterisation, and Application of Pectin from Tropical and Sub-Tropical Fruits: A Review. Food Rev. Int. 2022, 38, 282–312. [Google Scholar] [CrossRef]
- Mohammed, I.; Ahmed, A.R.; Senge, B. Dough rheology and bread quality of wheat-chickpea flour blends. Ind. Crops Prod. 2012, 36, 196–202. [Google Scholar] [CrossRef]
- Iagher, F.; Reicher, F.; Ganter, J.L.M.S. Structural and rheological properties of polysaccharides from mango (Mangifera indica L.) pulp. Int. J. Biol. Macromol. 2002, 31, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.G.; Nielsen, H.L.; Armagan, I.; Larsen, J.; Sørensen, S.O. The impact of rhamnogalacturonan-I side chain monosaccharides on the rheological properties of citrus pectin. Food Hydrocoll. 2015, 47, 130–139. [Google Scholar] [CrossRef]
- Liaotrakoon, W.; de Clercq, N.; van Hoed, V.; van de Walle, D.; Lewille, B.; Dewettinck, K. Impact of Thermal Treatment on Physicochemical, Antioxidative and Rheological Properties of White-Flesh and Red-Flesh Dragon Fruit (Hylocereus spp.) Purées. Food Bioprocess Technol. 2013, 6, 416–430. [Google Scholar] [CrossRef]
- Sharma, M.; Kristo, E.; Corredig, M.; Duizer, L. Effect of hydrocolloid type on texture of puréed carrots: Rheological and sensory measures. Food Hydrocoll. 2017, 63, 478–487. [Google Scholar] [CrossRef]
- Lin, T.; Fernández-Fraguas, C. Effect of thermal and high-pressure processing on the thermo-rheological and functional properties of common bean (Phaseolus vulgaris L.) flours. LWT 2020, 127, 109325. [Google Scholar] [CrossRef]
- Klug, T.V.; Martínez-Sánchez, A.; Gómez, P.A.; Collado, E.; Aguayo, E.; Artés, F.; Artés-Hernández, F. Improving quality of an innovative pea purée by high hydrostatic pressure. J. Sci. Food Agric. 2017, 97, 4362–4369. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Cao, J.; Li, H.; Chen, C.; Liu, X. Rheology and tribology properties of cereal and legume flour paste from different botanical origins. J. Food Sci. 2020, 85, 4130–4140. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Lim, J.; Ko, S.; Lee, K.G.; Lee, S.H.; Lee, S. Environmentally friendly preparation of pectins from agricultural byproducts and their structural/rheological characterization. Bioresour. Technol. 2011, 102, 3855–3860. [Google Scholar] [CrossRef] [PubMed]
- Janowicz, M.; Kadzińska, J.; Ciurzyńska, A.; Szulc, K.; Galus, S.; Karwacka, M.; Nowacka, M. The Structure-Forming Potential of Selected Polysaccharides and Protein Hydrocolloids in Shaping the Properties of Composite Films Using Pumpkin Purée. Appl. Sci. 2023, 13, 6959. [Google Scholar] [CrossRef]
- Kozioł, A.; Środa-Pomianek, K.; Górniak, A.; Wikiera, A.; Cyprych, K.; Malik, M. Structural Determination of Pectins by Spectroscopy Methods. Coatings 2022, 12, 546. [Google Scholar] [CrossRef]
- Krokida, M.K.; Maroulis, Z.B.; Saravacos, G.D. Rheological properties of fluid fruit and vegetable purée products: Compilation of literature data. Int. J. Food Prop. 2001, 4, 179–200. [Google Scholar] [CrossRef]
- Konrade, D.; Klava, D.; Gramatina, I. Cereal Crispbread Improvement with Dietary Fibre from Apple by-Products. CBU Int. Conf. Proc. 2017, 5, 1143–1148. [Google Scholar] [CrossRef]
- Konrade, D.; Klava, D. Total Content of Phenolics and Antioxidant Activity in Crispbreads with Plant By-product addition. Rural Sustain. Res. 2017, 38, 24–31. [Google Scholar] [CrossRef]
- Leonova, S.; Badamshina, E.; Koshchina, E.; Kalugina, O.; Gareeva, I.; Leshchenko, N. Triticale flour in bakery and rusk products. Food Sci. Technol. Int. 2022, 28, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Colla, K.; Gamlath, S. Inulin and maltodextrin can replace fat in baked savoury legume snacks. Int. J. Food Sci. Technol. 2015, 50, 2297–2305. [Google Scholar] [CrossRef]
- Sandulachi, E. Water Activity Concept and Its Role in Food Preservation; Technical University of Moldova: Chisinău, Moldova, 2012; pp. 40–48. [Google Scholar]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability: As a Hurdle in Food Preservation. In Water Activity in Foods: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2020; pp. 239–271. [Google Scholar]
- Amarowicz, R.; Pegg, R.B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 2008, 110, 865–878. [Google Scholar] [CrossRef]
- Aguilera, Y.; Mojica, L.; Rebollo-Hernanz, M.; Berhow, M.; De Mejía, E.G.; Martín-Cabrejas, M.A. Black bean coats: New source of anthocyanins stabilized by β-cyclodextrin copigmentation in a sport beverage. Food Chem. 2016, 212, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Yadav, S.; Singh, M.P. Possible involvement of xanthophyll cycle pigments in heat tolerance of chickpea (Cicer arietinum L.). Physiol. Mol. Biol. Plants 2020, 26, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Monnet, A.F.; Laleg, K.; Michon, C.; Micard, V. Legume enriched cereal products: A generic approach derived from material science to predict their structuring by the process and their final properties. Trends Food Sci. Technol. 2019, 86, 131–143. [Google Scholar] [CrossRef]
- Jost, T.; Henning, C.; Heymann, T.; Glomb, M.A. Comprehensive Analyses of Carbohydrates, 1,2-Dicarbonyl Compounds, and Advanced Glycation End Products in Industrial Bread Making. J. Agric. Food Chem. 2021, 69, 3720–3731. [Google Scholar] [CrossRef]
- Anton, A.A.; Gary Fulcher, R.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Aoyagi, T.; Oshima, T.; Imaizumi, T. Quantitative characterization of individual starch grain morphology using a particle flow analyzer. LWT 2021, 139, 110589. [Google Scholar] [CrossRef]
- Wu, T.; Wang, L.; Li, Y.; Qian, H.; Liu, L.; Tong, L.; Zhou, X.; Wang, L.; Zhou, S. Effect of milling methods on the properties of rice flour and gluten-free rice bread. LWT 2019, 108, 137–144. [Google Scholar] [CrossRef]
- Cornejo-Ramírez, Y.I.; Martínez-Cruz, O.; Del Toro-Sánchez, C.L.; Wong-Corral, F.J.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J. The structural characteristics of starches and their functional properties. CYTA-J. Food 2018, 16, 1003–1017. [Google Scholar] [CrossRef]
- Santos, E.E.; Amaro, R.C.; Bustamante, C.C.C.; Guerra, M.H.A.; Soares, L.C.; Froes, R.E.S. Extraction of pectin from agroindustrial residue with an ecofriendly solvent: Use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocoll. 2020, 107, 105921. [Google Scholar] [CrossRef]
- Jorge, A.M.S.; Gaspar, M.C.; Henriques, M.H.F.; Braga, M.E.M. Edible films produced from agrifood by-products and wastes. Innov. Food Sci. Emerg. Technol. 2023, 88, 103442. [Google Scholar] [CrossRef]
- Van Hung, P.; Anh, M.N.T.; Hoa, P.N.; Phi, N.T.L. Extraction and characterization of high methoxyl pectin from Citrus maxima peels using different organic acids. J. Food Meas. Charact. 2021, 15, 1541–1546. [Google Scholar] [CrossRef]
- Rozenberg, M.; Lansky, S.; Shoham, Y.; Shoham, G. Spectroscopic FTIR and NMR study of the interactions of sugars with proteins. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2019, 222, 116861. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, H.M.C.; Morrugares-Carmona, R.; Wellner, N.; Cross, K.; Bajka, B.; Waldron, K.W. Development of pectin films with pomegranate juice and citric acid. Food Chem. 2016, 198, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Konrade, D. Rheological Properties. In One-Two-Dimensional Fluids; CRC Press: Boca Raton, FL, USA, 2023; pp. 113–162. [Google Scholar] [CrossRef]
- Johnson, J.B.; Walsh, K.; Naiker, M. Application of infrared spectroscopy for the prediction of nutritional content and quality assessment of faba bean (Vicia faba L.). Legum. Sci. 2020, 2, e40. [Google Scholar] [CrossRef]
- Van, S.J.J.G.; Tournois, H.; Wit, D.D.; Vliegenthart, J.F.G. Short range structure in partially crystalline potato starch determined with attenuated total reflectance FTIR. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar]
- Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q.; Jaiswal, S.; Chibbar, R.; Nantanga, K.K.M.; Seetharaman, K. Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res. Int. 2011, 44, 2962–2974. [Google Scholar] [CrossRef]
- Dome, K.; Podgorbunskikh, E.; Bychkov, A.; Lomovsky, O. Cambios en el grado de cristalinidad del almidón que tiene diferentes tipos de estructura cristalina después pretratamiento mecánico. Polímeros 2020, 12, 1–12. [Google Scholar]
- Peleg, M. Models of Sigmoid Equilibrium Moisture Sorption Isotherms with and without the Monolayer Hypothesis. Food Eng. Rev. 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Menkov, N.D. Moisture sorption isotherms of vetch seeds at four temperatures. J. Agric. Eng. Res. 2000, 76, 373–380. [Google Scholar] [CrossRef]
- Pałacha, Z.; Karwowski, W. Badanie stanu wody w wybranych nasionach roślin strączkowych metodą wykorzystującą izotermy sorpcji. Zesz. Probl. Postępów Nauk Rol. 2019, 594, 49–58. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Torres, M.D. Simplified algorithm for the prediction of water sorption isotherms of fruits, vegetables and legumes based upon chemical composition. J. Food Eng. 2009, 94, 334–343. [Google Scholar] [CrossRef]
- Boucheham, N.; Galet, L.; Patry, S.; Zidoune, M.N. Physicochemical and hydration properties of different cereal and legume gluten-free powders. Food Sci. Nutr. 2019, 7, 3081–3092. [Google Scholar] [CrossRef] [PubMed]
- Różyło, R.; Wójcik, M.; Biernacka, B.; Dziki, D. Gluten-free crispbread with freeze-dried blackberry: Quality and mineral composition. CYTA-J. Food 2019, 17, 841–849. [Google Scholar] [CrossRef]
- Michalak-Majewska, M.; Muszyński, S.; Sołowiej, B.; Radzki, W.; Gustaw, W.; Skrzypczak, K.; Stanikowski, P. Comparative Analysis of Selected Physicochemical and Textural Properties of Bread Substitutes. Acta Univ. Cibiniensis. Ser. E Food Technol. 2020, 24, 99–112. [Google Scholar] [CrossRef]
- Ameur, H.; Tlais, A.Z.A.; Paganoni, C.; Cozzi, S.; Suman, M.; Di Cagno, R.; Gobbetti, M.; Polo, A. Tailor-made fermentation of sourdough reduces the acrylamide content in rye crispbread and improves its sensory and nutritional characteristics. Int. J. Food Microbiol. 2024, 410, 110513. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, E.; Linde, M.; Gondek, E.; Kamińska-Dwórznicka, A.; Samborska, K.; Antoniuk, A. The effect of phytosterols addition on the textural properties of extruded crisp bread. J. Food Eng. 2015, 167, 156–161. [Google Scholar] [CrossRef]
- Mendez, D.A.; Fabra, M.J.; Martínez-Abad, A.; Μartínez-Sanz, M.; Gorria, M.; López-Rubio, A. Understanding the different emulsification mechanisms of pectin: Comparison between watermelon rind and two commercial pectin sources. Food Hydrocoll. 2021, 120, 106957. [Google Scholar] [CrossRef]
Sample | n | k (Pa·sn) | R2 | η (Pa·s) |
---|---|---|---|---|
citrus pectin | 0.80 ± 0.01 e | 2.18 ± 0.19 a | 0.999 | 1.02 ± 0.11 a |
chickpea | 0.29 ± 0.02 b | 158.63 ± 13.63 d | 0.989 | 9.74 ± 0.19 cd |
white beans | 0.18 ± 0.01 a | 243.37 ± 13.68 e | 0.931 | 10.34 ± 0.91 d |
black beans | 0.38 ± 0.01 c | 92.34 ± 10.62 c | 0.997 | 8.23 ± 0.69 c |
red beans | 0.42 ± 0.01 d | 53.75 ± 10.78 b | 0.999 | 5.53 ± 1.13 b |
Crispbread with Legume | Water Content (%) | Water Activity | L* | a* | b* |
---|---|---|---|---|---|
chickpea | 3.58 ± 0.19 a | 0.173 ± 0.001 b | 71.03 ± 0.86 c | 4.80 ± 0.25 c | 39.73 ± 0.21 d |
white beans | 3.42 ± 0.12 a | 0.156 ± 0.001 a | 74.94 ± 0.43 d | 3.05 ± 0.07 a | 23.79 ± 0.46 c |
black beans | 4.12 ± 0.29 a | 0.185 ± 0.001 c | 34.46 ± 1.24 a | 3.84 ± 0.13 b | 3.30 ± 0.07 a |
red beans | 3.16 ± 0.24 a | 0.156 ± 0.001 a | 47.74 ± 0.93 b | 10.05 ± 0.29 d | 10.12 ± 0.13 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, K.; Galus, S. Structural and Rheological Characterization of Vegetable Crispbread Enriched with Legume Purée. Molecules 2024, 29, 1880. https://doi.org/10.3390/molecules29081880
Szulc K, Galus S. Structural and Rheological Characterization of Vegetable Crispbread Enriched with Legume Purée. Molecules. 2024; 29(8):1880. https://doi.org/10.3390/molecules29081880
Chicago/Turabian StyleSzulc, Karolina, and Sabina Galus. 2024. "Structural and Rheological Characterization of Vegetable Crispbread Enriched with Legume Purée" Molecules 29, no. 8: 1880. https://doi.org/10.3390/molecules29081880
APA StyleSzulc, K., & Galus, S. (2024). Structural and Rheological Characterization of Vegetable Crispbread Enriched with Legume Purée. Molecules, 29(8), 1880. https://doi.org/10.3390/molecules29081880